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Macrocyclic amphiphiles, a type of amphiphiles synthesized based on macrocyclic

compounds, have attracted much attention over the past decades due to their unique

superiority in the construction of various functional nanomaterials. The regulation

of the state of macrocyclic amphiphiles by introducing stimuli-responsive motif to

macrocyclic amphiphiles is an efficient way to extend their applications in diverse

fields. Herein, pillararene-based macrocyclic amphiphile H1 was prepared. H1 can

act as single-chain amphiphile to self-assemble into micelles in water when the pH

was ≥5.0. H1 can be protonated to turn into H2 when pH changed to <5.0.

Interestingly, H2 formed [c2]daisy chain-based bola-type supramolecular amphiphile.

This bola-type supramolecular amphiphile self-assembled into nanosheets in water.

Therefore, pH-induced transition between single-chain macrocyclic amphiphile and

bola-type amphiphile and the corresponding self-assembly system based on pillararene

in water were constructed.

Keywords: macrocyclic amphiphile, stimuli responsiveness, daisy chain, self-assembly, pillararene

INTRODUCTION

Amphiphiles, carrying both hydrophilic and hydrophobic parts connected by covalent bonds, are
a class of interesting molecules to fabricate self-assembly systems (Discher and Eisenberg, 2002;
Sorrenti et al., 2013; Chang et al., 2019b). Owing to their amphiphilic nature, amphiphiles can
self-assemble into various nanostructures in water that can be applied in various areas, including
drug/gene delivery, photodynamic therapy, and bioimaging (Zhang and Wang, 2011; Hu et al.,
2013; Kelley et al., 2013; Ma and Zhao, 2015; Yu et al., 2015; Ji et al., 2016; Xia et al., 2016; Webber
and Langer, 2017; Guo et al., 2018; Zuo et al., 2018; Wang S.-P. et al., 2019; Wang Y. et al., 2019).
Amphiphiles synthesized based on macrocyclic compounds, namely, macrocyclic amphiphiles (Jie
et al., 2015; Zhu et al., 2018), have gained growing attention in recent years. Compared with
traditional amphiphiles, macrocyclic amphiphiles possess unique superiority in the construction
of various functional nanomaterials, e.g., the incorporation of functional groups and intriguing
properties can be achieved by host–guest interactions without extra additives and tedious synthesis
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(Wei et al., 2014;Wang et al., 2015; Shulov et al., 2016; Geng et al.,
2017; Redondo-Gomez et al., 2019). In addition, the regulation
of the state of macrocyclic amphiphiles by introducing stimuli-
responsive motif to macrocyclic amphiphiles is an efficient way to
extend their applications. Therefore, external stimuli-responsive
macrocyclic amphiphiles play important roles in many fields,
such as injectable materials, sensing, and cell imaging (Chang
et al., 2014; Himmelein et al., 2014; Wang et al., 2015; Yang et al.,
2016; Himmelein and Ravoo, 2017; Gao et al., 2018; Hu et al.,
2018; Sun et al., 2018; Lee et al., 2019; Li et al., 2019).

Pillararenes, the generation of macrocycles next to crown
ethers, cyclodextrins, calixarenes, and cucurbiturils, have been
widely studied in the past decade (Li et al., 2017; Ping et al.,
2017; Sathiyajith et al., 2017; Hua et al., 2018, 2019; Chen et al.,
2019; Xu et al., 2019). Owing to their facile synthesis, easy
functionalization and excellent host–guest recognition property,
pillararenes have been widely applied to construct amphiphilic
self-assembly systems (Shi et al., 2016; Xia et al., 2017; Zhang
et al., 2018; Xiao et al., 2019). The rigid and symmetric structure

SCHEME 1 | Chemical structures of the macrocyclic amphiphiles H1 and H2 and cartoon representation of the [c2]daisy chain-based bola-type supramolecular

amphiphile and the pH-responsive self-assembly.

of pillararenes make them good candidates for the construction
of macrocyclic amphiphiles. Several types of pillararenes-based
macrocyclic amphiphiles have been reported up to now: (1) the
non-symmetric pillararenes with half hydrophilic groups and
half hydrophobic groups from non-symmetric monomers (Yao
et al., 2012; Yu et al., 2013); (2) the difunctionalized pillararene-
based macrocyclic amphiphiles from copillar[5]arenes (Gao
et al., 2013); (3) monofunctionalized pillararene-based
macrocyclic amphiphiles by linking hydrophobic tails to
symmetric pillararenes (Jie et al., 2014); and (4) the symmetric
per-functionalized pillararenes-based amphiphiles (Nierengarten
et al., 2013; Chang et al., 2014, 2019a; Yang et al., 2016; Sun
et al., 2018). The obtained macrocyclic amphiphiles from
these methods displayed interesting stimuli-responsiveness and
applications, indicating the importance of pillararenes-based
macrocyclic amphiphiles. Herein, we developed a new efficient
way to synthesize pillararenes-based macrocyclic amphiphiles.
First, we synthesized a long alkyl-containing copillar[5]arene
from previous literature. Then, pH-sensitive morpholine
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groups were covalently linked to the copillar[5]arene to prepare
a single-chain macrocyclic amphiphile H1. Interestingly,
H1 transformed into protonated state H2, which formed
[c2]daisy chains in water when the pH-value decreased
under 5.0. As a result, single-chain amphiphile H1 turned
into bola-type supramolecular amphiphile. Moreover, the
pH-responsive self-assembly behavior was investigated. Single-
chain amphiphile H1 self-assembled into micelles in water.
When the value of pH decreased to under 5.0, micelles
transformed into nanosheets due to the formation of bola-type
supramolecular amphiphiles based on the [c2]daisy chain
structure (Scheme 1).

MATERIALS AND METHODS

All reagents were commercially available and used as
supplied without further purification. Compounds a were
prepared according to published procedures (Shi et al.,
2014). NMR spectra were recorded with a Bruker Avance
DMX 600 spectrophotometer or a Bruker Avance DMX 400
spectrophotometer. Low-resolution electrospray ionization
mass spectra were recorded with a Bruker Esquire 3000 Plus
spectrometer. High-resolution mass spectrometry experiments
were performed with a Waters UPLC H-Class QDA instrument.
The melting points were collected on a SGW X-4 automatic
melting point apparatus. The determination of the critical
aggregation concentration (CAC) values was carried out
on a FE38 instrument. Transmission electron microscopy
investigations were carried out on a JEM-1200EX instrument.
Atomic force microscopy experiments were performed by a
Bruker Multi-Mode 8.0 instrument.

FIGURE 1 | Partial 1H NMR spectra (600 MHz, 3:1 D2O/CD3CN, room

temperature) of H1 (2.50mM) under different pH conditions: (A) pH 7.0,

(B) pH 6.0, (C) pH 5.0; partial 1H NMR spectra (600 MHz, D2O, room

temperature) of H1 (2.50mM) under different pH conditions: (D) pH 4.0,

(E) pH 3.0, (F) pH 2.0, (G) pH 1.0.

Synthesis of H1
H1 was synthesized from compound a and morpholine
(Scheme S1). Compound a (1.08 g, 0.622 mmol) and morpholine
(0.566 g, 6.50 mmol) were added to acetonitrile (10.0ml). The
solution was refluxed overnight. Then, the crude product was
purified by a silica gel column using dichloromethane as eluent
(0.421 g, 38%) (Mp: 75.0–77.0◦C). The 1H NMR spectrum of
H1 is shown in Figure S1. 1H NMR (400 MHz, CDCl3, 298K)
δ (ppm): 6.85 (s, 10H), 4.14–4.09 (m, 8H), 3.98–3.92 (m, 9H),
3.75–3.73 (m, 47H), 2.88–2.75 (m, 16H), 2.62–2.61 (m, 32H).
1.95–1.86 (m, 2H), 1.84–1.72 (m, 2H), 1.56–1.47 (m, 2H), 1.41–
1.32 (m, 2H), 1.16–1.07 (m, 20H), 0.85 (t, J = 8.0Hz, 3H). The
13C NMR spectrum of H1 is shown in Figure S2. 13C NMR (100
MHz, CDCl3, 298K) δ (ppm): 149.47, 148.84, 148.77, 127.82,
127.65, 127.50, 127.45, 127.06, 114.32, 114.18, 112.90, 67.69,
65.99, 65.99, 65.81, 57.23, 54.93, 53.27, 52.34, 30.91, 28.78, 28.72,
28.64, 28.59, 28.44, 28.39, 28.35, 28.28, 25.13, 21.68, 13.13. High-
resolution electrospray ionization mass spectrometry is shown
in Figure S3: m/z calcd for [M + 2H + e]+ C102H158N8O18,
1,783.16941, found 1,783.16784, error −0.9 ppm; m/z calcd for
[M + 3H + e]2+ C102H159N8O18, 892.08862, found 892.08527,
error−3.8 ppm.

Critical Aggregation Concentration
Determination
The CAC determination is based on the dependence of the
solution conductivity on the solution concentration. Generally,
the slope value of the change in conductivity vs. the concentration
above CAC is higher than the slope below the CAC. As a
result, the CAC-value is the junction of the conductivity–
concentration plot. To measure the CAC of H1 and H2, the
conductivities of their solutions at different concentrations (from
0 to 0.16mM and from 0 to 0.25mM, respectively) were
determined. Therefore, through plotting the changes of the

FIGURE 2 | Partial 1H NMR spectra of H2 (600 MHz, D2O, room temperature)

at different concentrations when the pH-value of the solutions was 3.0:

(A) 0.500mM, (B) 1.00mM, (C) 2.50mM, and (D) 5.00mM.
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conductivity vs. the concentration, the CAC of H1 and H2 can
be obtained.

Transmission Electron Microscopy
Experiments
The self-assembled structures of H1 and H2 were investigated
by TEM. A solution of 1.00 × 10−4 M H1 was made first in
water. The samples of H1 were prepared by drop coating this
solution onto a carbon-coated copper grid. The solution of H2

were obtained by adding hydrochloride acid to the solution of
H1. Then, the TEM samples ofH2 was prepared by drop coating
the solution on a carbon-coated copper grid. TEM experiments
were performed on a JEM-1200EX instrument.

Atomic Force Microscopy Experiments
The self-assembled structure H2 was investigated by atomic
force microscopy (AFM). A solution of 1.00 × 10−4 M H1 was
prepared in water. The solution of H2 were obtained by adding
hydrochloride acid to the solution ofH1. Then, the TEM samples
ofH2was prepared by drop coating the solution on a Si substrate.
AFM experiments were carried out on a Bruker Multi-Mode
8.0 instrument.

RESULTS AND DISCUSSIONS
1H NMR Spectroscopy Experiments
First, 1H NMR spectroscopy experiments were performed to

study the pH-induced transition between H1 and H2. Owing to

the poor solubility of H1 in water, the 1H NMR experiments of

H1was done in themixture of D2O andCD3CN (Figures 1A–C).

With the decrease in the pH-value of the aqueous solution

of H1, the morpholine groups on H1 were protonated, and

H1 changed into H2. Therefore, the peaks corresponding to

the protons on H2 were quite different from that of H1.
As shown in Figures 1D–G, the signals for protons H2g and
H2h appeared in upfield comparing to the protons H1g and
H1h on H1. In addition, the signals for the protons H2i-H2k

on the alkyl chain of H2 appeared in upfield and splitted
compared to the related protons on H1. This phenomenon
was because the alkyl chain threaded into the cavity of H2,
forming cyclic oligomers. To investigate whether the specific
structures ofH2 occur only at low concentrations, concentration-
dependent 1H NMR experiments were carried out. As shown
in Figure 2, with the increase in the concentration from 0.500
to 5.00mM, the peaks related to H2 did not show changes.

FIGURE 3 | Partial 2D NOESY spectra (600 MHz, D2O, room temperature) of H2 (5.00mM): (A) the NOE correlation signals between the pillar[5]arene ring and the

alkyl chain were marked; (B) the NOE correlation signals were also observed between alkyl chains were marked.
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In addition, at first, we assumed that H2 can also act as
monomers for supramolecular polymers like other systems (Shi
et al., 2014). However, H2 showed poorer solubility in water
than other monomers. That is why the concentration-dependent
1H NMR experiments were only done in the range of 0.500–
5.00mM. Therefore, the conclusion can be drawn that H2

formed [2]daisy chains in water, which did not changed with its
concentration (Zhang et al., 2011).

2D Nuclear Overhauser Effect
Spectroscopy Study
2D nuclear overhauser effect spectroscopy (NOESY) was
performed to monitor the formation of the [c2]daisy chain based
on H2. As shown in Figure 3, NOE correlation signals were
observed between the protons H2a on the phenyl rings and
H2k on the alkyl chain (A), between H2b on the methylene

bridge and H2k-H2j on the alkyl chain (B), and between protons
H2g, H2h on the morpholine groups and H2i-H2k on the alkyl
chain (C), suggesting that the alkyl chain thread into the
cavity of H2. In addition, NOE correlation signals were also
observed between alkyl chains, including the signals between
protons H2j3 and H2k (D) and between protons H2j4 and H2k

(E), confirming the formation of the [c2]daisy chain based
onH2.

Critical Aggregation Concentration
Determinations
The CACs of H1 and H2 were measured. As shown in Figure 4,
the CACs ofH1 andH2 were measured to be 3.69× 10−6 M and
2.67 × 10−5 M, respectively, using the concentration-dependent
conductivity measurements.

FIGURE 4 | (A) The concentration-dependent conductivity of H1. The critical aggregation concentration (CAC) was determined to be 3.69 × 10−6 M and (B) the

concentration-dependent conductivity of the H2. The CAC was determined to be 2.67 × 10−5 M.

FIGURE 5 | (a) TEM image of H1 (1.00 × 10−4 M) aggregates in water; (b) TEM image of a after addition of hydrochloric acid; (c) TEM image of (b) after addition of

sodium hydroxide; (d) AFM image of (b); (e) measured thickness of (d).
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Transmission Electron Microscopy and
Atomic Force Microscopy Investigations
The self-assembly morphologies in water were investigated by
TEM and AFM. As shown in Figure 5a, H1 formed micelles
with an average diameter of ∼6 nm, which was near to the
length of two H1 molecules. After adding hydrochloride acid
to the solution of H1 to adjust the pH-value to 4.0, H1 turned
into H2, the micelles changed into nanosheets (Figure 5b).
After further addition of sodium hydroxide to the solution
of H2, the nanosheets turned back to micelles (Figure 5c).
AFM experiments were also carried out to investigate the self-
assembled morphology by H2. As shown in Figures 5d,e, the
nanosheet morphology was confirmed and the wall thickness was
∼3.425 nm from AFM results, which was about the extended
length of the [c2]daisy chain, suggesting that the nanosheets had
a bilayer wall.

CONCLUSION

In summary, a pillararene-based macrocyclic amphiphile
H1 was prepared. H1 can act as a single-chain amphiphile
and self-assembled into micelles in water. After changing
the pH of the solution of H1 to below 5.0, the single-chain
amphiphiles turned into [c2]daisy chain-based bola-type
supramolecular amphiphiles. As a result, the micelles
turned into nanosheets when self-assembling in water.
This pH-induced transition between macrocyclic single-
chain amphiphile and [c2]daisy chain-based bola-type
supramolecular amphiphiles based on pillararenes was first
reported, providing a new strategy to tailor the structure

and self-assembly property of macrocyclic amphiphiles.
The corresponding pH-responsive self-assembly system
provides a promising candidate for advanced material
such as controlled release, drug delivery systems, and
surface modification.
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