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Purpose. Liver metastasis remains the leading cause of cancer-related mortality in colorectal cancer.0emechanism of occurrence
and development of liver metastasis from colorectal cancer is unclear.Methods. 0e primary tumor tissues and blood samples of 8
patients with liver metastasis of colorectal cancer were collected, followed by nucleic acid extraction and library construction.
Whole-exome sequencing was performed to detect the genomic variations. Bioinformatics was used to comprehensively analyze
the sequencing data of these samples, including the differences of tumor mutation burden, the characteristics of gene mutations,
and signaling pathways. Results. 0e results showed that the top three genes with the highest mutation frequency were TP53,APC,
and KRAS. Tumor mutation burden of this study, with a median of 8.34 mutations per MB, was significantly different with 0e
Cancer Genome Atlas databases. Analysis of molecular function and signaling pathways showed that the mutated genes could be
classified into five major categories and 39 signaling pathways, involving in Wnt, angiogenesis, P53, Alzheimer disease-presenilin
pathway, notch, and cadherin signaling pathway.Conclusions. In conclusion, we identified the extensive landscape of altered genes
and pathways in colorectal cancer liver metastasis, which will be useful to design clinical therapy for personalized medicine.

1. Introduction

Colorectal cancer (CRC) is the third most common type of
malignancy and leading cause of cancer-related death
worldwide [1]. Metastasis is still the main cause of cancer-
related morbidity, and mortality of colorectal cancer due to
liver metastasis accounts for about 25% [2]. Although, early
detection and prevention or surgical resection of primary
and metastatic lesions can reduce the risk of CRC and
improve survival of CRC [3–5], metastatic CRC is still the
leading cause of cancer-related deaths, and treatment op-
tions are not as selective.

A previous study suggested that the frequency rates of
mutations such as KRAS, NRAS, BRAF, and PIK3CA in
CRC differ among population [6]. AMER1 is a frequently
mutated gene in CRC comprising 553 samples [7].
TMEM9, as a novel human transmembrane protein,
transactivated by β-catenin functions as a positive feedback
regulator of WNT signaling in CRC and mTOR signaling,
has been suggested to be an important factor involved in
tumorigenesis [8, 9]. 0erefore, a better understanding of
the biological and phenotypic evolution of CRC and its
molecular and genetic mechanisms during the transfer
process is crucial.
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To further investigate the genetic characteristics of co-
lorectal cancer liver metastasis (CRLM), we performed
whole-exome sequencing (WES) in 8 patients with CRLM.
Somatic mutations, tumor mutation burden (TMB), mo-
lecular functions of mutational genes, and signaling path-
ways were analyzed. It is expected to provide clinical help for
the treatment of patients with liver metastasis from co-
lorectal cancer.

2. Patients and Methods

2.1. Patient Specimen Acquisition. Blood and primary CRC
tumor tissue samples were collected from 8 patients with
CRLM in the Oncology Department of the First Affiliated
Hospital of Xiamen University during the period May 2018
to November 2018. Informed written consent was obtained
from all patients before inclusion in the study. Respective
tumor tissue samples which were a histologically confirmed
adenocarcinoma by two molecular pathologists matched
with the inclusion criteria. 0e study was conducted in
accordance with the Helsinki Declaration and was approved
by the Ethics Committee of the First Affiliated Hospital of
Xiamen University [10].

2.2. DNA Extraction. DNA was extracted from serial sec-
tions cut from tumor samples and matched peripheral blood
leukocytes as germline DNA control. 0e cases with tumor
cell populations were estimated by pathologists to ensure
more than 70% of cells were tumor cells. 0e DNA was
isolated from the FFPE and blood samples using the DNeasy
Blood and Tissue Kit (69504, QIAGEN, Venlo, Netherlands)
according to the manufacturer’s instructions. DNA quantity
was assessed by using Agilent’s Bioanalyzer (USA).

2.3. Whole-Exome Sequencing and Data Processing. 0e
targeted capture pulldown and exon-wide libraries from
genomic DNA were generated through the xGen® Exome
Research Panel (Integrated DNA Technologies, Inc., Illinois,
USA) and the TruePrep DNA Library Prep Kit V2 for
Illumina (#TD501, Vazyme, Nanjing, China). 0e sequences
of captured libraries were performed as pair-end reads on
sequences on the Illumina HiSeq 2500 platform. Sequencing
reads were processed and mapped to the reference GRCh37/
hg19 human genome assembly and to the identified
germline variations. Further local rearrangements were
performed to improve the alignment of individual reads
[11].

2.4. Variant Annotation and Mutation Signature Analysis.
Somatic mutations identification and indels were annotated
through Mutect [12] and Somatic Indel Detector [13]. 0e
variant data were annotated using ANNOVAR [14] and
Oncotator [15] and converted to MAF files by maf tools [16].
0e cancer driver genes were analyzed using Intogen [17],
including Oncodrive FM and Oncodrive CLUST. Both tools
detect signals of positive selection, which appear in genes
whose mutations are selected during tumor development

and are therefore likely drivers. 0e landscape of top driver
mutation spectrum predicted by Intogen for tumors was
visulized via R Script, including mutation rate and mutation
subclass/subtypes (filtering cutoff, ONCODRIVE FM P

value≤ 0.1).

2.5. Statistical Analyses. All the correlate clinical and bi-
ological variables were employed using the SPSS Statistics
22.0 package and ggpubr package [18] in R [19] by means of
Fisher’s test or a nonparametric test when necessary. 0e
Kruskal–Wallis test was used to analyze whether TMB differ
between different data sets.

3. Results

3.1. Patient Characteristics. We collected tumor tissue and
matched blood from 8 patients with CRLM at the time of
diagnosis, including 5 males and 3 females, with an average
age of 66.6 years (range, 46–83 years). One of the patients
was a former smoker, and the other seven were non-
smokers. Additionally, one male patient was also alcoholic.
According to the anatomical classification system, 75.0%
(6/8) of samples were classified as left hemicolon carci-
noma, and the other 2 patients were right hemicolon
carcinoma. All the patients were in stage IV and treated
with chemotherapy. 37.5% (3/8) of the patients had a
history of chronic disease, including diabetes, hyperten-
sion, coronary heart disease, and hyperuricemia. No pa-
tients received radiation therapy before surgery. 0e
detailed clinical characteristics of the patients are shown in
Table 1 and Supplemental Table 1.

3.2. Whole-Exome Sequencing and Identification of Somatic
Mutations. We performed WES on DNA from 8 tumor
tissues along with blood matched and then analyzed suc-
cessfully with a mean depth of 244x. Somatic mutations were
identified by comparing significant changes in nonreference
alleles in the tumor and control groups. Overall, 1151
nonsynonymous single nucleotide variants (SNV) were

Table 1: Patient characteristics.

Characteristic No. of cases Proportion (%)
Total number n� 8
Age, years (mean) 66.6 (46–83)
Sex

Male 5 62.5
Female 3 37.5

Smoking history
Smoker 1 12.5
Nonsmoker 7 87.5

Drinking 1 12.5
Metastsis 7 87.5
Anatomical classification

Right hemicolon 2 25.0
Left hemicolon 6 75.0

Stage
IV 8 100

Chemotherapy 8 100
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identified (Supplemental Table 2). An overview of the whole-
exome sequencing results and the algorithm-generated arm-
length copy number alterations are shown in Figure 1. Each
gene with a nonsynonymous SNV was reviewed against

known mutations identified in prior studies and subjected to
Mutsig analysis. As shown in Figure 1, S02 have the most
SNVs, following S03. We listed the top 75 genes based on the
frequency of mutations. Among them, TP53 (100%), APC
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Figure 1: Landscape of somatic mutations in CRLM. 0e different colored tables represent different types of mutations (middle bars). We
also calculated somatic mutations SNV using only somatic nonsynonymous mutations sequenced withWES for each sample (top bars), and
the right bars represent the absolute number of mutations observed per gene across all samples.
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(75%), and KRAS (62%) were the genes with the highest
mutation rates. Missense mutation was the most common
type of mutation, along with frame shift del, in frame ins,
frame del, and so on (Figure 1).

We also calculated TMB using only somatic non-
synonymous mutations sequenced withWES. On the whole,
we found that the TMBs of different samples were signifi-
cantly different, with a median of 8.34 mutations per MB
(range, 2.79–17.04 mutations/MB) (Figure 2).

In order to compare the differences in TMB between
CRLM and TCGA database (COAD and READ), we used
the Kruskal–Wallis nonparametric test to test the anova of
multiple groups of data after homogeneity of variance test
(therefore, anova cannot be used) and found significant
difference between multiple database cohorts (P � 5.9e − 05)
(Figure 3).

3.3.�e Landscape ofMutational Signatures. In principle, all
types of mutations (such as substitutions, indels, and
rearrangements) and any accessory mutation characteristic,
for example, the sequence context of the mutation or the
transcriptional chain where the mutation occurred, can be
incorporated into the set of features by which a mutational
signature is defined.

We extracted mutational signatures using base sub-
stitutions, and six classes of substitutions (C>A, C>G,
C>T, T>C, T>A, and T>G) were referred to by the
pyrimidine of the mutated Watson–Crick base pair. In this
study, the six mutation types were compared with the TCGA
database, and it was found that the proportion of these six
mutation replacement types was roughly the same. 0e
mutation percent of C>T was the highest in all sub-
stitutions, and this study has no significant difference with
COAD and READ in this substitution. T>G substitution
have significant difference between CRLM with COAD and
READ (Figures 4(a) and 4(b)).

3.4. CRLM-Related Gene Molecular Function and Pathway
Analyses. In order to further characterize the functions of
mutational genes and their involved regulatory pathways, we
used PANTHER classification system [20], an Ontology-
Based Pathway Database Coupled with Data Analysis Tools.
0e results showed that molecular functions were divided
into five categories, namely, binding, catalytic activity,
molecular function regulator, molecular transducer activity,
and transcription regulator activity. Of these, the category of
binding (40) and catalytic activity (32) have the most
function hits (Figure 5).

0rough the PANTHER classification system pathway
analysis, it was found that 74 pathway-related genes were
involved in a total of 39 primarily signaling pathways, among
which the pathways with higher frequency were Wnt sig-
naling pathway (P00057), angiogenesis (P00005), P53
pathway (P00059), Alzheimer disease-presenilin pathway
(P00004), notch signaling pathway (P00045), and cadherin
signaling pathway (P00012). 0e other involved pathways
and the genes involved in each pathway were referred to
Figure 6 and Supplemental Table 3.

4. Discussion

CRC is the third most common malignancy in many
countries and the second leading cause of cancer death. It
develops from benign adenomatous polyp to invasive can-
cer, and nearly 50% of CRC patients develop into CRLM
[21]. Without treatment, the median survival period of
patients with colorectal liver metastasis is only 5–10 months,
and the survival rate of over 5 years is less than 0.5% [22].

0emolecular pathogenesis of CRC is related to a variety
of genetic changes that result in abnormal activation of
proto-oncogenes and inactivation of tumor suppressor
genes [23]. We briefly described the characteristics of the
CRLM by WES and had important insights into the genes
andmechanisms of cancer occurrence and development.We
found 1151 SNVs and the prevailing mutations were APC,
KRAS, and TP53 (Figure 1, Supplemental Table 2), which is
in accordance with data reported by 0e Cancer Genome
Atlas Network [24]. Currently, there are dozens of bio-
markers related to checkpoint inhibitors, among which
TMB, PD-L1, and MSI/dMMR have been verified by phase
III clinical trials and are widely used in clinical practice.
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Figure 2: TMB analysis in CRLM patients.
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Figure 4: Mutational signature difference in multiple groups. (a) Transition and transversion proportions for six nucleotide changes. 0e
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Tumor mutation load (TMB) is a new biomarker for pre-
dicting PD-1/PD-L1 immune response [25]. Even though it
has been reported that TMB ≥20 mutation/Mb (TMB-H)
alone is not suitable for predicting the immunotherapy effect

of each solid tumor type [26], we found that there was a
significant difference in TMB between CRLM and colon and
rectum, but the TMB did not exceed 20 mutations per MB
(mean 8.34) (Figures 2 and 3). For different cancer types, the
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setting of high TMB threshold may need more clinical
studies and a large number of patient information statistics.

0e signatures can be understood as different mutation
processes often generate different combinations of mutation
types. 0ousands of somatic mutations can be identified in a
single cancer sample, making it possible to decipher the
mutant signature, even if several mutations are operative
[27]. 0e C>A mutational signature, is associated with
smoking and chewing tobacco. Six classes of substitutions
were extracted, and there was no significant difference in
mutation percent between CRLM and colon with rectum
cohorts (Figure 4). 0e genetic characteristics of liver me-
tastasis may be more similar to that of the primary tumor,
and the treatment strategy should be more similar to that of
the primary tumor colorectal cancer.

0rough pathway analysis, we found that oncogenes
represented by KRAS, PIK3CA, AKT1, PIK3R, and tumor
suppressor genes represented by TP53, APC, EP300,
CREBBP, and PIK3R1 were mutated, which may lead to
changes in angiogenesis, TGF-β, Wnt signaling pathway,
notch signaling pathway, and other pathways (Figure 6,
Supplemental Table 3). 0e pathway is complex, mainly
reflected in the fact that one mutation gene is involved in
multiple pathways [28], and various pathways are also cross-
regulated, such as angiogenesis and notch signaling pathway.

5. Conclusion

Our study identified changes in driver genemutations, TMB,
and base Ti/Tv ratios in CRC with liver metastasis compared
with rectal or colon cancer, although our study has some
limitations, such as small sample size and lack of matched
CRC liver metastasis samples. In conclusion, the current
findings help define the genomic landscape of CRLM and
identify specific pathways that are frequently altered, pro-
viding direction for research of targeted therapies against
these tumors.
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