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MOTIVATION High-throughput experimental methods generate big high-dimensional (multi-omics) data-
sets. Subtyping samples/individuals on multiple data types has the potential to reveal systems-level in-
sights and thus facilitates personal treatment of cancers and other genetic diseases. To overcome limita-
tions in handling missing data and technical noise appearing in such datasets, we present a robust
approach for integrative subtyping of multi-omics data that can extract biologically meaningful subtypes
and handle noisy inputs and missing data without imputation.
SUMMARY
Wepresent a data integration framework that uses non-negativematrix factorization of patient-similarity net-
works to integrate continuous multi-omics datasets for molecular subtyping. It is demonstrated to have the
capability to handlemissing datawithout using imputation and to be consistently among the best in detecting
subtypes with differential prognosis and enrichment of clinical associations in a large number of cancers.
When applying the approach to data from individuals with lower-grade gliomas, we identify a subtype with
a significantly worse prognosis. Tumors assigned to this subtype are hypomethylated genome wide with a
gain of AP-1 occupancy in demethylated distal enhancers. The tumors are also enriched for somatic chromo-
some 7 (chr7) gain, chr10 loss, and other molecular events that have been suggested as diagnostic markers
for ‘‘IDH wild type, with molecular features of glioblastoma’’ by the cIMPACT-NOW consortium but have yet
to be included in the World Health Organization (WHO) guidelines.
INTRODUCTION

Biotechnologies for large-scale molecular studies of genetic

diseases have advanced significantly. High-throughput assays

are now available to measure RNA expression, DNA methyl-

ation, and metabolite concentration in tissues. Given that

each assay reveals a snapshot of certain cellular aspects of a

disease, integrative analyses are often necessary for a com-

plete understanding of its molecular etiology and for discov-

ering its molecular subtypes and biomarkers (Prasad et al.,

2016).

Molecular typing through clustering has traditionally focused

on gene expression. In studies with multiple data types, a popu-

lar strategy is to concatenate feature matrices from the various

data types and then operate on the resulting matrix. This
Cell Rep
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approach allows use of existing clustering techniques but re-

quires cross-data type normalization and feature selection in

individual data types before concatenation, possibly biasing

the results. More sophisticated methods (e.g., iCluster [Shen

et al., 2009], iClusterPlus [Mo et al., 2013], and Bayesian

consensus clustering [Lock and Dunson, 2013]) model the prob-

abilistic distribution of each data type and infer subtypes by

maximization of the likelihood of the observed data. However,

these methods require a feature selection step and make strong

assumptions about the data.

More recent methods for clustering multi-omics data focus on

distances between samples in lieu of clustering on the feature

matrices. For example, PINS (Nguyen et al., 2017) clusters an

average connectivity matrix based on the sample connectivity

observed in the different data types. SNF (Wang et al., 2014)
orts Methods 2, 100152, January 24, 2022 ª 2021 The Author(s). 1
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creates a fused network of individuals using ametric fusion tech-

nique and then partitions the data using spectral clustering. A

more recent method, NEMO (Rappoport and Shamir, 2019b),

calculates an average similarity matrix and then detects the

clusters using spectral clustering. A comprehensive review of

multi-omics and multi-view methods for subtyping diseases is

presented by Rappoport and Shamir (2018).

The existing approaches have a few limitations. First, all ap-

proaches mentioned above, except for NEMO, require that

data are available for every sample and every data type, which

is unlikely for most biological studies. If data are incomplete,

missing values can be imputed, but that is often computation-

ally challenging for genome-wide analyses. Second, these

methods often rely on randomization to overcome computa-

tional challenges. Although randomization can assist with

finding a solution quickly, it has implications for the robustness

of the method. Last, statistical methods have the advantage of

being able to include biological knowledge as priors. However,

they often assume a parametric normal or gamma distribution

of the data to make the parameter estimation tractable. Such

an assumption is often not realistic and again leads to poor per-

formance, as demonstrated in a recent comprehensive assess-

ment of the methods for drug response prediction (Chen and

Zhang, 2021).

Here, we present a data integration framework based on non-

negative matrix factorization (NMF) and showcase an implemen-

tation called SUMO (https://github.com/ratan-lab/sumo) that

can integrate continuous data from multiple data types to infer

molecular subtypes. SUMO effectively handles missing data

and produces robust clusters by using a resampling-based

approach (Figure 1). Throughout the study,whenever appropriate,

we compare SUMO v.0.2.6 with the iClusterBayes extension of
2 Cell Reports Methods 2, 100152, January 24, 2022
iClusterPlus v.1.26, LRAcluster v.1.0 (Wu et al., 2015), MCCA

from PMA package v.1.2.1 (Witten and Tibshirani, 2009), NEMO

v.0.1 (Rappoport and Shamir, 2019b), PINSPlus v.2.0.5 (Nguyen

et al., 2017), SNF v.2.3 (Wang et al., 2014), andCIMLR v.1.0 (Ram-

azzotti et al., 2018). We use a recent benchmark (Rappoport and

Shamir, 2018) and datasets from TCGA and METABRIC (Curtis et

al., 2012) to show that SUMO is consistently among the best

methods in identifying groups of individuals with significantly dif-

ferential prognosis and enrichment of clinical associations. Using

simulation, we also compare SUMO with the other methods

regarding the ability to cluster noisy datasets, respond to pertur-

bations, and handle missing information.

We apply SUMO to multi-omics datasets from individuals

diagnosed with lower-grade glioma (LGG). Diffuse low-grade

and intermediate-grade gliomas together make up the LGGs

(World Health Organization grades II and III), a diverse group

of primary brain tumors with highly variable clinical behavior.

Several studies have associated IDH somatic mutations with

a more favorable course of the disease and have identified

multiple subtypes with a poor clinical course (Eckel-Passow

et al., 2015; Ceccarelli et al., 2016). We identify a single cluster

of individuals with a significantly differential prognosis with

SUMO. Individuals assigned to this cluster include all who

were reported to have a poor clinical course in other studies

and are enriched for genome-wide hypomethylation, somatic

chromosome 7 (chr7) gain, and chr10 loss. Our findings sup-

port the recently proposed minimal clinical criteria for diag-

nosis of such diffuse astrocytic gliomas, which, despite their

histological profiles, follow a more aggressive disease course

(Brat et al., 2018). The remaining clusters recapitulate known

subtypes in LGGs, highlighting the effectiveness of our

approach.

https://github.com/ratan-lab/sumo
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Figure 2. Accuracy of the eight methods on noisy data and missing values

(A) All methods show reduced median accuracy with an increasing amount of noise, but SUMO exhibits better performance over a wide range.

(B) SUMO shows a higher median ARI compared with NEMO for most data points whenmissing data are simulated in one of two data types. Error ribbons display

the minimum and maximum ARI values.

Article
ll

OPEN ACCESS
RESULTS

SUMO improves performancewith noisy and incomplete
data
We performed several simulations to compare the performance

of the various methods on noisy datasets by varying the data

noise level and the fraction of missing data that were generated

by a procedure given in Figure 2. Figure S1A shows the experi-

mental setup for the first simulation, where we increase the noise

in one data type while keeping amoderate amount of noise in the

other data type. The results in Figure 2A show that all methods

exhibit a median decrease in accuracy with an increase in noise.

SUMOhas the highestmedian adjusted Rand index (ARI) and the

least variance (Figure S1B) for all levels of noise.

Using the same setup, we compared SUMO with NEMO

regarding their ability to accurately classify samples with

missing data. Other methods do not handle missing data and

so were not included in this comparison. In this experiment,

we removed a random fraction of samples from one data type

while preserving the data in the other data type. SUMO shows

a higher median ARI compared with NEMO for most data points

(Figure 2B).

Performance of SUMO on a recent benchmark
We compared SUMO with several other methods using a

recently published benchmark (Rappoport and Shamir, 2018).

The benchmark consists of methylation, gene expression, and

microRNA (miRNA) expression data from 10 cancer types

sequenced as part of the TCGA project. As in the original bench-

mark, we evaluated each method for its ability to identify a sub-

type that shows significantly differential survival and is enriched

for clinical annotations. We chose or calculated parameters for

the methods, as suggested by the authors, without considering

the survival and clinical parameters that are used for assess-
ment. Data preprocessing for SUMO included applying a vari-

ance-stabilizing transformation (for count data) or converting

beta values to M values (for methylation dataset), followed by

feature standardization (as described in STAR Methods). For

the remaining tools, we applied appropriate data preprocessing

steps according to parameters specified by the authors of the

benchmark.

Figure 3A depicts the performance of the various methods on

the data from the different cancer types.With respect to survival,

SUMO had the total best prognostic value (sum of �log10
p = 18.88), withMCCAbeing the second best with 17.48. Howev-

er, the sum of p values can be biased because of outliers, so we

also counted the number of datasets for which a method’s solu-

tion obtains significantly different survival (p < 0.05) (Figure 3B).

As with the original benchmark, we also evaluated whether at

least one of the clusters was enriched for at least one of the clin-

ical labels. Thep values for the log rank testwere calculated using

permutation tests, enrichment for discrete parameters was

calculated using the c2 test for independence, and enrichment

for numeric parameters was calculated using the Kruskal-Wallis

test. The p values for clinical enrichment were corrected using

Bonferroni correction. We also compared the p values of the

log rank test when all data types were integrated to the p values

when individual data types were considered for subtyping using

spectral clustering. As we show in Figure S2A, integration of

data types leads to an increase in the overall distribution of the

Cox p values. Additionally, we used gene expression and PROG-

ENy (Schubert et al., 2018) to calculate pathway activity scores

for 14 signaling pathways. By applying the Kruskal-Wallis test,

we confirmed that at least one pathway was differentially acti-

vated between clusters for each tool. More detailed information

about datasets used in the benchmark, performance of specific

tools, and activity of different pathways can be found in Tables

S1A–S1C, respectively.
Cell Reports Methods 2, 100152, January 24, 2022 3



A

B

Figure 3. Benchmark results for the TCGA datasets

(A) The vertical line indicates p = 0.05 for the log rank test, which is shown on the x axis. The y axis shows the number of clinical labels that were found to be

enriched in at least one of the detected subtypes. SUMO results are shown using a triangle.

(B) Summary of results from the benchmark analysis. We report the number of cancers for which at least one cluster had a significantly different prognosis (first

column) that had at least one enriched clinical label (second column).
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SUMO outperformed the other approaches in this benchmark,

finding at least one cluster with significantly different survival in 7

of the 10 cancers analyzed. For colorectal cancer and lung squa-

mous cell carcinoma, none of the methods identified a subtype

that showed significant differential survival. SUMO is the only
4 Cell Reports Methods 2, 100152, January 24, 2022
method to find a subgroup of individuals with ovarian cancer

with a significant differential survival (Figure S2B). This group

of individuals with a poor prognosis is enriched for those with

mesenchymal tumors that are known to lead to worse outcomes

(Cancer Genome Atlas Research Network, 2011). The scripts to
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Figure 4. Comparison of the methods used

on the TCGA and METABRIC datasets

(A) Summary of results from the analysis in an

UpSet plot. We report the number of cancers for

which at least one cluster had a significantly

different prognosis in the left panel. The number of

datasets with overlap between the compared

methods is shown in the top panel.

(B) The vertical line indicates p = 0.05 for the log

rank test, which is shown on the x axis using a

�log10 scale. We plot the �log10 of the p values of

the log rank test for all methods.

(C) We compare the p values of the log rank test for

each data type (exp, gene expression; met, DNA

methylation; mir, miRNA) with the p values when all

data types are integrated.
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reproduce the comparison of the various methods along with

the instructions are available at https://github.com/ratan-lab/

sumo_analysis.

All methods with the exception of iClusterBayes identified at

least one cluster in glioblastoma (GBM) with a significantly differ-

ential prognosis. We used these GBM data to investigate the

reproducibility and robustness of the methods; i.e., whether

sample labels, the p values for the log rank test, or the number

of enriched clinical parameters change if we changed the seed

to the random number generator used by the methods and the

assessment calculations. We ran each method 10 times using

random seeds and found that the methods were stable to

different extents on these data (Figure S2C). NEMO gave the

same result in each of the 10 runs, whereas SUMO showed small

deviations in the p values for survival, but the remaining methods

showed variation in the p value of the log rank test and the c2 test

used to assess the enrichment of clinical parameters. PINSPlus

results varied significantly in terms of survival and enrichment of

clinical labels. It is likely that most of these methods, with the

exception of NEMO, CIMLR, and iClusterBayes, would benefit

from a resampling approach similar to that used by SUMO to

generate more consistent subgroups in the data.
SUMO applied to all TCGA cancer datasets
The benchmark from Rappoport and Shamir (2018) contains

imputed and pre-filtered data from three different modalities:

gene expression, DNA methylation, and miRNA expression for

10 cancers sequenced by TCGA. To further assess the perfor-

mance of SUMO, we downloaded the harmonized gene expres-

sion and DNAmethylation datasets for 34 cancers sequenced by

TCGA fromUCSCXena, alongwith themiRNA expression for the

32 cancers where the data were available. We also downloaded

two breast cancer datasets from METABRIC. We then used

SUMO and the other seven methods to subtype each cancer

based on the available modalities without any imputation.
Cell Repo
Detailed information about the datasets

used in this analysis can be found in Ta-

bles S1D and S1E.

For each cancer, we again chose or

calculated parameters for the methods,
as suggested by the authors, without considering the survival

parameters. We then used a log rank test to assess whether at

least one of the subtypes showed significantly differential sur-

vival. A log rank test was performed using overall survival (OS)

for all TCGA cancers except diffuse large B cell lymphoma

(DLBC), testicular germ cell tumors (TCGT), thymoma (THYM),

and pheochromocytoma and paraganglioma cancer (PCPG).

Based on the recommendations by Liu et al., 2018, we used pro-

gression-free survival for DLBC, TCGT, and THYM. A survival

analysis was not run for PCPG because none of the clinical end-

points are recommended for such an analysis. Disease-free sur-

vival data were used for METABRIC datasets. The p values for

the log rank test were calculated using permutation tests.

SUMO finds at least one significantly different prognostic clus-

ter (p < 0.05) in 19 cancers, which is the most among the

compared methods, followed by NEMO, which finds prognostic

clusters in 17 cancers (Figure 4A). All methods identify at least

one differentially prognostic cluster for four datasets (ACC,

LGG, METABRIC Discovery, and METABRIC Validation),

whereas such differentially prognostic clusters are identified by

a single method for six datasets (Figure 4A). Overall, SUMO

had the total best prognostic value (sum of �log10 p = 89.8)

and the best median prognostic value (�log10 p = 1.44) among

the methods compared in this analysis (Figure 4B). For nine of

the datasets, SUMO has the lowest p values for the log rank

test, followed by LRACluster, which has the lowest p values for

seven datasets. For SUMO, the integration of data types

improved its ability to identify differentially prognostic clusters,

as determined by the increase in the median of Cox �log10
p values (Figure 4C) when the various data types are integrated.

We also used the gene expression data for each of the 34 can-

cers with PROGENy to calculate the pathway activity scores for

11 signaling pathways. We report the p value of the Kruskal-

Wallis test to determinewhether the pathway is differentially acti-

vated in at least one of the subtypes determined by SUMO in

Table S1E. For all cancers, at least one of the pathways is
rts Methods 2, 100152, January 24, 2022 5
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Figure 5. SUMO detects a single cluster showing differential prognosis in TCGA LGG

(A) The two metrics used to decide the optimal number of clusters for the LGG dataset. We use the proportion of ambiguously clustered pairs (PAC) (lower is

better) and the cophenetic correlation coefficient (CCC) (higher is better) to select 2 and 5 as the optimal numbers of clusters, shown using dashed lines.

(B and C) KM analysis of the subtypes detected by SUMO when 2 and 5 clusters are selected, respectively. We report the p values of the log rank test.
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differentially activated in at least one of the subtypes determined

by SUMO, highlighting that SUMO identifies biologically relevant

subtypes. Besides the selected number of subtypes, the nega-

tive logarithm of the p value for the log rank test, and the p value

of the Kruskal-Wallis test, we report the average silhouette score

based on the consensus matrix in Table S1D. The mean silhou-

ette score for 25 of the 34 cancers is higher than 0.9, showing

that the class labels generated using the resampling strategy

are robust for several datasets.
SUMO analysis of TCGA-LGG identifies a cluster of
individuals with poor prognosis
The 2016 World Health Organization (WHO) classification of

diffuse gliomas recommends use of IDHmutation status to sepa-

rate IDH mutant astrocytoma and oligodendroglioma from IDH

wild type astrocytoma, which has a worse prognosis (Louis

et al., 2016). Several integrative approaches have been applied

since then to further understand the molecular heterogeneity

and subtypes in gliomas. The largest study of diffuse grade II-

III-IV gliomas to date used TumorMap (Newton et al., 2017) to

integrate gene expression and DNA methylation data from

around 1,000 individuals, and they, too, identified IDH status

as the primary driver of two macro-clusters (Ceccarelli et al.,

2016). The authors concluded that the IDH mutant gliomas

were further composed of three coherent subgroups: (1) the Co-

del group, consisting of LGGs with 1p/19q codeletion; (2) the

G-CIMP-low group, including gliomaswithout 1p/19q codeletion

with relatively low genome-wide DNA methylation; and (3) the

G-CIMP-high group, including gliomas without 1p/19q codele-

tion with higher global levels of DNA methylation. They also

concluded that the IDH wild type gliomas segregated into three

subgroups: (1) classic-like, exhibiting a classical gene expres-

sion signature; (2) mesenchymal-like, enriched for mesenchymal
6 Cell Reports Methods 2, 100152, January 24, 2022
subtype tumors; and (3) pilocytic astrocytoma (PA)-like, enriched

for tumors with molecular similarity to grade I PA.

The cIMPACT-NOW (the Consortium to Inform Molecular and

Practical Approaches to CNS Tumor Taxonomy) initiative was

established to evaluate and recommend changes to future

CNS tumor classifications based on consensus review of novel

diagnostically relevant data (Louis et al., 2017). In seven separate

updates since its inception, the initiative has issued interim rec-

ommendations for CNS tumor classifications. We decided to

apply SUMO to subtype the LGGs as a case study with the intent

to evaluate the robustness and relevance of known and pro-

posed glioma subtypes. We used SUMO to integrate the pro-

cessed level 3 gene expression, DNA methylation, and miRNA

expression data for the TCGA-LGG cohort downloaded from

the UCSC Xena platform (Goldman et al., 2019) (and prepro-

cessed as described in the Data preprocessing part of the

STAR Methods). We evaluated the solutions with 2–19 clusters

according to the proportion of ambiguously clustered pairs

(PACs) (Șenbabao�glu et al., 2014) and the cophenetic correlation

(Hutchins et al., 2008; see STAR Methods for details). The PAC

values suggest that the individuals can be partitioned into 2 or

5 clusters, with both solutions being stable (Figure 5A).

Figure 5B shows the Kaplan-Meier survival analysis for the 2

clusters identified by SUMO. The cluster of individuals who

show a better prognosis include a majority of IDH mutant

LGGs with 1p/19q codeletion and the majority of the IDHmutant

LGG without 1p/19q codeletion with higher global levels of DNA

methylation. Figure S3A summarizes the association of the 2

clusters with mutations in known driver genes, existing super-

vised classifications, and histological parameters. We focus on

the solution with 5 clusters for the remainder of this study (see

Table S1F for final classification labels).

Figure S3B shows a heatmap of the similarity matrices and

Sankey plots comparing the clustering performed on each data
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type with the clustering done after integration of the three data

types. We annotate the clusters determined using spectral clus-

tering as annotations on the top of the heatmap, whereas the

clusters determined by SUMO based on integrative clustering

are shown on the right. These plots illustrate how the data inte-

gration incorporates the information from each of the data types

and generates more fine-grained structures. As an example, the

individuals in group 2 based onmethylation alone are partitioned

into two separate subtypes when expression and methylation

are considered together.

Figure 5C shows the Kaplan-Meier survival analysis for the 5

clusters as identified by SUMO. Individuals assigned to subtype

2 show a significant differential prognosis with a median survival
of 758 days. 76 of 80 samples in subtype 2 were labeled as

classic-like, mesenchymal-like, and C-GIMP low and reported

to have a poor clinical course by Ceccarelli et al., 2016) (Fig-

ure 6A). We find that subtype 2 is enriched for individuals who

are IDH wild type and who were significantly older at the age

of diagnosis (Tukey HSD test, p < 0.05 for all pairwise compari-

sons). Subtype 2 is also enriched for grade III tumors (odds ratio

[OR] 6.28; 95% confidence interval [CI], 3.40–11.59) and signifi-

cantly enriched for anaplastic astrocytomas (p < 10�5); it is also

enriched for samples with a high percentage of aneuploidy

(Tukey HSD test, p < 0.05 for all pairwise comparisons).

Figure 6B summarizes these associations in an oncoplot.

Subtype 2 is enriched for point mutations and amplifications
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of the epidermal growth factor receptor (EGFR) oncogene on

chr7. Somatic aberrations in the EGFR, including amplification

and activating point mutations, occur in �57% of grade IV

gliomas but are relatively uncommon in LGGs (Brennan et al.,

2013). However, 55 of the 109 individuals assigned to subtype

2 show chr7 gain (and, hence, amplification of the EGFR) and

chr10 loss, which leads to deletion of the PTEN gene, a known

tumor suppressor. According to theWHOguidelines from 2016,

chr7 gain and/or chr10 loss are not considered in the diagnosis

of grade II/III gliomas, although other studies have suggested

that these events are clinically relevant. Recent recommenda-

tions from the cIMPACT-NOW consortium suggest that EGFR

amplification and combined chr7 gain and chr10 loss as well

as TERT promoter mutation can be used to diagnose IDH

wild type (WT) grade II/III gliomas that are likely to follow a

more aggressive clinical disease course (Brat et al., 2018).

Our results support the proposed inclusion of additional diag-

nosis criteria, in particular chr7 gain and chr10 loss, which

could lead to reclassification of several LGGs into GBMs

(Stichel et al., 2018).

We used ELMER (Silva et al., 2019) in an unsupervised mode

to compare subtype 2 tumors with the other LGGs. ELMER iden-

tified 382 probes overlapping putative distal enhancers that were

hypomethylated in subtype 2 samples (adjusted p < 0.01;

methylation difference between means of the groups, >0.3).

The motifs with the highest enrichment around the 382 putative

distal enhancers correspond to the Fos and Jun transcription

factor gene families. Fos genes encode leucine zipper proteins

that can dimerize with proteins of the JUN family, forming the

early response transcription factor complex AP-1. Therefore,

FOS proteins have been implicated as regulators of cell prolifer-

ation, differentiation, and transformation (Mehta and Lo Cascio,

2018). More specifically, we find that the expression of FOSL1,

which contributes to regulation of placenta development, is

significantly higher in subtype 2 tumors, and higher expression

of the gene is associated with a worse prognosis (Kubota

et al., 2015). These results are in agreement with other published

studies that show that AP-1 binds to demethylated regions in

G-CIMP-low tumors, but we find this to be true for all samples

assigned to subtype 2 (Souza et al., 2018).

Because tumors are a complex milieu of numerous cell types,

we hypothesized that the microenvironment plays an important

role in determination of these subtypes. To investigate this, we

downloaded the xCell scores corresponding to the enrichment

of 64 different immune and stromal cell types in these TCGA

samples (Aran et al., 2017). Hierarchical clustering of the mean

enrichment scores for the various cell types that are expected

to be present in the brain (Figure 7A ) shows that the cellular pro-

file of subtype 2 tumors is more similar to GBMs than to the other

LGGs. More importantly, astrocytomas assigned to subtype 2

have higher enrichment scores for astrocytes, similar to those

calculated for GBM samples and significantly higher than astro-

cytomas assigned to the other subtypes (Figure 7B). xCell scores

are derived from gene expression, but we observe similar results

in analysis of methylation data using MIRA (Lawson et al., 2018).

Subtype 2 samples show lower methylation and higher regulato-

ry activity at astrocyte-specific elements (Figure 7C) compared

with the other subtypes.
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Among other subtypes, subtype 1 is enriched for oligodendro-

gliomas (p < 1.0 3 10�5), mutations in the TERT promoter and

high expression of TERT (Tukey HSD test, p < 0.05 for all

pairwise comparisons), high tumor purity (Tukey HSD test,

p < 0.05 for all pairwise comparisons), 1p/9q codeletion, andmu-

tations inCIC, a known tumor suppressor. 128 of the 130 individ-

uals in subtype 1 have a methylated promoter for MGMT (post

hoc test of residuals for c2 test, p < 1.03 10�5).MGMT promoter

methylation is associated with a better response to alkylating

chemotherapy, suggesting that individuals assigned to subtype

1 are more likely to respond to temozolomide (Rivera et al.,

2010).

Subtype 3 is enriched for the neural (NE) subtype detected in

previous gene expression studies. The NE subtype has been

related previously to the tumor margin, where increased normal

NE tissue is likely to be detected (Gill et al., 2014). Consistent

with this hypothesis, we find that the tumors assigned to subtype

3 have lower tumor purity (Tukey HSD test, p < 0.05 for all pair-

wise comparisons except with subtype 5) and a high enrichment

score for neurons (Figure 7D). Subtypes 4 and 5 are enriched for

G-CIMP-high samples, although subtype 5 is enriched for muta-

tions in ATRX (post hoc test of residuals for c2 test, p < 10�5) and

shows a higher enrichment for mast cells (Figure 7), which are

known to induce release of selective inflammatory cytokines,

such as interleukin-4 (IL-4), with anti-glioma activity, leading to

an improved prognosis (Benedetti et al., 2000).

DISCUSSION

We present an approach to integrate multi-omics datasets using

the NMF of patient-similarity networks. Similar to other similarity-

based methods, such as SNF, we first transform information

from each data type into a separate patient-similarity network,

which allows us to preserve and handle data-type-specific prop-

erties. We then use a joint factorization to calculate a shared rep-

resentation of the samples in a lower-dimension subspace. Our

implementation, SUMO, additionally enforces sparsity on this

representation, making it well suited for unsupervised learning.

Furthermore, we use a resampling technique in conjunction

with consensus clustering to detect the optimal number of clus-

ters and assess the stability of the generated clusters. Our vali-

dation experiments show that this resampling strategy has the

potential to improve the output from other subtyping methods

as well.

The importance of integrative clustering has been recognized

for several years, and several methods have been developed to

exploit the increasing number of multidimensional datasets.

SUMO improves existing methods in its ability to handle noisy

and missing data. We compared SUMO with several existing

methods for integrative clustering. SUMO produces consistently

reproducible results on a recently published benchmark. The

benchmark uses differential survival and enrichment of a small

number of clinical labels in the resulting clusters as metrics for

assessment of subtyping methods. However, subtypes of a dis-

ease that are biologically different can lead to similar survival. For

example, SUMO does not detect a subtype with a significantly

different prognosis in colorectal adenocarcinoma, but the deter-

mined subtypes show significant differences in the activity of the
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various signaling pathways. Furthermore, using survival as a

metric is biased to known cancer subtypes, which may have

been used in treatment decisions. SUMO has the total best

prognostic value compared with the other methods on this

benchmark and the TCGA datasets, but evaluating multi-omics

clustering methods remains a challenge. Using real datasets

and established benchmarks is a reasonable approach to such

comparisons, although it is important to remember that they

are limited as well. In this study, we report the p values of the

log rank test using exact permutation tests because p values

based on the c2 approximation are highly inaccurate in evalu-

ating clustering solutions on real cancer datasets (Rappoport

and Shamir, 2019a).

When applying SUMO to subtype LGGs, we identified a single

subtype with a differential prognosis compared with the other

subtypes. We show that this subtype includes all previously

studied groups of individuals with features that are associated

with a poor outcome. Like GBM, gain of chr7, loss of chr10,

and global hypomethylation appear to be hallmarks of this sub-

type. Our analyses suggest that LGGs assigned to subtype 2
should be treated more aggressively and potentially reclassified

as GBM. These findings are in agreement with the recommenda-

tions from the cIMPACT-NOW consortium, which suggests that

EGFR amplification and combined chr7 gain and chr10 loss as

well as TERT promoter mutation can be used to diagnose the

IDHWTgrade II/III gliomas that are likely to follow amore aggres-

sive clinical disease course.

The choice of samples and data types can have a significant

effect on the inferred subtypes, making determination of sub-

types challenging. For example, a large study of diffuse grade

II-III-IV gliomas by Ceccarelli et al. (2016) classified a subset of

IDHWT LGG samples as ‘‘PA-like’’ based on the molecular sim-

ilarity to grade I PA and improved prognosis compared with the

other IDHWT samples. However, they also reported that several

GBM (grade IV) samples with a poor prognosis were assigned to

the same cluster as the PA-like samples based on the CpG

methylation markers, highlighting that tumor grade provided

prognostic value independent of subtype and age. We found

that PA-like samples from Ceccarelli et al. (2016) are classified

by SUMO primarily into two different groups based on gene
Cell Reports Methods 2, 100152, January 24, 2022 9
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expression and miRNA expression. The assignment correlates

with the tumor grade, with most grade III tumors being assigned

to subtype 2, which is characterized by a poor clinical course.

This example highlights the need for integration of clinical obser-

vations and outcomes with molecular information in determina-

tion of clinical subtypes. Even though we use our approach to

cluster samples, additional constraints can be used to adapt

the approach for semi-supervised applications, as suggested

in other studies using NMF (Choo et al., 2015).

SUMO is available as a Python package, which includes mod-

ules to construct patient-similarity networks and infer molecular

subtypes. A common post hoc analysis of molecular subtyping is

identification of features that can be used as markers or surro-

gates for the various subtypes. SUMO includes a mode to build

a tree-based model that can predict the importance of each

feature for each of the detected subtypes. For example, we

identified a clinically relevant subtype of LGG with a differential

prognosis compared with the other subtypes. According to our

analysis, the non-CpG island methylation probes in proximity

to the gene CLCF1 are the best markers for the subtype. Fig-

ure S3C shows the beta values of the samples for the three

methylation probes that have the highest explanatory values

for the classifier.

Limitations of the study
In this study, we compare SUMO with several methods that

integrate continuous genomic data types to discover biologi-

cally relevant molecular subtypes. The metrics used in these

assessments have their limitations and can reflect adversely

on the performance of methods with additional objectives

beyond determination of subtypes. Even though we can inte-

grate categorical and ordinal data types using SUMO, we did

not benchmark SUMO against the other methods for those

data types. The current implementation of SUMO has a few lim-

itations. For example, it can be slower than competing methods

for large datasets because it uses consensus clustering of mul-

tiple NMF decompositions to assign the final labels. Even

though the current implementation can train a gradient boost-

ing classifier to identify features that can act as biomarkers

for the assigned clusters, the implementation requires large

amounts of memory.
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Archive/SNFtool
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Other
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Code to reproduce comparison of various

methods
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Zenodo: https://doi.org/10.5281/zenodo.

5762339
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Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Aakrosh Ratan

(ratan@virginia.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability

d This paper analyzes existing, publicly available datasets processed and hosted on UCSC Xena at https://xenabrowser.net/

datapages/?hub=https://tcga.xenahubs.net:443. Information also listed in the key resources table.

d SUMO is implemented in python and freely available in the form of a command-line tool on GitHub (https://github.com/

ratan-lab/sumo) and at The Python Package Index (https://pypi.org/project/python-sumo). The official documentation

including a tutorial for SUMO is available at https://python-sumo.readthedocs.io. We used SUMO v0.2.6 in this study which
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is available from https://doi.org/10.5281/zenodo.5762331.The scripts to reproduce the comparison of the various methods

along with the instructions are available at https://doi.org/10.5281/zenodo.5762339. Information also listed in the key re-

sources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

We performed several simulations to compare the performance of the various methods on noisy datasets with varying the data noise

level and the fraction of missing data.

Simulated noisy dataset
Figure S1A shows the experimental setup for a simulation where we increase the noise in one data type while keeping a moderate

amount of noise in the other data type. We first generated a ‘ground truth‘ feature matrix consisting of 200 samples and 400 features,

with two distinctly separable clusters (isotropic Gaussian ‘blobs‘ with a standard deviation of 0.5). Next, we simulated one data type

by adding random noise from a GaussianNðm = 0;s = 1:5Þ distribution to those clusters. We simulated another data type by adding

noise to the clusters from a Gaussian distribution (Nðm = 0Þ where the standard deviation is varied s ç (0, 4)). We then calculated the

median ARI of the classification at each data point for 100 repetitions for each method compared in the experiment. The scripts to

produce the simulated dataset and compare the various methods are available at https://github.com/ratan-lab/sumo_analysis.

Simulated missing dataset
To simulate missing information, we removed a random fraction of samples from one of the two data types selected at random while

keeping corresponding sample data in the other data type.We again calculated themedian ARI of classification at each data point for

100 repetitions for each method compared in the experiment. The scripts to produce the missing dataset and compare the various

methods are available at https://github.com/ratan-lab/sumo_analysis.

Benchmark
We compared SUMO to several other methods using a recently published benchmark (Rappoport and Shamir, 2018). The scripts to

compare the various methods on this benchmark is available at https://github.com/ratan-lab/sumo_analysis.

Method overview
The NMF technique aims to explain the observed data using a small number of basis components by factoring the data into the prod-

uct of two non-negativematrices; one representing the basis components, and the other containingmixture coefficients (Paatero and

Tapper, 1994). NMF has been successfully used as a clustering method in image and pattern recognition (Leuschner et al., 2019),

text-mining (Chen et al., 2015), and bioinformatics (Wang et al., 2015). In this work, we used a variant of NMF called Symmetric

NMF, in which the decomposition is done on a symmetrical matrix that contains pairwise similarity values between the data points

instead of being done directly on the data points (Kuang et al., 2012). Symmetric NMF improves clustering quality compared to the

traditional formulation.

Similar to NEMO and SNF, we preprocess, transform, and standardize the data before calculating the similarity between the sam-

ples for each data type separately. If all data types are measured for all n samples, the similarity between samples based on the ith

data type forms a n3 n symmetric matrix Ai. After that, we tri-factorize AizHSiH
T, whereH is a non-negative n3 rmatrix, Si is a r3 r

non-negativematrix, and r (�n) is the desired number of clusters.H in this decomposition is shared among the various data types and

is a representation of the n samples in a r-dimensional subspace accounting for the adjacencies observed in all data types. Each row

ofH represents a sample, whereas each column ofH denotes a cluster. We include an additional constraint to enforce sparsity ofH in

the factorization.

Lastly, we use multiplicative updates to solve the above factorization. Since the solution can be sensitive to the initial conditions

and the input data, we run the solver multiple times on several subsets of samples using different initial conditions and use consensus

clustering to assign the final labels and infer the optimal number of clusters (Figure 1). We describe these steps in detail below.

Data preprocessing
Data preprocessing involves (a) filtration, (b) transformation, and (c) normalization of each data type separately. The filtering process

removes features that are not informative; for example, we remove genes with zero counts in most samples. Although our approach

can handle missing values, removing features and samples with a large fraction of missing values (>10%) often speeds up compu-

tation and is recommended unless it removes a significant fraction of samples.

The transformation process is data-dependent. For instance, we use a variance-stabilizing transform to convert abundance in

count data (as in RNA-seq) to yield a matrix of values that are approximately homoscedastic (with constant variance in the

range of mean values). This transformation has the additional advantage of reducing the effect of outliers in the data. In the case
Cell Reports Methods 2, 100152, January 24, 2022
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of methylation data, we use of log2 ratio of the methylated to unmethylated count, also referred to as M-values (Du et al., 2010). If

batch information is known, we use ComBat (Johnson et al., 2007) to adjust for batch effects in this step.

In the normalization step, we perform feature standardization to make the value of each feature in the data be zero-mean and unit

variance. Our data-preprocessing is similar to other similarity-based methods such as SNF, but we do not require imputation to fill in

missing data, which can be computationally intensive for genome-wide datasets.

The construction of similarity networks and matrices
Let n be the number of patient samples s that are found in the dataset of every data type and let t be the number of data types

(e.g., gene expression or DNA methylation). In this step, we construct a similarity network N, represented by a set of n3n similarity

matrices fA1;A2;/;Atg, where Akði; jÞ= ðaijðkÞÞ and k is used as an index for the data type. aij(k) represents the similarity between two

samples si and sj calculated from the features of the kth data type, k = 1;/; t.

For each data type k, we assume its data is represented in a matrix (fij) containing n sample rows and p feature columns. We calcu-

late Ak as a radial basis function of the Euclidean distance rði; jÞ=Pp
m= 1ðfim � fjmÞ2 between the samples xi and xj:

Aði; jÞ = exp

�
� r2ði; jÞ

mεiεj

�

where m is a hyperparameter and εi represents the average distance between xi and its K nearest neighbors NK(i):

εi =

P
j˛NK ðiÞrði; jÞ

K
:

We set m equal to 0.5 based on performance on simulated datasets and set the number of nearest neighbors K equal to 10% of the

samples in the data type. The selection of K and m change the emphasis on the local and global structure in the similarity graph and

can affect the results. In Figures S4A and S5A, we apply the similarity kernel to a single feature dataset generated from a normal dis-

tribution with amean of zero and a standard deviation of three. We can see that lower values of m and higher values of K both increase

the number of pairs with lower values in the similarity matrix. Varying these parameters does not have a significant effect when SUMO

is applied to well-separated simulated datasets with a known number of clusters, even with large amounts of missing data or noise

(Figures S4B and S5B). However, with real data, varying m or K can change the optimal number of clusters as suggested by the two

metrics PAC andCCC. Lower or higher extreme values of m lead to a higher number of clusters being selected as optimal, as we show

in Figure S4C. Similarly, the selection of K can also influence the optimal number of clusters in real data (Figure S5C), with lower

values emphasizing the local neighborhoods of samples. We recommend setting K to #samples
#clusters if the number of clusters is known.

The Euclidean distance is appropriate for normalized count datasets, such as for gene expression andDNAmethylation data. How-

ever, depending on the data type and the application, different distances or similarity metrics may better represent sample relation-

ships. For example, cosine similarity has been shown to be a better metric for the calculation of similarity between single cells in the

single-cell sequencing for transposase accessible chromatin (scATAC-seq) (Cai et al., 2018). Currently, the SUMO package (see im-

plementation details section) implements four alternative methods to create similarity matrices: Euclidean distance, cosine similarity,

Pearson and Spearman correlation. All distance measures are subject to the following constraints: aijðkÞ˛½0;1� and aii(k) = 1.

Joint tri-factorization of the similarity matrices
Each matrix Ai of the multiplex network N is symmetric and non-negative. We tri-factorize A1;A2;/;At as follows:

Ai zHSiH
T ; i = 1;/; t;

in which H is a n 3 r matrix shared across the data types and r is the desired number of clusters such that r � n (Figure S6B).

We compute the above tri-factorization by minimizing the following objective function:

L =
Xt
i =1

likWi+
�
Ai �HSiH

T
�k2

F
+hkHk2F (Equation 1)

where + denotes entry-wise multiplication for matrices, and H and Si are both constrained to be non-negative. The first term of the

objective function measures the divergences between Ai and HSiH
T using the Frobenius norm in each data type. For each data type,

measurements may be not available for all the n samples, thus leading to missing entries in the matrix Ai. We use Wi to remove the

missing values, where

Wiðx; yÞ =
�
1 if Aiðx; yÞ is available
0 otherwise

Then we add another factor li = n�2
i to account for the imbalance in the number of entries among Aiði = 1; :::; tÞ, where ni is the

number of samples for the ith data type.

The second term of the objective function is used to enforce sparsity on the matrix H, and the hyperparameter h is used to balance

the contribution of these two terms (see implementation details section for more information on h selection).
Cell Reports Methods 2, 100152, January 24, 2022 e3
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Note that the cost function in Equation 1 is convex in either but not both H and Si. The following multiplicative updates are used to

solve the optimization problem given in Equation 1 (See the next section for details on the derivation of the rules).

Si )Si+
HT ðWi+AiÞH

HT
�
Wi+

�
HSiHT

��
H

H)H+

P
iliðWi+AiÞHSiP

ili
�
Wi+

�
HSiHT

��
HSi + 0:5hH

As the algorithm iterates using the updates, H and Si converge to a local minimum of the cost function. We apply the above rules

iteratively while alternating fixed matrices, keeping track of objective function value L(i) until it satisfies��Lði + 1Þ � LðiÞ��
Lði + 1Þ <ε

where ε is a predefined threshold, or the maximum number of allowed iterations is reached.

Since the solution is relatively sparse, we can assign each sample (represented by a row in H) to the cluster corresponding to the

column that contains themaximum value, as depicted in Figure S6C. In practice, the solution can be sensitive to the input dataset and

the initial conditions.We discuss the details of this in the Implementation details, but briefly, we run the above solver multiple times on

subsets of the dataset and then use consensus clustering to get the final assignments.

Derivation of the multiplicative-update rules
For the objective function Equation 1, when we update matrix Si, matrices H and SjðjsiÞ should be fixed, thus it would be an opti-

mization problem about the matrix Si, that is,

min k Wi +
�
Ai �HSiH

T
�k2F ; subject to SiR0:

The corresponding Lagrange function is

LðSiÞ = tr
��

Wi+
�
Ai � HSiH

T
��T�

Wi +
�
Ai �HSiH

T
��	� tr

�
BT

i Si

�
;

where Bi R 0 is the Lagrange multiplier for Si, and tr(X) represent the trace of matrix X. Then

vLðSiÞ
vSi

= � 2HT
�
Wi +

�
Ai �HSiH

T
��
H� Bi:

Let vLðSiÞ
vSi

= 0, thus

HT
�
Wi +

�
HSiH

T
��
H�HTðWi +AiÞH=

1

2
Bi;

and

ðSiÞjk , ðBiÞjk = 0;

thus Si satisfies �
HT
�
Wi+

�
HSiH

T
��
H� HTðWi+AiÞH

�
jk
, ðSiÞjk = 0:

We obtain the update formula for Si as follows:

Si )Si+
HTðWi+AiÞH

HT
�
Wi+

�
HSiHT

��
H
;

where + and O denote entry-wise multiplication and division for matrices, respectively.

Similarly, when we update matrix H,

vLðHÞ
vH

= � 4
Xt

i =1

li
�
Wi +

�
Ai �HSiH

T
��
HSi + 2hH� B0;

where B0 R 0 is the Lagrange multiplier for H. Thus, H satisfies the following equations: Xt

i =1

li
�
Wi+

�
HSiH

T
��
HSi + 0:5hH�

Xt

i = 1

liðWi+AiÞHSi

!
jk

, ðHÞjk = 0;
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Then, we obtain the following update formulas for H:

H)H+

Pt
i = 1liðWi+AiÞHSiPt

i = 1li
�
Wi+

�
HSiHT

��
HSi + 0:5hH

:

Implementation details
SUMO is specifically designed to integrate multi-omic data for molecular subtyping. It consists of four subroutines. It allows the user

to construct the multiplex network from normalized feature matrices (sumo prepare), tri-factorize the multiplex network to assign

samples to the desired number of clusters (sumo run), compare the assignments to another classification using multiple metrics

(sumo evaluate), and detect the importance of each feature towards each cluster (sumo interpret).

SUMO is available in the form of a command-line tool on GitHub (https://github.com/ratan-lab/sumo) and at The Python Package

Index (https://pypi.org/project/python-sumo).

Support for missing data
Biomedical studies measure a large number of molecular parameters. Almost every dataset has missing entries. Most methods for

molecular subtyping require complete data. This implies that both samples and features that have missing entries have to be

removed or themissing entries have to be imputed in the preprocessing stage. SUMO takes a different approach. It scales the calcu-

lated distance between a pair of samples by the number of common features available for both samples. If sufficient overlap (by

default at least 10%of features) is not found, the distance is set toNA (not available). Amissing value in an adjacent matrix Ai is equiv-

alent to a missing edge between two nodes in the multiplex network and is masked during factorization using Wi.

Sparsity parameter selection
The hyperparameter h in cost function (Equation 1) is used to enforce the sparsity onHmatrix. By default, we set h to 0.1 based on the

performance on simulated datasets. This value can be optimized for the given dataset to further improve the stability of results.

SUMO provides an option to run the factorization with different sparsity values and automatically select h, by assessing the within

clusters similarities:

sh =
X
j

P
isimðCi;AjÞ

n2
j

where sim(Ci,Aj) denotes the sum of similarities for all the sample pairs in the identified cluster Ci given the similarity matrix Aj and nj is

the number of samples for the jth data type. We then choose h which results in the highest sh.

Consensus clustering
Our solution using multiplicative rules can be sensitive to the initial conditions and the input data. Both initialization and convergence

speeds are important factors to consider when formulating the appropriate factorization algorithms (Boutsidis and Gallopoulos,

2008). Our method utilizes an SVD-based initialization approach to set the initial H according to the average similarity matrix across

all data types. This method reduces residual error and provides faster convergence than using random initialization. However, we still

have to setSi randomly; as such, the algorithm does not guarantee convergence to a local minimum. Here, we set the diagonal entries

of each Si to be absolute singular values, that are derived from the SVD decomposition of the corresponding Aimatrix. We repeat the

factorization n times to avoid overfitting, each time including 95% of the total samples in calculating the cluster assignments from H

and a residual error (RE) for that run.We create a consensusmatrixC from these n assignments that is weighted to incorporate theRE

of each factorization in a dataset with t data type as follows:

C =

Pn
x = 1CðxÞ �weightðxÞPn

x = 1weightðxÞ ;

where

M = maxiREðiÞ; 1%i%n
N = miniREðiÞ; 1%i%n
weightðxÞ = M� REðxÞ
M� N

; x = 1;2; :::; n
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REðxÞ =
Xt

i = 1

likWi+
�
Ai � HSiH

T
�k2

F
; x = 1; 2; :::;n

We use the Normalized Cut clustering algorithm (Shi and Malik, 2000) on this consensus matrix to assign the final cluster labels.

Estimating the optimal number of clusters
Estimation of an optimal rank for NMF is a challenging problem. It is common to compare several solutions based on a clustering

metric. We implement two popularmetrics that leverage the consensusmatrix to help the user in the determination of stable solutions

to the factorization. The first metric is the cophenetic correlation coefficient (CCC). It measures the Pearson correlation between

sample distances and its hierarchical clustering. A higher CCC value is considered better. The second metric is the proportion of

ambiguously clustered pairs (PAC), which is defined as the proportion of the consensus matrix values in (0.1, 0.9) range. Based

on our experiments, we recommend investigating factorization rank values for which the PAC score is less than 0.1, and the CCC

value is high (typically >0.95). Increasing the number of repetitions of the solver can assist in the identification of the optimal number

of clusters, but as we show in Figure S7A using the Acute Myeloid Leukemia (AML) dataset from benchmark data (Rappoport and

Shamir, 2018), we can identify one of the stable solutions in a small number of repetitions. Similarly, we use the same dataset to

show in Figure S7B that the trends observed in the PAC curve and the CCC curve are preserved for a wide range of values corre-

sponding to the number of samples that are removed in each iteration [0,0.1]. In the current default setting, we run 60 repetitions

of the solver. With each run, we randomly remove 5% of the samples, while making sure that each sample will be clustered at least

once. We then create multiple weighted consensus matrices as described in the previous section, each using a random subset of

runs (by default 50). While only one of the matrices is utilized to call sample labels, the CCC and PACmetrics are calculated for every

one of them, providing a robust assessment of the stability of factorization results.

Identification of biomarkers
Once the subtypes are assigned, a frequent challenge is to identify a set of features that correlate with the cluster separation. These

can be used as markers for the assignment of future samples and can aid in understanding the differences between the groups. To

this end, we first train a gradient boosting classifier implemented in LightGBM (Ke et al., 2017).We use 80%of the features for training

this model while performing hyperparameter optimization of the model using a random search with 5-fold cross-validation to avoid

overfitting. When we have this model, we calculate the Shapley values of all features for each identified cluster. The features with a

Shapley value greater than 1 are considered to be important in driving the separation of that cluster.

Clustering individual data types
Our approach decomposes similarity based on each data type intoHSiH

Twhile adding sparsity to the cost function to improve sepa-

rability, and uses H to assign labels to the samples. When using a single data type, the decomposition of the similarity matrix can

simply be done into HHT without the need for a data type specific Si. This formulation is equivalent to a Laplacian-based spectral

clustering. So, for each data type, we converted the similarity matrix into the normalized Laplacian and determined the eigenvalues

and the eigenvectors of the Laplacian. We then used the eigenvalues of the graph Laplacian and chose the number of clusters cor-

responding to themaximum drop-off. We finally used k-means on thematrix with the selected eigenvectors to determine the clusters

based on the data type.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analysis reported in this article were performed in R. The p-values for the log-rank test in Figures 3, 4, 5, S2A, and S2C

were calculated using exact permutation tests (Rappoport and Shamir, 2019b) and p-values < 0.05were considered to be statistically

significant. The enrichment for discrete parameters was calculated using the c2 test for independence and enrichment for numeric

parameters was calculated using the Kruskal-Wallis test. The p-values for clinical enrichment were corrected using Bonferroni

correction, and adjusted p-values < 0.05 were considered to be statistically significant in Figures 3 and S2C. We describe the details

of the simulations in Figure 2 in the method details. All p-values in the text are reported along with the performed statistical test.
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