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The present study was to determine the anticancer potential of Labisia pumila in in vitro models. Results from the study revealed
that ethanol extract of L. pumila was more cytotoxic against HM3KO cells while having reduced effects on nonmalignant cells as
compared to aqueous and hexane extracts. Thus, ethanol extract was selected to be further separated by using the bioassay-guided
fractionation method to give an active fraction, SF2Lp. Results obtained from the flow cytometry analysis showed that SF2Lp was
able to arrest the HM3KO cell cycle at the G1 phase, while morphological findings from AO-EB nuclear staining assays along with
the Apoptotic Index confirmed the induction of apoptosis by SF2Lp in HM3KO cells. Results from the mechanistic study further
revealed that SF2Lp treatment was able to concurrently increase the expression level of p53 and pro-apoptotic protein Bax and
also reduce the expression level of anti-apoptotic protein BCI-2 in HM3KO cells, directly contributing to the increase in Bax/Bcl-2
ratio. These findings, therefore, suggested that L. pumila was able to inhibit HM3KO cell growth possibly by arresting the cell cycle
at G1 phase and inducing apoptosis in HM3KO cells via the up- and down-regulation of Bax/Bcl-2 protein, mediated through a

p53-dependent pathway.

1. Introduction

Natural products of various sources, particularly from plants
and marines have been regarded as a precious alternative to
modern medicine and investigations on active components
with anticancer potential of natural sources have been exten-
sively carried out [1-4].

There is an increasing understanding that chemothera-
peutic agents and a variety of anticancer agents can stimulate
cancer cell death by way of apoptosis [5-8]. Apoptosis,
a highly structured and orchestrated process, performs a
significant role in regulating cell number for the growth
and homeostasis of tissues by eliminating aged, damaged,
and unwanted cells [9, 10]. In cancer treatment, one of the
approaches to restrain tumor growth is by activating the
apoptotic machinery in the tumor cells [11, 12].

Earlier studies done revealed that extracts from the plants
of Myrsinaceae exhibited anticancer potential in both in vitro
or in vivo models [13-15]. Labisia pumila (L. pumila), or
locally recognized as Kacip Fatimah from the family Myrsi-
naceae, is a famous Malaysian traditional herbs that has been
exploited especially by the Malay women for generations for
pre- and postpartum treatments [16, 17]. Other applications
of L. pumila include treatment of dysentery, dysmenorrhea,
flatulence, gonorrhea, and “sickness in the bones” [16, 18].
Of late, the herb has been extensively commercialized in
Malaysia as health tonic drink and supplement capsules
especially for women.

Scientific studies done on L. pumila were very scarce and
published data on the pharmacological activity of this plant
were very limited. Several scientific studies done on L.
pumila revealed that L. pumila aqueous extract was found
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to have compounds with oestrogenic activities [19] and was
able to reduce the level of cortisol in pregnant lab rats
without affecting the status of the immune system [20]. In a
different study, the water extract of this plant demonstrated
protective effect on UV-irradiated human dermal fibroblasts,
and the effect was found better than ascorbic acid in
defending the skin against UV-induced photoaging [21].
Besides these reports, published scientific findings regarding
anticancer potential of L. pumila in vitro have not yet been
reported. Thus, this study was intended to investigate the
antiproliferative potential of L. pumila ethanol extract and
its active fraction in in vitro model and also to determine
the molecular mechanism involved during the induction
of apoptosis in human melanoma HM3KO cells. To the
best of our knowledge, this is the first information on the
antiproliferative and proapoptotic effects of L. pumila in
human melanoma HM3KO cells in vitro.

2. Materials and Methods

2.1. Plant Material. Dried powder of L. pumila whole plant
was supplied by Professor Dr. Azimahtol Hawariah Lope
Pihie (National University of Malaysia).

2.2. Plant Extraction. In this study, the dry powder of L.
pumila whole plant was separately extracted with hexane,
ethanol, and water. For the preparation of ethanol and
hexane extracts, L. pumila whole plant powder was weighed
and exhaustively extracted with 90% ethanol and absolute
hexane (1g/10mL, w/v), respectively, by using a Soxhlet
apparatus at a temperature of 40-50°C for 8 hours. The
extracts obtained were then filtered through No. 2 Whatman
filter paper and both filtrates were dried at 40°C under
reduced pressure by using a rotary evaporator. As for the
aqueous extract, it was prepared by heating L. pumila whole
plant powder with distilled water (1 g/10 mL, w/v) at a tem-
perature of 60°C for 8 hours. The resultant extract was then
filtered through No. 2 Whatman filter paper, and the filtrate
was freeze-dried by using a freeze-dryer.

2.3. Preparation of Samples. To determine the antiprolifera-
tive activity of L. pumila, all dried hexane (LpHE), ethanol
(LpEE), and aqueous (LpAE) extracts were weighed and
dissolved in dimethyl sulphoxide (DMSO) to an appropriate
concentration and stored as a stock solution at —20°C until
used. The final concentration of DMSO used was less than
1%, and at this concentration, DMSO does not affect cell
viability [22]. For the treatment of experimental cultures,
each stock of extracts was diluted with fresh Dulbecco’s
Modified Eagle’s Medium (DMEM) enriched with 10% (v/v)
fetal bovine serum (FBS) and 1% antibiotic (Penicillin and
Streptomycin) cocktail to give final concentrations of L.
pumila extracts ranging from 0 to 5 mg/mL.

Active fraction of L. pumila was prepared from the
most active extract by using column chromatography, where
chloroform with an increasing amount of methanol was used
as the eluent. Fractions collected were then subjected to thin
layer chromatography (TLC) using methanol: chloroform
(1:9) as the mobile phase. Fractions with the same TLC
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profile were pooled and dried to give a few main fractions.
The fraction with most yield was then chosen for further
separation and rechromatographed and fractions collected
were then underwent TLC profiling to give main fractions.
These fractions were then subjected to antiproliferative assay
against HM3KO cells to select the most active fraction. The
selected active fraction was then diluted in DMSO to generate
various concentrations based on its ICsq value, to be further
investigated in the apoptosis assay, cell cycle progression, and
Western blot analyses.

2.4. Chemicals. Dacarbazine or 5-(3,3-Dimethyl-1-triazen-
yl)imidazole-4-carboxamide or DTIC, ethylenediamine tet-
raacetic acid (EDTA), ribonuclease A (RNase A), dimethyl
sulfoxide (DMSO), proteinase K, acridine orange, ethidium
bromide, and propidium iodide were purchased from Sigma
Chemical Co (St. Louis, MO, USA). Dulbecco’s modified
Eagle’s Medium (DMEM), trypsin, fetal bovine serum (FBS),
EDTA, and penicillin-streptomycin were purchased from
Gibco Laboratories, New York, while fungizone was bought
from Flowlab, Australia.

The antibodies against Bax (clone 6A7), Bcl-2 (clone Be-
12/100), and p53 (clone Pab 1801) were purchased from
Pharmingen (USA). The antibody against 3 actin was from
Sigma Aldrich. Bradford reagent was from Bio-Rad labora-
tories (USA) and Renaissance Western blot Chemilumines-
cence reagent Plus was from Perkin Elmer (Boston, USA). All
other chemicals used in this study were of the highest grade
available.

2.5. Cell Culture. Human melanoma HM3KO cells were
kindly provided by Dr Yoko Funasaka, Japan, whereas MDBK
and Vero cells were purchased from American Type Cell
Culture Collection (ATCC), Maryland, USA. These cells were
cultured in DMEM supplemented with 10% fetal bovine
serum, penicillin-streptomycin, fungizone, and miramycin.
The cells were maintained in a humidified incubator at 37°C
with 5% CO, and 95% air. The cells were regularly observed
using an inverted microscope.

2.6. Cell Proliferation Assay. The antiproliferative effects of L.
pumila various extracts (hexane-LpHE, ethanol-LpEE, and
aqueous-LpAE) were investigated by determining their I1Cs
values. Cells were cultured in supplemented DMEM in a
humidified atmosphere with 5% CO, at 37°C. When the cells
reached 70-80% confluency, these logarithmically growing
cells were then rinsed with phosphate buffered saline (PBS)
before being trypsinized with 0.025% trypsin. Cells (1 x 10°)
were then plated in a 96-well plate and permitted to adhere
for 8-12 h. On the following day, old media were discarded
and all cells were rinsed with PBS. Fresh supplemented
DMEM was then loaded into each well and cells were then
treated with various concentrations (0-5mg/mL) of LpAE,
LpEE, and LpHE, 1% DMSO (served as negative control),
and Dacarbazine (positive control). Dacarbazine was chosen
to be used as positive control because it is one of the
most active approved neoplastic agents for the treatment of
malignant melanoma [23]. The treated and untreated cells
were then incubated for 24, 48, and 72 hours at 37°C in
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an atmosphere of 5% CO, and 95% air. At the end of each
indicated time, the antiproliferative activity of all extracts
was assessed by using methylene blue method as previously
described [24]. The absorbance of dissolved solutions was
measured by an ELISA reader at a wavelength of 660 nm.
Each concentration of LpAE, LpEE, and LpHE was assayed in
triplicates, the absorbance of untreated cells was considered
as 100%, and the cytotoxic dose that kills 50% of cells
population (ICsp) was determined from the absorbance
versus concentration curve. The above-mentioned method
also was used to determine the ICs value of L. pumila active
fraction.

2.7. Cell Cycle Analysis by Flow Cytometry. The effects of L.
pumila on cell proliferation was further studied using its
active fraction. In order to determine the effect of L. pumila
on the cell cycle, flow cytometry analysis was carried out. For
this purpose, cells were seeded in 6-well plates at a density of
1 % 10° cells/mL for 24 h. After incubation, cells were treated
with different concentrations of the active fraction based on
its ICso value. Floating and attached cells were harvested,
rinsed in PBS, fixed in ice-cold ethanol (70% v/v), and kept
at —20°C for 30 minutes. After incubation, the mixture was
centrifuged for 5min at 600 Xg at 4°C, and the resultant
pellet was further treated with DNase-RNase A at 2 mg/mL
for 30 min. The cell pellet was then stained with propidium
iodide (50 ug/mL), containing 0.1% Triton X-100 and EDTA
(0.02mg/mL). Cell cycle profiles were determined by using
Cyan software (Dako Cytomation, Germany).

2.8. Apoptosis Assay. The antiproliferative activity of L.
pumila most active fraction was further investigated by
apoptosis assay to determine the mode of cell death involved.
For this purpose, treated and untreated cells were subjected
to Giemsa staining, and the induction of apoptosis was
further confirmed by acridine orange-ethidium bromide
(AO-EB) double-staining.

For Giemsa staining, cells were seeded at 1 x 10° cells/mL
on glass slides for 24 h to allow cell adherence. After incuba-
tion, cells were then treated with the concentration of ICsg
of L. pumila most active fraction for 24, 48, and 72 hours.
At the end of the treatment, the cells were rinsed twice with
cold PBS and further fixed with 100% cold methanol for 15
minutes. Cells were then stained with Giemsa for 30 minutes
and rinsed under running tap water and air-dried before
being observed under a light microscope.

As for the AO-EB staining, cells were seeded at 1 X
10° cells/mL in 6-well plates for 24 h to allow cell adherence.
After incubation, cells were treated with the concentration
of ICsy of L. pumila most active fraction for 24, 48, and 72
hours. At the end of the treatment, cells were trypsinized
with 0.025% (w/v) trypsin solution and rinsed with PBS
once. Twenty-five (25) uL of the cell suspension was then
mixed together with 1 uL of AO-EB dye cocktail, containing
100 mg/mL of each dye. Cells were immediately visualized
under a fluorescence microscope. The quantification of
apoptotic cells was according to Ribble et al. [25], where
apoptotic cells showed green or orange condensed or frag-
mented chromatin. At least 600 nuclei per pellet were scored

using a fluorescence microscope at a magnification of 400x
and the percentage of apoptotic cells were determined as
follows [26]:

apoptotic cell number
total number

Apoptotic cells, % = ( ) % 100.

(1)

2.9. Western Blot Analysis. To determine the effect of L.
pumila on protein expression of Bax, Bcl-2, p53, and
caspases-9, -7, and -8 in HM3KO cells, cells were seeded
in 6-well plates at a density of 1 x 10° cells/mL for 24 h.
After incubation, cells were treated with the concentration
of ICsq value of L. pumila most active fraction for 3, 6, and
24 hours. After incubation of each indicated times, the cells
were scrapped in extraction buffer containing 50 mM Tris-
HCI (pH 8.0), 150 mM NaCl, 5mM EDTA, 5mM EGTA,
1% (v/v) Triton-X, 1 mM phenylmethylsulfonyl fluoride
(PMSF), 10 mM glycerophosphate, 1 mM Na3;VOy, 10 yg/mL
pepstatin A, 10 yg/mL aprotinin, 20 yg/mL leupeptin, and
5mM DTT. The mixture was then put on ice for 45
minutes and further subjected to three freeze-thaw cycles
and was then centrifuged at 10,000 rpm for 20 min at 4°C.
The protein concentration was determined by DC Bio-Rad
protein assay according to the manufacturer’s instructions.
For Western blot analysis, 30 ug of proteins from both treated
and untreated cells was subjected to separation by using
SDS-PAGE over 4-12% gradient gels. After electrophoresis,
the separated proteins were blotted or transferred onto
polyvinyl-difluoride (PVDF) membrane (PolyScreen, NEN
Life Sciences, USA). The membrane was then dried and
blocked in blocking buffer (5% nonfat dry milk in PBS-
Tween (0.1%) for 1 h at room temperature and further incu-
bated with appropriate primary antibody in blocking buffer
overnight at 4°C. This was followed by incubation with the
appropriate secondary antibody coupled to horseradish per-
oxidase (HRP). The resultant immunoreactive bands were
detected by Renaissance Western Blot Chemiluminescence
Reagent Plus (NEN, Perkin Elmer, USA), exposed on a Kodak
OMAT X-ray film (Eastman Kodak), and further subjected
to a densitometry analysis, which was performed using a GS
670 Imaging Densitometer with Molecular Analyst software
(Bio-Rad, Hercules, USA). The membranes were reprobed
with f-actin antibodies as an internal control and to ensure
equal loading. Each Western blot shown is a representative of
at least three independent experiments.

2.10. Statistical Analysis. All data were expressed as the
means =+ standard deviation (SD) of the values obtained from
at least three replicates. Using analysis of variance (ANOVA),
statistical significance was determined. Mean values with
probability values of P < 0.05 were taken as statistically
significant.

3. Results

3.1. Antiproliferative Activity of L. pumila Extracts and Its
Active Fraction. The antiproliferative activity of L. pumila
extracts was determined using a methylene blue assay, and
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TaBLE 1: Antiproliferative activity of L. pumila various extracts in human melanoma HM3KO and nonmalignant MDBK and Vero cell lines.

L. pumila extracts

ICsp values (ug/mL)

HM3KO MDBK Vero
LpAE 66.41 = 0.78 89.30 £ 1.95 107.62 = 0.98
LpEE 16.18 £ 0.94 129.22 = 1.37 76.74 + 0.86
LpHE 35.67 = 0.66 57.90 = 1.09 36.78 + 1.63
Dacarbazine 5.32+0.71 39.52 £0.76 54.11 = 0.56

All values were expressed as the means = SD from three independent experiments: L. pumila aqueous extract-LpAE, ethanol extract-LpEE, and hexane extract-

LpHE.

the ICsp values obtained were used as a parameter for
cytotoxicity. The ICs is the concentration required for 50%
inhibition of a population of targeted cells [27], and crude
extracts with ICsg values lower than 30 yg/mL are considered
cytotoxic [28].

Table 1 shows the antiproliferative activity of L. pumila
various extracts against human melanoma HM3KO and
nonmalignant MDBK and Vero cell lines. The ethanol extract
(LpEE) was found more active against HM3KO cells, with
an ICs values of 16.18 + 0.94 yg/mL as compared to LpAE
and LpHE (66.41 + 0.78 and 35.67 + 0.66 ug/mL, resp.).
Interestingly, LpEE demonstrated a certain level of cytoselec-
tivity towards nonmalignant MDBK and Vero cell lines, with
higher ICsq values of 129.22 + 1.37 and 76.74 + 0.86 ug/mL,
respectively. Comparatively, dacarbazine, a neoplastic drug,
was used as a positive control in this study. Dacarbazine
is widely used to treat malignant melanoma. In this study,
dacarbazine exhibited an inhibition against HM3KO cells
with an ICsj value of 5.32 + 0.71 yg/mL. (Table 1).

As the results from the antiproliferative assays revealed
that ethanol extract of L. pumila (LpEE) was more cytotoxic
against HM3KO cells as compared to aqueous (LpAE) and
hexane (LpHE) extracts, thus LpEE was selected as the most
active extract. In view of this, LpEE was then subjected
to separation by using column chromatography and thin
layer chromatography. From the column chromatography
analyses, 131 fractions were collected and all of these
fractions were then subjected to thin layer chromatography
(TLC). Fractions with the same TLC profile were pooled
and dried. Based on the TLC profiles obtained, these 131
fractions can be grouped into 9 major fractions (F1-F9). Of
this nine fractions, F2 and F3 exhibited lower ICs, values
of 9.3 + 0.32 and 8.71 + 0.41 yug/mL, respectively. The rest
of the fractions showed ICs values of more than 90 yg/mL.
Even though F3 displayed values less than F2, F2 was chosen
for further separation because the total yield of F2 was 7.4
times more (26.40 g) than F3 (3.58 g). From the chromatog-
raphy analyses, F2 was successfully separated to 5 major
fractions, namely, SF1-SF5. These fractions were then tested
against HM3KO cells. Table 2 shows the antiproliferative
activity of L. pumila fractions (SF1-SF5) against HM3KO
cells.

As shown in Table 2, fraction SF2 was found more
effective against HM3KO cells with ICsy values of 7.59 +
0.53 ug/mL as compared to other fractions. Thus, this active
fraction or designated as SF2Lp was then used to be further

TaBLE 2: Antiproliferative activity of L. pumila various fractions
(SF1-SF5) against human melanoma HM3KO cells.

L. pumila fractions ICsp values (ug/mL)
SF1 35.80 = 0.27
SF2 7.59 = 0.53
SF3 47.51 =0.87
SF4 63.88 = 0.59
SF5 93.91 £ 0.68

All values were expressed as the means = SD from three independent
experiments.

investigated in the apoptosis assay, cell cycle progression, and
Western blot analyses.

3.2. Induction of Apoptosis by L. pumila Active Fraction,
SF2Lp. Results from the antiproliferative assay suggested
that fraction SF2 or termed as SF2Lp was the most active
fraction with the ICsg values of 7.59 + 0.53 yg/mL as com-
pared to other fractions. This value appeared to be lower than
the IC5q value of active ethanol extract (16.18 + 0.94 ug/mL),
indicating that SF2Lp is more cytotoxic to HM3KO cells
than its crude extract. To determine the mode of cell death
induced by L. pumila active fraction, SF2Lp in HM3KO cells,
the cells were treated with SF2Lp at 7.59 yg/mL in different
time intervals (24, 48, and 72 hours).

Under the phase contrast of an inverted microscope, the
morphological changes of unstained HM3KO cells undergo-
ing apoptosis can still be seen clearly (Figure 1). After 72-
hour treatment, healthy HM3KO cells were seen as attached
cells at the flask’ surface, displaying regular epithelial-like
shape and less number of apoptotic cells (Figure 1(a)), while
SF2Lp-treated cells showed obvious morphological changes,
including cell shrinkage and reduced in number. Some
cells were spherical in shape indicating a degree of loss of
attachment (Figures 1(b), 1(c), and 1(d)).

To detect the apoptotic cells, SF2Lp-treated cells were
subjected to Giemsa staining, and the Giemsa stained-cells
were observed under a light microscope. Microscopically,
the healthy HM3KO cells displayed an ordinary epithelial-
like shape with normal ratio of cytoplasm and nucleus
(Figure 2(a)). In SF2Lp-treated cells, the morphological
changes such as cytoplasmic condensation as well as highly
condensed nucleus of cells undergoing apoptosis can be seen
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FIGURE 1: Representative images from morphological observation under phase contrast of an inverted microscope of SF2Lp-treated and
-untreated HM3KO cells. HM3KO cells were treated with 7.59 yg/mL SF2Lp for 24 (b), 48 (c), and 72 (d) hours. A population of 72 hours
DMSO-treated HM3KO cells, which served as negative control, showed less apoptotic cells (a). Red arrows showed nuclear condensation
and cells shrinkage due to apoptosis which occurred actively at the beginning of the treatment and the presence of apoptotic bodies (black

arrows) after 72 hours of treatment. Magnification: 400x.

as early as 24-hour treatment. After 72-hour treatment the
number of viable cells observed was significantly reduced
as most of SF2Lp-treated cells were dead and sloughed off,
leaving empty spaces behind (Figure 2(d)).

The inhibitory effect of SF2Lp on HM3KO cells via incu-
bation of apoptosis was further confirmed by using acridine
orange (AO) and ethidium bromide (EB) nuclear staining.
Acridine orange and ethidium bromide are two common
fluorochromes that can be used to evaluate the nuclear
morphology of apoptotic cells. It has been suggested that
through this staining method, apoptotic index and cell
membrane integrity can be assessed simultaneously, and
as there is no cell fixation step, a number of potential
artifacts thus can be avoided. In addition, fluorescence
light microscopy together with AO-EB staining is a method
of choice for its accuracy, simplicity, and rapidity [29].
While AO permeates both live and dead cells and makes
the nuclei visibly green, EB only stains cells when their
cytoplasmic membrane integrity is lost or compromised and,
therefore, stains the nucleus red [29, 30]. By means of AO-
EB staining assay, live cells exhibit normal green nuclei early

apoptotic cells show bright green nuclei with condensed or
fragmented chromatin, late apoptotic cells display condensed
and fragmented orange chromatin, whereas necrotic cells
showed structurally normal orange nucleus [29].

In this study, HM3KO cells were treated with SF2Lp at the
concentration of its ICs values of 7.59 ug/mL for 24, 48, and
72 hours. HM3KO cells treated with 1% DMSO were used as
control. Cells that showed bright green or orange condensed
or fragmented chromatin were taken as apoptotic [25].

Findings from the microscopic examination showed that
live HM3KO cells in the control group displayed normal
green nuclei (Figure 3(a)), while SF2Lp-treated cells showed
membrane blebbing and bright dense granular masses of
chromatin aggregated along the periphery of the nuclear
membrane, indicating early apoptosis (Figure 3(b), blue ar-
row). In some of the treated cells, the nuclei were found dis-
integrated and fragmented into distinct spherical fragments
with highly densed chromatin, suggesting the formation of
apoptotic bodies in late apoptosis (Figures 3(c) and 3(d),
green arrow). The percentage of apoptotic HM3KO cells for
each exposure time (24, 48, and 72 hours) to SF2Lp were



Evidence-Based Complementary and Alternative Medicine

FIGURE 2: Representative images from morphological observation of SF2Lp-treated and -untreated HM3KO cells stained with Giemsa.
HMB3KO cells were treated with 7.59 yg/mL SF2Lp for 24 (b), 48 (c), and 72 (d) hours. DMSO-treated HM3KO cells served as negative
control (a). SF2Lp-treated cells showed significant morphological changes including shrinkage of cytoplasm and compaction of the nucleus
(red arrow), indicating that cells underwent apoptosis. Magnification: 400x.

calculated and the data were presented as Apoptotic Index
(AI) as displayed in Figure 4.

The apoptotic index (Al) was determined to confirm that
SF2Lp-treated cell death was through apoptosis and it was
calculated as the percentage of apoptotic cells from at least
600 counted cells within the cells population [26]. Apoptotic
Index (AI) can be defined as the percentage of apoptotic
cells and apoptotic bodies within the overall population of
total cells [26]. The differences between the control group
and treated group (1% DMSO, 24 hours, 48 hours, and 72
hours) were statistically analyzed using ANOVA, where P
values < 0.05 were considered as significant.

As shown in Figure 4, results from the study showed that
the percentage of apoptotic HM3KO cells that have been
treated with 7.59 ug/mL of L. pumila active fraction, SF2Lp,
were increased in a time-dependent manner with 29.5+1.6%
at 24 hours, 54.1 + 1.1% at 48 hours, and 69.8 + 1.7%
at 72 hours. Untreated HM3KO cells that were cultured in
enriched DMEM showed that only 4.3 = 0.4% of these cell
were apoptotic. On the other hand, cells that have been
treated with 1% DMSO as negative control displayed only
5.7 =£0.9% apoptotic cells and this value was not significantly
different (P < 0.05) as compared to untreated control cells.

This observation indicated that longer the exposure time to
SE2Lp, the higher the percentage of apoptotic HM3KO cells.

3.3. Active Fraction of L. pumila, SF2Lp-Induced Cell Cycle
Arrest at G1 Phase in HM3KO Cells. Cell cycle analyses were
performed to investigate the basis of antiproliferative activity
of L. pumila active fraction, SF2Lp, in HM3KO cells by flow
cytometry analysis, and for this purpose, cells were treated
with 3.00, 7.59, and 15.00 yg/mL of SF2Lp for 24 hours.
The concentrations were chosen based on the ICsy values of
SE2Lp against HM3KO cells. The G1/S ratio was used as an
index of G1 arrest [31].

As shown in Figure 5, after 24 hours treatment, at the
concentration of 3, 7.59, and 15 yg/mL of SF2Lp, the percent-
age of cells in G1 phase reached to 65.58 + 1.5, 62.52+0.8, and
57.83 + 1.4%, respectively, of total cells when compared to
53.85+1.1% in the control group (P < 0.05). In addition, the
percentage of cells in the S phase were significantly (P < 0.05)
declined from 15.22 +1.0% in the control group to 7.97 0.9,
5.61 + 0.5, and 4.54 + 0.5%, in the SF2Lp-3, SF2Lp-7.59,
and SF2Lp-15 group, respectively, with a slight increase from
6.25 + 0.9 in the control group to 10.93 + 0.7, 11.87 = 0.7,
and 17.63 + 0.5% in the SF2Lp-3, SF2Lp-7.59, and SF2Lp-15
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(b)

(d)

FIGURE 3: Representative images from morphological observation of SF2Lp-treated and -untreated HM3KO cells stained with acridine
orange-ethidium bromide (AO-EB). HM3KO cells were treated with 7.59 ug/mL SF2Lp for 24 (b), 48 (¢), and 72 (d) hours. DMSO-treated
HM3KO cells served as negative control (a). SF2Lp-treated cells showed significant morphological changes including nuclear condensation
(blue arrows), membrane blebbing (yellow arrows), and apoptotic bodies (green arrows). Magnification for (a): 400x; (b)—(d): 1000x.
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FIGURE 4: Induction of apoptosis in HM3KO cells by SF2Lp at the ICsy concentration (7.59 pug/mL) at different exposure times (24, 48, and
72 h) as detected by AO-EB double staining. *P < 0.05 was taken as significantly different from control. Each value represents means + SD

from three independent experiments. SF2Lp-induced HM3KO cell death via apoptosis increased significantly in a time-dependent manner
as compared to control.
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group, respectively, of the G2/M phase cells (P < 0.05). After
a 24-hour exposure to SF2Lp, the G1/S ratio of the treatment
group was significantly higher than that of the control group
(P < 0.05). A constant increasing pattern of the G1/S index
was observed in the treatment group while the G1/S ratio of
the control group was decreasing concomitantly through 10—
24 h treatment. After a 24-hour exposure to SF2Lp, the G1/S
index of HM3KO cells was 2.3 to 3.6 times higher than that
of the control group (Figure 6).

These observations clearly suggest that the active fraction
of L. pumila, SF2Lp, was able to alter the cell cycle distri-
bution of the growing HM3KO cells in a dose-dependent
manner. In addition, after 24 hours of treatment, SF2Lp had
caused a significant increased in cell numbers in G; phase
together with a marked reduction of the cell populations in S

phase indicating that SF2Lp can effectively suppress HM3KO
cells growth and proliferation by arresting the cell cycle at
G1/S transition phase.

3.4. L. pumila Active Fraction, SF2Lp, Induced Expression of
p53 and Its Downstream Regulator Bax and Suppressed the
Antiapoptotic Bcl-2 Expression. The p53 protein plays a vital
role in apoptosis and lack of its expression or function may
increased the risk of tumor formation [32]. To determine the
role of p53 in the induction of apoptosis in HM3KO cells by
SF2Lp, the total p53 protein levels was assessed by Western
blot analysis.

In this study, the results obtained showed that the
expression level of p53 in SF2Lp-treated HM3KO cells was
significantly increased (P < 0.05) after 6 hours of exposure
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FIGURE 7: Representative Western blots showing the effect of SF2Lp at its ICsy concentration (7.59 pg/mL) on expression level of p53 in
HM3KO cells at different time intervals (3, 6, 12, and 24 hours). To confirm equal loading, the membrane was reprobed with B-actin. The
data represent the mean + SD of 3 independent experiments. *Significantly different at P < 0.05 over control group.
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FIGURE 8: Representative Western blots showing the effect of SF2Lp at its ICsy concentration (7.59 yg/mL) on the expression level of
proapoptotic Bax in HM3KO cells at different time intervals (3, 6, 12, and 24 hours). To confirm equal loading, the membrane was reprobed
with f-actin. The data represent the mean = SD of 3 independent experiments. *Significantly different at P < 0.05 over control group.

with SF2Lp at its ICsy concentration (7.59 yg/mL) and the
level was found maximum after 24-hour treatment with
SEF2Lp as compared to control (Figure 6). This observation
suggests that SF2Lp-induced apoptosis of HM3KO cells
could be mediated through a p53-dependent pathway (Fig-
ure 7).

In the next part of the experiment, results from the
Western blot analysis showed that SF2Lp treatment at its
ICsy concentration (7.59 ug/mL) was able to concurrently
increase the expression level of proapoptotic protein Bax
and reduce the expression level of antiapoptotic protein BCI-
2 in HM3KO cells in a time-dependent manner (Figures
8 and 9), directly contributing to the increase in Bax/Bcl-
2 ratio (Figure 10). As shown in Figure 8, after 6 hours
of treatment, SF2Lp was found to be able to increase the
Bax protein levels in HM3KO cells treated with 7.59 yg/mL
of SF2Lp, while the antiapoptotic Bcl-2 protein levels were
found decreased and this was evident after 12 hours of
treatment with SF2Lp. According to Cory et al. [33], the

susceptibility of tumor cells to the induction of apoptosis by
chemotherapeutic agents is controlled by the ratio of Bcl-
2/Bax proteins in the mitochondria. Thus, these findings
suggest that the increased Bax/Bcl-2 ratio together with a
marked increase in the level of p53 protein expression, in
part, may contribute to the induction of apoptosis in SF2Lp-
treated HM3KO cells through a p53-dependent apoptotic
pathway.

4. Discussion

The objective of this study was to evaluate the antiprolifera-
tive effect of L. pumila extracts in HM3KO cells proliferation
and to elucidate the possible molecular mechanisms that may
occur as a result of exposing HM3KO cells with SF2Lp.

Both cell proliferation and apoptotic cell death are im-
portant determinants of growth of a tumour [5]. A balance
between the two is critical in maintaining tissues homeostasis
and normal development. As many chemotherapeutic agents
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antiapoptotic Bcl-2 in HM3KO cells at different time intervals (3, 6, 12, and 24 hours). To confirm equal loading, the membrane was
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Ficure 10: Effects of L. pumila active fraction, SF2Lp, at is ICsy concentration (7.59 ug/mL) on the Bax/Bcl-2 ratio in HM3KO cells at
different time intervals (3, 6, 12, and 24 hours). The data represent the mean + SD of 3 independent experiments. *Significantly different at

P < 0.05 over control group.

have been identified to be able to induce apoptosis in
cancer cells [34-36], apoptosis has been considered as a
method for the treatment of cancer. Altered apoptosis, how-
ever, may contribute to development of cancer and other
primary human diseases such as autoimmune diseases
and neurodegenerative disorders [8, 37, 38]. Observation
of morphological changes as cells undergo apoptosis still
remains the most reliable technique to define apoptotic cell
death [39]. Even though light microscopy has a low capacity
to distinguish apoptotic cells, the acuity can be enhanced
by using nuclear fluorescent dyes to examine nuclear
changes such as compacted chromatin and fragmented
DNA.

This study has demonstrated that the treatment of
HM3KO cells with L. pumila extracts resulted in an inhi-
bition of cell proliferation and a concomitant decrease in
cell viability. Results obtained from the study suggested

that among the various (aqueous-LpAE, ethanolic-LpEE,
and hexane-LpHE) L. pumila extracts tested, LpEE showed
the highest antiproliferative activity against HM3KO cells.
Interestingly, the cytotoxicity of LpEE appeared to be higher
against HM3KO cells than on nonmalignant MDBK and
Vero cell lines. The 50% inhibitory concentration (ICsy) of
LpEE against HM3KO cells was 16.18 = 0.94 ug/mL, while
its active fraction, SF2Lp, showed lower values that is 7.59 =
0. 0.53 ug/mL. From this point onwards, SF2Lp was used
to further elucidate the molecular mechanism involved in
SF2Lp-induced HM3KO cells apoptosis. Findings from the
antiproliferative and apoptosis assays suggest that SF2Lp was
able to induced cell death of HM3KO cells.

To confirm that SF2Lp-treated cell death was through
apoptosis, the extent of cell death was investigated by using
nuclear staining assays and Apoptotic Index (AI) was then
calculated. Al can be defined as the percentage of apoptotic
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cells and apoptotic bodies within the overall population of
total cells [26].

Results from the Giemsa staining assays clearly show the
morphology of apoptotic HM3KO cells and the apoptotic
cells can be seen only after 24 hours of treatment (Figure 2).

The ability of SF2Lp in inducing apoptotic cell death
in HM3KO cells was confirmed by the acridine orange-
ethidium bromide (AO-EB) nuclear staining assay that dis-
played presence of obvious changes associated with apop-
tosis, which include cell shrinkage, condensation of nuclear
chromatin, and apoptotic bodies in SF2Lp-treated cells. The
Apoptotic Index (AI) calculated from AO-EB assay further
revealed that the percentage of apoptotic HM3KO cells
that have been treated with 7.59 yg/mL of L. pumila active
fraction, SF2Lp, were increased in a time-dependent manner
with 29.5 + 1.6% at 24 hours, 54.1 + 1.1% at 48 hours,
and 69.8 = 1.7% at 72 hours. This observation indicated
that the longer the exposure time to SF2Lp, the higher the
percentage of apoptotic HM3KO cells. These findings suggest
that antiproliferative effect of SF2Lp in HM3KO cells was
via induction of apoptosis and that the active components
present in SF2Lp have the ability to induce cancer cell death
in vitro.

Many anticancer molecules show growth inhibition
and/or apoptotic cell death of cancer cells by modulating
the cell-cycle regulatory molecules [40]. To find out the
mechanism of action of SF2Lp in inhibiting the HM3KO
cells” growth, the effects of SF2Lp on the cell cycle and its
ability to induce apoptosis in HM3KO cells were studied.
Results obtained from the flow cytometry analysis showed
that SF2Lp was able to arrest the cell cycle at the G1 phase
to prevent the HM3KO cells transition from GI to S phase.
The ability of SF2Lp to arrest the cell cycle and to induce the
apoptosis process in HM3KO cells is believed to contribute
to the antiproliferative activity of SF2Lp.

In order to examine the mechanism of action of SF2Lp
in inducing apoptosis in HM3KO cells at the molecular level,
Western blotting analysis was thus carried out. Results from
the mechanistic study showed that SF2Lp was able to concur-
rently increase the expression level of proapoptotic protein
Bax and reduce the expression level of antiapoptotic protein
in HM3KO cells. This phenomenon is directly contributing
to the increase in Bax/Bcl-2 ratio that drives cells to undergo
apoptosis [33]. To find out whether apoptosis induction
by SE2Lp involves the tumor suppressor protein p53, the
effect of SF2Lp on the expression level of p53 was also
studied. Results from the Western blotting analysis showed
that SF2Lp was able to increase the expression level of p53
in HM3KO cells. These findings suggest that the ability of
SF2Lp to arrest the cell cycle at G1 phase and to induce the
apoptosis process in HM3KO cells was possibly mediated by
the activity of p53.

All in all, the above-mentioned findings suggest that the
increased Bax/Bcl-2 ratio together with a marked increase in
the level of p53 protein expression, in part, may contribute
to the antiproliferative activity and induction of apoptosis
in SF2Lp-treated HM3KO cells through a p53-dependent
apoptotic pathway.

11

There are very limited numbers of scientific papers pub-
lished regarding the inhibitory effects of L. pumila towards
cell proliferation as well as apoptosis induction in cultured
cells. To the best of our knowledge, the present study is the
first to report the antiproliferative and proapoptotic effects
of L. pumila ethanol extract and its active fraction, SF2Lp, in
human melanoma HM3KO cells in vitro.

5. Conclusion

Altogether the results from this study, showed antiprolifera-
tive effects of L. pumila active fraction, SF2Lp, through the
regulation of the cell cycle progression and the expression
of proteins involved in apoptotic pathway in HM3KO cells.
From this study we can conclude that L. pumila was able
to inhibit HM3KO cell growth possibly by arresting the cell
cycle at G1 phase and inducing apoptosis in HM3KO cells
via the up- and down-regulation of Bax/Bcl-2 protein, which
mediated through a p53-dependent pathway.
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