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Abstract
Studies of the neural substrates of semantic (word meaning) processing have typically focused on semantic manipulations,
with less consideration for potential differences in difficulty across conditions. While the idea that particular brain regions
can support multiple functions is widely accepted, studies of specific cognitive domains rarely test for co-location with
other functions. Here we start with standard univariate analyses comparing words to meaningless nonwords, replicating
our recent finding that this contrast can activate task-positive regions for words, and default-mode regions in the putative
semantic network for nonwords, pointing to difficulty effects. Critically, this was followed up with a multivariate analysis to
test whether the same areas activated for meaningless nonwords contained semantic information sufficient to distinguish
high- from low-imageability words. Indeed, this classification was performed reliably better than chance at 75% accuracy.
This is compatible with two non-exclusive interpretations. Numerous areas in the default-mode network are task-negative
in the sense of activating for less demanding conditions, and the same areas contain information supporting semantic
cognition. Therefore, while areas of the default mode network have been hypothesized to support semantic cognition, we
offer evidence that these areas can respond to both domain-general difficulty effects, and to specific aspects of semantics.
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Introduction
The question of how we derive meaning from symbols such as
print has been a persistent source of fascination for millennia.
Relatively recent methods for examining how the brain works
to achieve this, particularly in the domain of functional neuro-
imaging, have yielded major advances. For example, we now
know which brain areas are associated with semantic proces-
sing across multiple functional neuroimaging studies (Vigneau
et al. 2006; Binder et al. 2009; Visser et al. 2010; Wang et al.
2010). But we also know that differences in task difficulty can

influence results that depend on contrasting different task con-
ditions. Indeed, a recent study demonstrated a new level of
influence of task difficulty effects, where differences in task dif-
ficulty led to a reversal of the typical pattern of activation for
contrasting meaningful words and meaningless nonwords
(Graves et al. 2017). Areas that typically respond to semantic
information were found to activate more for meaningless non-
words than meaningful words. Such a result would presumably
only be found if the putative semantic areas were responding
to differences in difficulty between the contrasted conditions.
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Here we sought to test whether areas responding to difficulty
might also contain semantic representations. Specifically, we
wanted to know whether areas that activate for meaningless
nonwords compared to meaningful words might also be coding
semantic information. If this were the case, it would be a direct
demonstration of how domain-general difficulty effects can
co-localize with domain-specific semantic representations.
This distinction is important for interpreting what functions
are being localized. Domain-general effects cut across domain-
specific functions such as reading, mathematics, object naming,
and recognition. So rather than being specific to a particular
information or application domain, domain-general effects
occur when one condition demands more cognitive resources
than another. Indeed, the function of particular neural systems
is often characterized as relating to either domain-general
effects, or more domain-specific processes such as those asso-
ciated with linguistic input (Blank and Fedorenko 2017). Here
we test the conditions under which both of these effects may
occur in the same neural systems in the same experiment,
thereby offering a clear demonstration of the circumstances
under which a particular set of brain regions may show duality
of function.

In the experiment detailed below, the words are manipulated
in terms of a semantic factor, imageability. These meaningful
words are first compared to nonwords through a standard mass-
univariate analysis, and then the presence of information for dis-
tinguishing high and low levels of imageability is tested using
pattern-based analysis. In general, the motivation for using both
univariate and multivariate analyses is that they may be sensi-
tive to different aspects of word recognition (Cox et al. 2015).
Univariate analysis is sensitive to overall differences in mean
activation between conditions, as would likely occur with differ-
ences in overall difficulty between conditions such as identify-
ing words and nonwords. Multivariate analysis, on the other
hand, is sensitive to differences in distributed patterns of repre-
sentation (Jimura and Poldrack 2012), as is expected to occur
with differences in semantic factors such as imageability (Wang
et al. 2013).

Imageability is the degree to which a word calls to mind
sensory impressions. It has been widely used as a way to oper-
ationalize the distinction between abstract and concrete
words. Abstract words tend to be of low imageability and con-
tain relatively few semantic features, while concrete words are
generally of high imageability and contain relatively more
semantic features (Paivio 1991; Plaut and Shallice 1993). A
number of groups have used this distinction to investigate the
neural basis of semantics (Mellet et al. 1998; Kiehl et al. 1999;
Jessen et al. 2000; Pexman et al. 2007b; Wang et al. 2010),
including Binder et al. (2005), who made two bridging assump-
tions. One is that the verbal or language system on which low-
imageability words are thought to rely is represented by most
typical right handers within the left hemisphere. The other is
that the sensory-based system engaged by high-imageability
words can be represented in both hemispheres. Therefore,
neural processing of low-imageability words should be primar-
ily left-lateralized, while high-imageability words could take
advantage of both hemispheres. Indeed, this is what Binder
et al. (2005) found.

A possible confound, however, is that low-imageability words
typically take longer to respond to than high-imageability words.
This raises the possibility that the contrast between these word
types was being driven by performance differences rather than,
or in addition to, differences in semantic content. Indeed, in
the same study, areas where activation correlated with longer

response time (RT) were largely the same as areas activated for
low-imageability words, which was the condition involving lon-
ger RT (Binder et al. 2005). To attempt to find areas reliably acti-
vated across many studies for semantic processing, a large-scale
meta-analysis was performed (Binder et al. 2009). Also included
were studies that used a more general contrast of words com-
pared to meaningless but pronounceable nonwords, called
pseudowords. The rationale for including that contrast was
that words and pseudowords share valid form information
(orthography for written strings, phonology for written and
spoken forms), but only the words have meaning. The meta-
analysis also attempted to account for potential performance
differences across conditions by only including studies that
addressed such differences. The result was a set of areas associ-
ated with a strongly semantic condition (such as words or con-
crete/high-imageability words) compared to a weakly (or no)
semantic condition (such as pseudowords or abstract/low-image-
ability words). This contrast revealed a set of areas largely similar
to those activated previously for high-imageability words, includ-
ing the angular gyrus (AG), a large swathe of middle temporal
gyrus (MTG), dorsal prefrontal cortex, posterior cingulate/precu-
neus (PC), and parahippocampal gyrus (Binder et al. 2005). A sub-
set of these areas in the AG, posterior MTG, and PC were also
specifically associated with concrete words in another meta-
analysis that focused on the concrete-abstract word distinction
(Wang et al. 2010). Such consistency of putative semantic effects
across numerous studies was taken as strong evidence for
involvement of these areas in semantic processing.

Recently, we attempted to replicate the Binder et al. (2009)
meta-analysis finding in a single study (Graves et al. 2017). It
included two semantic contrasts that were well-represented in
that meta-analysis: words – pseudowords (lexicality contrast),
and high – low imageability words (imageability contrast).
Following Binder et al. (2005), we operationalized concreteness/
abstractness in terms of imageability. The imageability contrast
partially replicated the standard result by showing activation
for high-imageability words in the PC. The lexicality contrast,
however, yielded a surprising result in that words activated the
left inferior frontal junction (IFJ, an area at the intersection of
the inferior frontal and precentral sulci) and supplementary
motor area (SMA), areas overlapping the task-positive network
(TPN; Fox et al. 2005). The TPN, similar to the multiple-demand
network, is a set of brain areas that activates for resource-
demanding tasks compared to less demanding conditions such
as rest (Duncan 2010; Raichle 2015). Pseudowords, on the other
hand, activated AG, anterior temporal lobe (ATL), ventro-
medial prefrontal cortex, and PC. These areas overlap the
default-mode network (DMN, a set of areas that is negatively
correlated with the TPN; Buckner et al. 2008; Raichle 2015) and
are putative semantic areas (Binder et al. 1999, 2009). The parti-
cipants in that study also showed poorer performance, in terms
of RT and accuracy, on the words than pseudowords
(pronounceable but meaningless letter strings). This suggests
that the unexpected activation of the TPN for words and DMN
for pseudowords reflected differences in difficulty rather than
semantic content (Graves et al. 2017). A major implication of
this result is that activation in DMN areas for words that had
been interpreted as reflecting semantic processing might
instead reflect difficulty effects. Or, if these areas respond to
both difficulty and semantics, how could this be?

The current study addresses this question by examining
how areas within the DMN that are key elements in the puta-
tive semantic network might show two very different types of
responses: Activating for meaningless nonwords and
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representing information for decoding words along a semantic
dimension (in this case, high/low imageability). While there is
much discussion of the brain carrying out multiple different
kinds of processes in the same areas, there has been little
direct demonstration of this (Price and Friston 2005; Poldrack
2010). The current study aims to help fill that gap.

Materials and Methods
Participants

Participants for functional magnetic resonance imaging (fMRI)
were recruited from the Rutgers University-Newark commu-
nity. Interested participants were initially asked to complete an
online survey to determine eligibility. Right-handed native
English speakers who reported no history of traumatic brain
injury, psychiatric illness, recreational drug use, or claustro-
phobia were recruited from the database. Our sample consisted
of 20 participants, 13 female, with an average age of 23.7 years
(SD = 3.8). The Wechsler Test of Adult Intelligence (WTAR;
Wechsler 2001) was administered to estimate verbal intelligence.
Participants had a mean scaled WTAR score of 112.7 (SD = 10.2),
where the population average is 100.

Stimuli

For the lexical decision task performed in the scanner, stimuli
consisted of 180 words and 180 nonwords pronounceable in
English. The words were of either high or low imageability and
high or low meaning relatedness. The meaning relatedness
manipulation showed minimal results. It was also not a focus
of the current report and so will not be discussed further,
except where necessary to clarify the details of the methods.

Imageability ratings were obtained from a compilation of 6
databases (Paivio et al. 1968; Toglia and Battig 1978; Gilhooly
and Logie 1980; Bird et al. 2001; Clark and Paivio 2004; Cortese
and Fugett 2004). Words were separated into high and low ima-
geability by selecting those rated at the top and bottom 40% for
imageability. The following additional measures known to
affect lexical processing were collected: estimated word fre-
quency (log10 of the number of contexts in which each word
stimulus occurs) from the SUBTLEX-US database (Brysbaert and
New 2009), length in letters, 4 measures from CLEARPOND:
average bigram (two-letter combination) and biphone (two-
phoneme combination) frequencies, orthographic and phono-
logical neighborhoods (Marian et al. 2012), number of meanings
from WordMine2 (Durda and Buchanan 2006), and relatedness
among those meanings (e.g., “show” has high relatedness,
“bark” has low relatedness) from 3 sources (Durkin and Manning
1989; Azuma 1996; Azuma and Van Orden 1997). Stimuli selec-
tion procedures continued until high and low imageability words
did not reliably differ (pairwise t-tests of P > 0.05) on these fac-
tors, resulting in 90 high- and 90 low-imageability words.

Nonword foils were also included, as necessary for the lexical
decision task. They were of two types: Meaningless, pronounce-
able nonwords (pseudowords), and pseudohomophones (letter
strings like “karv” that are not words but would sound like words
if read aloud). The pseudoword/pseudohomophone distinction is
not relevant to the analyses conducted here, and because there
were also no reliable differences in accuracy and response times
(RT) between these nonword types, we will refer to them collec-
tively as “nonwords” for the remainder of the report. All non-
words were generated to consist of valid English trigrams using
the ARC Nonword Database (Rastle et al. 2002). The nonword foils

were matched with words on length in letters, orthographic
neighborhood, and bigram frequency.

Scan Session and Performance

Stimulus delivery was controlled and response times (RT)
recorded using PsychoPy software (Peirce 2007). Words and
nonword foils were displayed for 500ms, separated by random
inter-trial intervals (M = 3432ms, SD = 234ms) marked by a fix-
ation cross. Participants were instructed to press a button as
quickly and accurately as possible to indicate whether the tar-
get was a word or nonword. RT was calculated as the time from
stimulus onset to initiation of the button press response, in
milliseconds. Button presses were counterbalanced across parti-
cipants to account for possible advantages or neural differences
associated with a right versus left button press. A one-minute
practice round was provided for participants to become accus-
tomed to the appropriate response for words versus nonwords.

Stimulus schedules were generated and simulation tested
for optimized detection power of planned contrasts according
to a mixed event-related block design. Blocks contained 18
trials, with 9 words and 9 nonwords. Each block contained
either high or low imageability words randomly intermixed
with an equal number of nonwords, and each run consisted of
4 blocks. The event-related aspect of the design allowed for
analyzing any trials with incorrect responses separately from
those with correct responses. The blocked aspect of the design
was optimized for multivariate pattern analysis (MVPA), as
described below. Response accuracy and RT were analyzed
with t-tests to test for differences in mean accuracy between
high compared to low imageability words, and words compared
to nonwords.

Image Acquisition and Analysis

Data were collected on a 3-T Siemens Magnetom TrioTim
Scanner with a 12 channel head coil. A T1 high-resolution ana-
tomical brain scan was collected for each subject, using a gradi-
ent echo sequence, with a TR of 1900ms and a TE of 2.52ms
(matrix = 256 × 256 voxels, 176 contiguous 1mm axial slices,
field of view, FOV = 256mm, flip angle = 9). Five runs of Blood
Oxygen Level Dependent (BOLD) data were collected using a
gradient-echo echoplanar imaging (EPI) sequence (TR = 2000ms,
TE = 25ms, FOV = 208mm, matrix = 64 × 64, flip angle = 77). One
hundred twenty six whole brain volumes (3.25 × 3.25 × 3.00mm
voxels), each consisting of 35 axial slices, were obtained for each
run.

All images were preprocessed using the AFNI software suite
(http://afni.nimh.nih.gov/afni; Cox 1996). For each participant,
the first 6 images in each run were ignored due to initial satura-
tion. Slice timing and motion correction were applied to the
images. Additional noise covariates from the 6 motion para-
meters calculated during motion correction and the signal in
the ventricles were entered as regressors of no interest. Regressors
of interest were included for each word condition paired with
each type of nonword, with Imageability, Relatedness, and
Nonword background type (pseudoword, PW, or pseudohomo-
phone, PH) as factors, using the AFNI program 3dDeconvolve.
RT was included as a mean-centered regressor for each partici-
pant, and only correct trials were included in the main analysis.
Trials with erroneous responses (wrong button pressed, no
response, or RT more than 3 SDs from the mean) were modeled
separately. The group analysis was subsequently conducted
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with each individual’s images for each condition. These images
were spatially transformed to a standard reference space (Talairach
and Tournoux 1988) using the AFNI script, @auto_tlrc, and
smoothed using a 6mm FWHM kernel. A brain mask excluding
most white matter and cerebrospinal fluid was applied to all
contrast images. A voxelwise threshold of P < 0.01, with a clus-
ter correction of 805 μL (mapwise corrected P < 0.05), as deter-
mined by Monte Carlo simulation implemented in the AFNI
program 3dClustSim, was used for all contrasts.

Next we used MVPA to test for possible representation of
semantic information in areas activated by nonwords. To do
this, we started with a set of areas from our previous study
that, compared to the current study, showed very similar acti-
vation of DMN areas for nonwords (cf. cool colors in Fig. 1 with
Fig. 2A, a binarized version of nonword activations from Graves
et al. 2017, their Fig. 1A). The search space was restricted to the
left hemisphere because the neural areas associated with
semantic processing for words are generally larger on the left
(Binder et al. 2009). Because this mask was based on areas of
significant fMRI activation, it includes primarily gray matter, as
shown in Figure 2A. No additional measures were taken to
exclude white matter and cerebrospinal fluid. The timecourse
for word event trials was extracted from these areas. Defining
these based on an independent dataset avoids the possibility of
logical circularity or “double-dipping” (Kriegeskorte et al. 2009).
The impulse responses for the word stimuli were estimated by
deconvolving the BOLD time series data using least-squares
sum estimation (Mumford et al. 2012), as implemented in the
AFNI program 3dLSS. This yielded a set of independent event
impulse estimates for each participant. These events were
placed in the same order for each participant, spatially trans-
formed to atlas space as described above, and averaged to pro-
duce a mean participant dataset for use with MVPA.

A Gaussian Naïve Bayes (GNB) classifier, implemented in the
PyMVPA software suite (Hanke et al. 2009), was trained using 6-
fold leave-one-run-out cross-validation to determine whether
participants were reading high or low imageability words. A
mean accuracy rate of 75% was found to be reliable at P < 0.05.
Significance was determined by comparison with a Monte Carlo
simulation-derived null distribution on our data. We also
sought to determine which areas within the mask were con-
tributing most to classification accuracy by performing a
searchlight analysis with a 3mm radius, using the same GNB
classifier as above. To mitigate the potential for false positives
that arises from multiple comparisons across the 2405 voxels

in the mask, searchlight results were thresholded at 98% accu-
racy. While more principled approaches to correcting for multi-
ple comparisons exist that derive an empirical null distribution
for each searchlight (Stelzer et al. 2013), the current approach is
computationally tractable and gives a descriptive sense of
which voxels within the mask are contributing most to the
classification. To check the specificity of results, we performed
a second MVPA analysis using a different brain area mask. This
mask was generated from the same prior study, but was based on
areas activated for words compared to nonwords (Supplementary
Fig. S2), which generally corresponded to TPN areas. These areas
were also tested for the ability to classify words based on
imageability.

Results
Behavioral Results

Behavioral data were first analyzed in terms of response times
(RT). Words were recognized more quickly than nonwords. The
mean RT for words was 698ms, while the mean RT for non-
words (averaged across pseudowords and pseudohomophones)
was 827ms (item-wise t = 27.5, P < 0.001). There was no reliable
difference between pseudowords (825ms) and pseudohomo-
phones (830ms, item-wise t = 0.7, P > 0.1). There was also no
reliable difference between words of high and low imageability.
Both had a mean RT of 698ms. There was also no main effect
of nonword background on word recognition. Specifically, RT
for words within blocks of pseudoword foils (696ms) were not
responded to significantly differently from words within blocks
of pseudohomophone foils (700ms, item-wise t = 0.7, P > 0.1).

Analyses of response accuracy data yielded broadly similar
patterns to those above for RT data. Words were responded to
significantly more accurately (97.1%) than nonwords (90.6%,
item-wise t = 11.5, P < 0.001). No reliable differences emerged
between pseudowords (90.5%) and pseudohomophones (90.6%,
item-wise t = 0.1, P > 0.1), nor between words of high (97.2%)
and low (96.9%) imageability (item-wise t = 0.6, P > 0.1). There
was also no main effect of nonword background on word recog-
nition accuracy. That is, words within blocks of pseudoword
foils (97.2%) were not responded to significantly differently
from words within blocks of pseudohomophone foils (96.9%,
item-wise t = 0.4, P > 0.1).

Figure 1. Direct contrast of words (warm colors) with nonwords (cool colors).

Significant group activations are projected onto cortical surfaces in Talairach

space. Lateral views are in the upper row, medial views in the lower row.

Figure 2. The search space for the multivariate pattern analysis (MVPA) of areas

showing activations for meaningless nonwords from our previous study

(Graves et al. 2017) is shown in the upper row (A). Areas within the search space

contributing to the significant classification of words into high or low image-

ability at greater than or equal to 98% accuracy are shown in yellow in the

lower panel (B).
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Imaging Results

To test for overall differences between meaningful words com-
pared to nonwords (pseudohomophones and pseudowords), we
performed a direct contrast of words (warm colors in Fig. 1) to
nonwords (cool colors in Fig. 1). The pseudoword and pseudo-
homophone conditions were collapsed into a single nonword
condition because no activation differences were seen for
blocks of words intermixed with pseudohomophone foils, com-
pared to blocks of words intermixed with pseudoword foils.
Also, a direct contrast of pseudohomophones and pseudowords
yielded minimal activations for pseudohomophones only, in
the right inferior frontal gyrus (Supplemental Fig. S1). For the
word–nonword contrast, words activated the left inferior fron-
tal gyrus and inferior frontal junction, precentral and postcen-
tral gyri, intraparietal sulcus, ventral occipito-temporal and
lateral occipital cortices, along with a similar but more spatially
restricted set of areas on the right (warm colors in Fig. 1).
Nonwords activated the bilateral anterior temporal lobe, angu-
lar gyrus, dorso-medial and ventro-medial prefrontal cortices,
and posterior cingulate/precuneus (cool colors in Fig. 1).
Coordinates for maximum activations shown in Figure 1 are
provided in the Supplemental Materials (Table S1).

In terms of previously described networks, words activated
regions largely overlapping the TPN, while nonwords activated
regions largely overlapping the DMN. While these results are
generally consistent with four previous studies (Fiebach et al.
2002; Bedny and Thompson-Schill 2006; Westbury et al. 2016;
Graves et al. 2017), they run counter to many other previous
studies that have directly contrasted words and nonwords
(Démonet et al. 1992; Cappa et al. 1998; Henson et al. 2002;
Binder et al. 2003, 2005; Mechelli et al. 2003; Rissman et al. 2003;
Ischebeck et al. 2004; Kuchinke et al. 2005; Xiao et al. 2005;
Orfanidou et al. 2006). Those previous studies generally showed
words activating components of the DMN and nonwords acti-
vating components of the TPN. Because words and nonwords
generally share form but only the words have meaning, those
previous results led to the interpretation that a major function
of the DMN may be semantic processing. On the face of it, our
current results seem inconsistent with a semantic interpreta-
tion for the DMN, since it is the less meaningful nonwords that
activated DMN areas. An alternate possibility is that semantic
information is represented in DMN areas, but an imbalance in
the level of difficulty between words and nonwords is leading
to activation for words in TPN areas.

To test for the presence of semantic information in the DMN
areas that are essentially identical to putative semantic areas,
we performed an MVPA analysis on the activation timecourse
for word events as described in the Methods section above.
Note that these areas (Fig. 2A) showed activation for meaning-
less nonwords compared to words, where words were deter-
mined to be the more difficult condition based on performance
data (Graves et al. 2017). High and low imageability words were
distinguished with 75% accuracy (reliable at P < 0.05 by Monte
Carlo simulation). To determine if some voxels contributed
more than others to this classification, we performed a search-
light analysis using the same GNB classifier and training regime
as above to map which voxels were showing the highest (98%
or greater) classification accuracies. This revealed a large subset
of areas distributed throughout the original mask, including
from the ATL, AG, VMPFC, parahippocampal gyrus, PC, and
cuneus (Fig. 2B).

To test the alternate possibility that this imageability classi-
fication result could have been obtained from TPN areas not

typically associated with semantic processing, we also trained
the classifier to distinguish high from low imageability words
using activation timecourses for words in TPN areas (shown in
Supplementary Fig. S2). The areas were defined based on acti-
vations for words relative to nonwords from a previous study
(Graves et al. 2017), and restricted to the left hemisphere to be
comparable with the previous MVPA analysis for nonword-
activated areas described above. This did not yield better than
chance classification accuracy (58%, P > 0.1).

Discussion
This study examined the question of whether domain-specific
processing of semantic information and domain-general diffi-
culty effects can co-locate in the same set of brain areas. While
such co-location has been assumed to occur (Price and Friston
2005; Poldrack 2010), direct demonstration of domain-specific
effects of semantic processing in areas showing domain-
general effects of difficulty has been scarce. We defined search
spaces for MVPA based on our previous study showing that
contrasting words with nonwords can yield activation for
words in TPN areas and nonwords in DMN areas typically asso-
ciated with processing meaningful letter strings (Binder et al.
2009; McNorgan et al. 2015). Essentially the same pattern of
activation occurred in our current study, showing consistent
results of univariate word–nonword contrasts across two inde-
pendent data sets. Multivariate decoding of words along the
semantic dimension of high/low imageability was successful
for DMN but not TPN areas. This shows that DMN areas acti-
vated for nonwords relative to words can also contain semantic
information, thereby demonstrating how effects of domain-
general difficulty and domain-specific semantics can co-
localize in the same set of brain areas.

In terms of difficulty effects, we should note that nonwords
were more difficult than words in the current dataset, in that
nonwords were associated with longer RT and lower accuracy
than words. However, words were the more difficult condition
in our previous (Graves et al. 2017) dataset, and again the
results of the word–nonword contrast were essentially identical
across the two studies. It is on this basis that we interpret non-
word activation in the DMN/putative semantic areas as reflect-
ing difficulty effects. The imageability classification, on the
other hand, is unlikely to be related to difficulty effects, as per-
formance was not different between high and low imageability
words. Therefore, classification of words as being of high or low
imageability should depend on semantic information, consis-
tent with established cognitive and computational models
(Paivio 1991; Plaut and Shallice 1993; Harm and Seidenberg
2004).

Regarding the lack of performance differences between levels
of word imageability, this helps with interpretation of the fMRI
results by removing the possible confound of performance differ-
ences. Other studies, however, have reported performance differ-
ences, with lexical decisions to high imageability words generally
being faster than for low imageability words (Paivio 1991; Balota
et al. 2004; Yap et al. 2012; Westbury et al. 2013). We think the
lack of a performance effect for imageability in the current study
comes from how we selected the word stimuli. High and low
imageability words did not differ in two other semantic factors:
Number of meanings and relatedness among those meanings.
Although we are aware of no other studies that have controlled
for both of these variables across levels of imageability, there is
suggestive evidence that controlling for other semantic factors
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can reduce the effect of imageability. Variance in lexical decision
performance specifically attributable to imageability has been
shown to attenuate with the addition of other semantic variables
such as measures of affect and contextual co-occurrence
(Westbury et al. 2013, 2016). Controlling for two other semantic
variables may have attenuated effects of imageability on lexical
decision performance in the current study as well.

We have also sought to better understand the neural basis
of semantics by breaking it into its components, rather than
treating it in a monolithic way. This was our original intention
in manipulating both imageability and lexical semantic ambi-
guity (meaning relatedness) for our stimuli. However, as noted
above, this additional manipulation produced largely negative
results. In future work we hope to explore the neural basis of
other promising semantic measures, like semantic diversity or
semantic richness (Pexman et al. 2007a, 2008; Yap et al. 2011),
possibly contrasting effects of these variables with effects of
imageability, analogous to Westbury et al. (2016). Indeed, as
Westbury et al. (2016) point out, semantics is likely to be a
multi-component rather than monolithic construct, and the
influence of uncontrolled aspects of semantics may account for
inconsistencies across studies examining the neural basis of
imageability effects. For example, many studies have shown
activation for high greater than low imageability words in the
bilateral AG and PC (Jessen et al. 2000; Binder et al. 2005;
Sabsevitz et al. 2005; Graves et al. 2010; Lin et al. 2017). Others,
however, have shown bilateral PC but not AG (Graves et al.
2017), left but not right hemisphere AG (Mellet et al. 1998; Wang
et al. 2010; Westbury et al. 2016), or results in entirely different
areas (Kiehl et al. 1999; Pexman et al. 2007b; Hauk et al. 2008).
In addition to possibly uncontrolled aspects of semantics,
another potential explanation for these inconsistencies across
studies is that differences in difficulty and semantic content
across conditions may be independently modulating many of
the same brain areas.

Comparing Univariate and Multivariate Results

The univariate General Linear Model contrast between words
and nonwords yielded results that were different from most
previous fMRI results for this contrast (McNorgan et al. 2015).
They were, however, so similar as to effectively replicate the
results of this contrast from our previous study (Graves et al.
2017). Words activated largely TPN areas, while nonwords acti-
vated DMN areas. We then used a multivariate approach to
determine that the areas activated for nonwords were also
encoding semantic information. This raises the question, how
could areas showing more activation for nonwords than words
be encoding levels of imageability that are only defined for
words? Our results suggest that the word–nonword contrast
was dominated by differences in difficulty between the two
types of stimuli, while DMN areas are indeed coding informa-
tion more specifically relevant to words, in this case semantic
information about their imageability.

In terms of the possible relationship between imageability
and lexicality (word–nonword) effects, studies that do find a
behavioral difference between levels of imageability typically
find faster RTs for high imageability words, as noted above.
Neural effects of high imageability words, when directly con-
trasted with low imageability words, often occur in the same
areas as for nonwords, such as the AG and PC, that we have
reported recently (Graves et al. 2017) and in the current study.
This leads to the question of what the imageability distinction
and nonword processing might have in common. While we do

not yet have definitive answers, one possibility is the genera-
tion of a stop signal for searching through a hypothetical
semantic space, assuming the task is structured in such a way
that information from semantic space is being used to make
lexical decisions (for an example of an implemented computa-
tional model of lexical decisions based on traversal of semantic
space, see Rodd et al. 2004). When comparing, for example, a
low imageability word like “rate” with a nonword like “jate”,
rate might have been encountered in sufficient contexts to
seem generally familiar, even if it does not evoke the kind of
sensory recall that aids recognition of high imageability words
like “rose”. Such a low imageability word could elicit a more
extended search of semantic space compared to a nonword
that could be more readily identified as unfamiliar. This would
be consistent with activation in the TPN reflecting active task
engagement, and activation in the DMN corresponding to less
task engagement, suggesting that difficulty differences between
words and nonwords and imageability effects may be two
aspects of the same underlying process.

Another possibility is that this model-inspired description of
searching semantic space may apply to the DMN but not TPN.
To falsify this possibility, difficulty effects and semantic effects
would need to be so related as to be indistinguishable, so that
DMN areas activated for nonwords in the lexicality contrast
and TPN areas activated for words should both contain infor-
mation sufficient to distinguish high from low imageability
words. This was not the pattern seen in our data. Instead, only
DMN areas were found to contain information sufficient to
classify words based on imageability. We did not directly con-
trast the classification accuracies between the DMN and TPN
areas, so discussion of the specificity of the DMN classification
result is descriptive rather than statistical. Yet it is the case
that DMN areas contained information for reliably classifying
words based on imageability, while TPN areas did not. To sum-
marize, the overall pattern suggests contrasting words with
nonwords is susceptible to the influence of even small differ-
ences in difficulty between conditions. While this can lead to
activation for meaningless nonwords in areas of the DMN that
are often associated with semantic processing, the ability to
use information in these same areas to classify words in terms
of a semantic variable suggests that effects of difficulty and
semantics co-localize particularly in areas of the default mode
network.

Implications for Functional Networks

Relatively early work focusing on network-level analyses of
brain function suggested that cortical function might largely be
separated into two anticorrelated TPN and DMN networks (Fox
et al. 2005; Raichle 2015). Subsequent work suggests the TPN
may be divided into at least two functional networks. One is
the frontoparietal control network (Dosenbach et al. 2007;
Spreng et al. 2010). The exact definition of the other is less
clear, but has been variously referred to as the salience network
(Seeley et al. 2007; Uddin 2015; Shine et al. 2017), or the dorsal
attention network (Spreng et al. 2010; Power and Petersen 2013;
Ihnen et al. 2015). Our results show activation for words relative
to nonwords in a set of areas that spans both the frontoparietal
and salience/dorsal attention networks. Essentially the same
set of regions has been shown to have functional coherence,
with increasing activation associated with increasing domain-
general processing demands, leading to its description as the
multiple-demand network (Duncan 2010). Thus, while there is
evidence for the existence of multiple functional networks
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within the TPN, characterization of the TPN network as a set of
multiple-demand regions distinct from the DMN appears to be
the most useful level of description for the current results.
There is also a great deal of speculation about the possible
functional roles of the DMN. These include monitoring of inter-
nal states, declarative memory recall, mind wandering, and
semantics (Buckner et al. 2008; Binder et al. 2009; Andrews-
Hanna et al. 2010; Raichle 2015). To be clear, we are not suggest-
ing that all brain function is divided into two discrete networks
that trade off depending on task difficulty. Rather, we suggest
that in these two lexical conditions, the DMN and TPN net-
works temporarily organize to handle differences in task diffi-
culty across the conditions being compared. At the same time,
because networks of brain areas are presumably optimized for
representing particular kinds of information, we propose that
such representations are maintained in parallel with any co-
occurring effects of task difficulty.

Conclusion
As the field of cognitive neuroscience moves from its initial
focus on strict localization of function toward a more network-
focused approach to understanding structure–function rela-
tionships in the brain, one consistent assumption has been
that multiple functions can occupy the same brain areas. Direct
evidence for this, however, has been relatively scarce. Here we
have demonstrated how domain-general effects of task diffi-
culty can co-localize with domain-specific representations for
semantics. One possible implication for future studies is that
interventions targeting domain-specific or domain-general
function could in principle focus on the same brain areas.
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Supplementary material is available at Cerebral Cortex online.
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