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Abstract

Motivation: Biomedical researchers often search through massive catalogues of literature to look

for potential relationships between genes and diseases. Given the rapid growth of biomedical

literature, automatic relation extraction, a crucial technology in biomedical literature mining, has

shown great potential to support research of gene-related diseases. Existing work in this field has

produced datasets that are limited both in scale and accuracy.

Results: In this study, we propose a reliable and efficient framework that takes large biomedical

literature repositories as inputs, identifies credible relationships between diseases and genes, and

presents possible genes related to a given disease and possible diseases related to a given gene.

The framework incorporates name entity recognition (NER), which identifies occurrences of genes

and diseases in texts, association detection whereby we extract and evaluate features from gene–dis-

ease pairs, and ranking algorithms that estimate how closely the pairs are related. The F1-score of

the NER phase is 0.87, which is higher than existing studies. The association detection phase takes

drastically less time than previous work while maintaining a comparable F1-score of 0.86. The end-

to-end result achieves a 0.259 F1-score for the top 50 genes associated with a disease, which per-

forms better than previous work. In addition, we released a web service for public use of the dataset.

Availability and Implementation: The implementation of the proposed algorithms is publicly avail-

able at http://gdr-web.rwebox.com/public_html/index.php?page¼download.php. The web service

is available at http://gdr-web.rwebox.com/public_html/index.php.

Contact: jenny.wei@astrazeneca.com or kzhu@cs.sjtu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent scientific discoveries have revealed the molecular, cellular

and genetic components of diseases. Researchers have gained many

new insights into cellular signaling pathways, genetic alterations and

their consequences. Combined with diagnostic breakthroughs, there

have been increasing efforts and successes in identifying patient seg-

ments defined by biomarkers that are more susceptible to certain

diseases or will maximally benefit from certain treatments.

Traditionally, oncology was the disease area where the majority of

such research was focused. However, in the last decades, there have

been considerable advancements in other disease areas, such as re-

spiratory diseases, infectious diseases and inflammatory diseases. All

of these new findings are contained in the vast amount of biomedical

literature. The effective extraction of gene–disease associations from

biomedical literature will potentially enable the discovery and devel-

opment of new therapeutic targets and patient segment biomarkers.
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However, it has remained a daunting task because of the massive

volume and the textual complexity of biomedical literature.

Given the strong demand for gene–disease relation extraction

from the biomedical literature, over the years ample studies have at-

tempted to tackle it or part of it. The task of gene–disease relation

extraction can be broken down into three phases. The first is gene

and disease recognition in free text, which can be categorized as a

Named Entity Recognition (NER) problem. Machine learning-based

methods are one of the approaches used to identify biomedical enti-

ties in free text. Settles (2004) proposed a conditional random field

model ABNER to recognize biomedical named entities based on

orthographic and semantic features. Ju et al. (2011) used SVM to

recognize biomedical named entities such as proteins and genes in

biomedical literature. There are rule-based and pattern-based meth-

ods as well. Hanisch et al. (2005) developed a rule-based method to

recognize genes and proteins in biomedical text. Collins and Singer

(1999) discussed the pattern-based method for name entity recogni-

tion in their work. In this phase, we used search engines to enrich

our disease/gene libraries. Previous efforts have been made to ac-

complish a similar task, including using the World Wide Web to en-

rich ontologies (Agirre et al., 2000), using search engine query data

to detect epidemics (Ginsberg et al., 2009) and using Google data as

a complement to co-occurrence frequency in the literature to identify

disease-related genes (Kim et al., 2015).

The second phase is to identify the relationships between genes

and diseases. A relationship between a gene–disease pair can include

but is not limited to therapeutic targets, prognostic factors etc. For

example, in the sentence ‘Our prospective findings suggest that indi-

viduals carrying the HFE C282Y mutation may be at increased risk

of CHD,’ a relationship between the gene ‘HFE’ and the disease

‘CHD’ is made clear. Kernel methods are widely used in relation ex-

traction (Bunescu and Mooney, 2005; Zelenko et al., 2003).

Recently, several systems have been proposed to identify drug-gene

relationships (Xu and Wang, 2012), drug–drug interactions (Percha

et al., 2012; Segura-Bedmar et al., 2011) and gene–disease relation-

ships (Bravo et al., 2015; Pletscher-Frankild et al., 2015; Ozgur

et al., 2008). Kim et al. (2010) has successfully implemented de-

pendency kernels to extract protein-protein interaction information.

The Shallow Linguistic Kernel is also used to extract drug–drug

interaction information (Segura-Bedmar et al., 2011).

The third phase is to rank the gene–disease relations obtained

from the previous phase in an intelligent manner. A frequency-based

ranking system is commonly adopted in earlier works. BeFree

(Bravo et al., 2015) ranks the relationships according to the fre-

quency of occurrence. Clematide et al. (2012) uses a logistic

regression-based method to optimize ranking of relations from cura-

ted abstracts.

There has been some work dedicated to the gene–disease relation

extraction problem, which is the end-to-end problem that we try to

solve in this paper. CoPub (Frijters et al., 2008) provides a text min-

ing tool that detects co-occuring biomedical concepts in abstracts

from the MEDLINE literature database. BeFree (Bravo et al., 2015)

can be used in a text mining workflow aimed at extracting informa-

tion on biological associations from scientific publications. But all

current work is limited both in coverage and ranking precision.

Herein, we present a framework for extracting gene–disease rela-

tionships from biomedical literature that addresses all three phases.

It takes large biomedical literature repositories and the name of a

gene or a disease of interest as inputs and produces a meaningful

ranked list of diseases or genes that are related to the input entity

with supporting evidence. In the NER phase, we implemented

an algorithm that combines dictionary-based fuzzy matching and

conditional random fields (CRF) to recognize genes and diseases in

free text. Next, we trained a SVM model combining lexical features

and syntactic features to identify the relationships between genes

and diseases. Finally, we proposed a ranking algorithm to rank

the disease-related genes based on co-occurrence frequency, paper

citations and author information.

2 Materials and methods

In this section, the data sources used in this work and the detailed

algorithms and methods designed for this framework will be

introduced.

2.1 Data sources
The data used in this work mainly include the gene/disease term

libraries, the biomedical literature database, the annotated data and

the ground truth.

2.1.1 Gene library

The gene library used in this study is a combination of three publicly

available gene/protein databases, namely the NCBI-gene database

(Brown et al., 2015), the HGNC gene dataset (Gray et al., 2015)

and the UniProt knowledge base (Uniprot Consortium, 2015), with

cross-references. NCBI-gene database contains almost all of the pub-

licly available nucleotide sequences and their protein translations.

By August, 2014, HGNC provided the names and symbols of 39

135 genes. UniProt is a comprehensive resource of protein sequence

and functional information. Since genes are sometimes named after

their protein names, UniProt is also used as a data source for gene

recognition.

The combined gene library has 60 197 genes. Each gene and

its synonyms were cross-referenced among all three data sources

mentioned above.

2.1.2 Disease term library

Disease Ontology (Mitraka and Schriml, 2015), MedDRA(The

Medical Dictionary for Regulatory Activities) (Brown et al., 1999),

UMLS (The Unified Medical Language System) (Bodenreider, 2004)

and IDDB (Infectious Disease Database) were cross-referenced to

yield the disease database used in this study. The disease term library

is hierarchical. If disease A belongs to a parent class B, an attribute

‘is a’ with the value being B will be attached to the disease A.

In total, the disease library includes 22 831 diseases. For each dis-

ease, the library includes its unique identifier, disease name, disease

synonyms, ID in each source disease database and its parent classes.

2.1.3 Biomedical literature database

The biomedical literature database used in this study is MEDLINE

(https://www.nlm.nih.gov/bsd/mms/medlineelements.html), the U.S.

National Library of Medicine (NLM) journal citation database.

It includes citations from more than 5600 scholarly journals, over 25

million references to biomedical and life science journal articles from

as early as 1946. The downloadable database contains 779 files in

the XML format in chronological order. Every piece of data contains

the PMID, the publication date, the author information, the citations,

etc. PubMed (http://www.ncbi.nlm.nih.gov/books/NBK25499/#chap

ter4.EFetch) provides retrieval APIs to MEDLINE.

2.1.4 Annotated data

In order to train and evaluate the methods and tools used in this

work, we gathered annotated texts containing a total of 2340
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positive disease-gene relationship labels and 1437 negative relation-

ship labels. 2113 of the positive labels and 1010 of the negative

labels are from Genetic Association Databases (GAD) (Becker et al.,

2004), a database of genetic association data from complex diseases

and disorders. Since GAD did not label all gene/disease entities con-

tained within a sentence, which will bias our NER training, many of

the data from GAD are re-annotated manually by domain experts

for gene entities, disease entities, positions of genes and positions of

diseases at the sentence level. The remaining training data are sen-

tences randomly selected from the biomedical abstracts in

MEDLINE. Gene entities, disease entities, positions of genes, pos-

itions of diseases and the relationships between genes and diseases

are manually labeled in each sentence.

2.1.5 Ground truth

Human annotated gene–disease associations for 10 randomly se-

lected diseases obtained from DisGeNET (http://www.disgenet.org/)

serve as our ground truth dataset. The diseases include Retinitis

Pigmentosa, Adrenal Gland Chromaffinoma, Bipolar I Disorder,

Hyperlipidemia, Papilloma, Thrombocytopenia, Glioblastoma,

Hernia Diaphragmatic, Brain Ischemia and Cerebrovascular

Accident. The ground truth is used to evaluate the end-to-end results

of a system.

2.2 Extraction workflow
To extract gene–disease associations from biomedical literature, we

aim to extract from MEDLINE triples of the format (disease; gene;

score). ‘Disease’ and ‘gene’ denote the unique identifiers of diseases

and genes respectively in our disease library and gene library. ‘Score’

refers to the plausibility of gene–disease associations. When the user

queries the relevant genes of a particular disease, the framework will

return the results based on ‘score’.

Specifically, to accomplish the goal, we first pre-process the data

from MEDLINE and obtain three kinds of information: (i) Title and

abstract of articles, (ii) author information and (iii) article reference

information. Then, the gene/disease recognition module processes

the titles and abstracts using both a Stanford NER tool (Finkel et al.,

2005) trained on 2000 annotated sentences (1000 from GAD and

1000 from our manually labeled data library) and a dictionary-

based longest match strategy using the gene and disease libraries.

Recognition results of the two methods are combined. In case of dis-

crepancies, heuristic rules are applied to resolve them. Next, in the

association detection phase, all recognized gene–disease pairs that

co-occur within the same sentence are considered as candidate evi-

dence. A binary SVM classifier, which extracts two types of features,

namely local lexical features and global syntactic features, is used to

determine the plausibility of the candidate pairs. Finally, positive

pairs are ranked by three methods. The basic method is counting the

co-occurrence frequency. The second method is to weigh each co-

occurrence by the PageRank of the paper from which the evidence

was extracted, in a paper citation network constructed from

PubMed. The last and most advanced method considers the dupli-

cated evidence published by the same author, and thus suppresses

the contribution of such evidence. Details of each part of the work-

flow will be presented in the sections below.

2.3 Gene/disease recognition
The gene/disease recognition task is an NER task where the entities

being recognized are genes and diseases. We brought up a hybrid

recognition method in this study. A CRF-based NER tool, namely

the Stanford NER tool (Finkel et al., 2005), is combined with a

dictionary-based longest match strategy.

The Stanford NER tool provides a general implementation of

(arbitrary order) linear chain CRF sequence models. It was trained

on 2000 annotated sentences from MEDLINE before being used to

recognize genes and diseases names in the titles and abstracts of art-

icles from MEDLINE. Recognized genes and diseases are then

mapped to the unique identifiers in the gene and disease libraries.

The Stanford NER is further enhanced in the following fashion. If a

gene or a disease recognized by the Stanford NER tool cannot be

found in the libraries, a web crawler will automatically query Bing

(https://www.bing.com/) to search for information that can relate

the gene/disease name to one of the unique identifiers. A gene/dis-

ease is added to the results only when it can be related to a unique

identifier. If a gene/disease that can be related to a unique identifier

is currently not in its synonym set, it will be added as a synonym.

Next, a dictionary-based longest match algorithm is imple-

mented using the gene and disease libraries as dictionaries. The lon-

gest match strategy uses a sliding window. A fixed-length window

slides within the sentence and the words within the window are

fuzzy matched to the items included in the gene and disease libraries.

The ‘fuzzy match’ strategy picks up both terms that are exact

matches and terms with small discrepancies in some punctuation or

singular/plural form. (For example, ‘lung type-i cell membrane-

associated glycoprotein’ is considered a match to ‘lung type i cell

membrane-associated glycoprotein’, and ‘benign gastric tumours’ is

considered a match to ‘benign gastric tumour’.) If the words covered

by the window are matched to a gene or a disease, they will be

marked to make sure that other matched words will not overlap

with them. When the window reaches the end of the sentence, the

window length is reduced by one, and the window resumes sliding

from the start of the sentence, until the length is zero.

The results of the two methods are combined and a number of

heuristic rules are applied to resolve possible discrepancies: (i) If a

term’s length is less than four characters, it is likely to be either an

acronym or an incorrect recognition. It will be treated as an acro-

nym if its longer synonym (complete form) occurs in the former con-

text. (ii) If a term with less than four characters does not have a

longer synonym occurring in the text before it, but it is recognized

by the enhanced Stanford NER, then it will be added to the final re-

sults. (iii) If a term is recognized by both the dictionary-based

method and the enhanced Stanford NER, the result of the enhanced

Stanford NER is used. The rationale is that the enhanced Stanford

NER takes advantage of web search engines, which encompasses

more knowledge and therefore is potentially more accurate in recog-

nizing named entities.

Genes and diseases may sometimes share the same synonyms.

Thus, a term may be mapped to several unique identifiers. However,

if a synonym of the term occurs in the previous context and the

synonym can be mapped to a specific unique identifier, the term will

be considered as belonging to the same unique identifier. Otherwise,

the term is mapped to each of the unique identifiers once.

Considering the hierarchies among genes and diseases, a term will

be mapped not only to its unique identifier, but also its parent class’s

unique identifier.

Gene–disease pairs recognized in this phase are considered candi-

date evidences for association between the gene and the disease.

2.4 Association detection
In this step, a binary SVM classifier is implemented to determine

the plausibility of association between a gene and a disease based on

DTMiner 3621

http://www.disgenet.org/
https://www.bing.com


the gene–disease pairs extracted from the previous step. Given a sen-

tence S¼w1,. . .,g,. . .,wi,. . .,d,. . .,wn, the classifier decides whether

there is a gene–disease relation between entities g and d.

The classifier utilizes two types of features, namely local lexical

and global syntactic features. The local lexical feature contains

words surrounding the gene or the disease terms in the original text.

The global syntactic feature, which contains unigrams, bigrams and

trigrams drawn from (i) the shortest path between the gene and the

disease terms in the dependency tree, and (ii) the path between

the least common ancestor (LCA) of the two terms and the root of

the dependency tree. The features are detailed in Table 1. Feature 1

is the local lexical feature and contains the context information of

the gene and the disease terms, while features 2 and 3 are the global

syntactic features and contain rich syntactic information from the

dependency tree. The lemmas and the dependency tree are generated

by the Stanford CoreNLP tool (Manning et al., 2014).

The effect of words with the part-of-speech (POS) tag ‘neg’ or

‘advmod’ that modify verbs is taken into account in feature extrac-

tion. (For example, the word ‘not’ in ‘does not relate with’ or the

word ‘rarely’ in ‘rarely indicates the association’ strongly implies

the negative association of a candidate pair.). Words with POS tag

‘neg’ or ‘advmod’ that modify verbs are included in the paths used

by global features. Besides, the gene and the disease terms in the

paths are replaced with the general names ‘GENE’ and ‘DISEASE’,

because specific gene/disease names do not contain information

concerning association detection (Fig. 1).

Take the following sentence as an example:

All three complementary approaches employed (family-based,

case-control and quantitative trait design) suggest a role for the

MAO A promoter-region polymorphism in conferring risk for

ADHD in our patient population.

In this sentence, ‘MAO A’ is a gene term and ‘ADHD’ is a dis-

ease name. A part of the dependency tree of the sentence is drawn in

Figure 2. ‘for’, ‘the’, ‘promoter-region’, ‘polymorphism’, ‘risk’, ‘for’,

‘in’ and ‘our’ are extracted for feature 1. From the shortest depend-

ency path between the gene and the disease terms, n-grams like ‘risk

for DISEASE’ and ‘in risk for’ are extracted for feature 2. The LCA

of the gene and the disease terms in the dependency tree is ‘suggest’.

N-grams including ‘suggest role for’ and ‘role for polymorphism’ are

extracted for feature 3.

After the features are extracted, libsvm (Chang and Lin, 2011) is

used to train the binary SVM classifier. The kernel function of SVM

grades the local lexical feature (i.e. feature 1) and the global syntac-

tic features (i.e. feature 2 and 3) and combines the scores linearly.

The features are treated as a bag of words. Every possible word or

n-gram is considered a dimension in a vector. If the feature contains

a particular word/n-gram, the value of the corresponding dimension

is set to one; otherwise, it is zero. The similarity between two in-

stances of features is quantified by the cosine value between vectors.

A set of positive gene–disease pairs along with the unique identi-

fiers of journal articles in which they co-occur are generated and

passed on to the next step.

2.5 Ranking
For a given disease, hundreds of positive gene–disease pairs are gen-

erated from the previous steps, and vice versa. The ranking of genes

for a particular disease and the ranking of diseases for a particular

gene is done using the following three ranking methods.

The basic ranking method uses the co-occurrence frequency.

Different pairs with the same disease are ranked by the number of

distinct journal article in which they co-occur.

The second method is to grant a weight to each co-occurrence

according to the PageRank of the journal article, in a paper citation

network constructed from PubMed. PageRank was proposed by

Larry Page and Sergey Brin (Page et al., 1999). It is used by Google

for website ranking. PageRank operates on the idea that the more

important a website is, the more websites will link to it. So it utilizes

the number and importance of websites that link to a given website

to assess the importance of this website, or the PageRank of the

website. In this study, we apply the principle of PageRank to the

task of publication citation. If a journal article is cited by more art-

icles and the articles that cite it are more influential, the article itself

is more influential and its PageRank is higher.

According to the reference information obtained from

MEDLINE, we first built a paper citation network, as shown in

Figure 3. Nodes in the network denote the journal articles, and the

Table 1. Features extracted for association detection

Feature Type Description

1 Local lexical

feature

Lemmas of the two words in front of the

gene term and the two words behind

the gene term, and lemmas of the two

words in front of the disease term and

the two words behind the disease term

2 Global syntactic

feature

Unigram, bigram and trigram of lemmas

on the shortest path between the gene

and the disease terms in the depend-

ency tree

3 Global syntactic

feature

Unigram, bigram and trigram of lemmas

on the path between the LCA of the

gene and the disease terms and the

root of the dependency tree

Fig. 1. Work flow of extracting gene–disease associations from MEDLINE

Fig. 2. Part of the Dependency Tree of sentence ‘All three complementary

approaches employed (family-based, case-control and quantitative trait

design) suggests a role for the MAO A promoter-region polymorphism in

conferring risk for ADHD in our patient population’

Fig. 3. Simplified paper citation network
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edge from node A to node B means that Paper A cites Paper B. Based

on the paper citation network, the PageRank of each node (i.e. each

article) is calculated.

When we get the PageRank of the articles, the following formula

is used to calculate the score of the gene–disease pair, where g de-

notes the gene, d denotes the disease, C(g,d) denotes the set of all the

articles that contain the (g,d) pair and pr(a) denotes the PageRank of

paper a.

Scoreðg; dÞ ¼
X

a2Cðg;dÞ

prðaÞ (1)

The third ranking method takes the authors into consideration.

Biomedical researchers, who focus on specific diseases or genes, may

write about the same gene–disease pair in multiple publications. For

instance, Mark J Sarnak mentioned the association between Kidney

Failure and Cystatin C in up to twelve distinct papers. They should

not be considered as twelve independent evidences. In the third

method, if a gene–disease pair is repeatedly mentioned by the same

author, the contribution of the duplicated evidence will be

suppressed.

We assume that the sum of weights an author can grant to differ-

ent evidences of the same pair is one. If an author mentions the same

pair in multiple publications, the weights of the evidence from each

of the publications is equal and sums to one. The weight of each

paper where the evidence of (g,d) is extracted is

wa g;dð Þ ¼
P

x 2 l 1
jcx j

jlj (2)

where l denotes the author list of paper a, jcxj denotes the number of

papers author x wrote about (g,d). Then we can modify the score

function of gene–disease pairs proposed in the formula (1).

Scoreðg; dÞ ¼
X

a2Cðg;dÞ

waðg; dÞ � prðaÞ (3)

The fourth method uses a PageRank function that is adjusted by

a time factor. This is based on the observation that recently pub-

lished papers may have ‘less exposure’ for citation than those pub-

lished before them. The time-weighted PageRank is defined as

below.

prðuÞ ¼ d
X

v2BðuÞ

prðvÞ
Nv
þ ð1� dÞ � Tu (4)

where Tu denotes a smoothed time factor related to each paper’s

year of publication. Disease gene pairs mentioned by the same au-

thor is also be suppressed in this method.

2.6 Significance testing
The micro sign test (Yang et al., 1999) is used to examine whether

the improvements in F1-scores are statistically significant. A one-

sided P-value that is less than 0.05 is considered as statistically

significant.

3 Results

The number of associations extracted by our method is shown in

Table 2. The number of associations extracted by our method is sig-

nificantly larger than Befree (Bravo et al., 2015). At the meantime,

the precision of our extraction is better than Befree, which is

detailed in Section 3.3.

3.1 Gene/disease recognition
First, we evaluated the Gene/Disease recognition module on 800

annotated sentences. In these 800 sentences, 592 diseases and 525

genes were labeled. The recognition results are shown in Table 3.

We found that Stanford NER tool has high precision but poor recall.

By combining it with dictionaries, our hybrid recognition method

has about a 0.125 enhancement on the F-score than the dictionary-

only method, which is similar to the method used by BeFree (Bravo

et al., 2015) and CoPub (Frijters et al., 2008). The F-score improved

about 0.014 (P<0.01) after we enriched our gene and disease dic-

tionary using Bing. Our method also performs much better than

ABNER (Settles, 2004) on these sentences.

3.2 Relation extraction
We evaluated the performance of the SVM classifier through 10-fold

cross validation on a training set with 2080 positive samples and

1277 negative samples. The result is shown in Table 4. We found

that the F-score can only reach 0.755 if we use the local lexical fea-

tures alone. However, if we use both the local features and the

global features, the SVM classifier achieves the best performance.

Due to the large volume of biomedical literature, computation

time becomes an important issue in the relationship extraction task.

A comparison between the state-of-art system BeFree and our work

is shown in Table 5. Although the F-score of our work is slightly

lower than that of BeFree, the training speed of the classifier and the

testing speed on 420 randomly selected instances of our work are

significantly (more than 10x) faster.

Table 2. Results of extracted associations compared to BeFree

Associations Genes Diseases

DTMiner 1 728 535 16 893 9950

BeFree 131 012 2803 2751

Bold text signifies the best performer in the column.

Table 3. Results of gene/disease recognition

Precision Recall F-score

ABNER 0.593 0.549 0.57

Only dictionary 0.839 0.659 0.738

Stanford NER tool 0.954 0.524 0.673

Before enriched by Bing 0.851 0.875 0.863

After enriched by Bing 0.87 0.885 0.877

Bold text signifies the best performer in the column.

Table 4. Results of gene/disease relation extraction

Feature Precision Recall F-score

Local Lexical Feathers 0.761 0.748 0.755

Global Syntactic Features 0.827 0.853 0.839

LocalþGlobal features 0.846 0.88 0.863

Bold text signifies the best performer in the column.

Table 5. Comparison of relation extraction performance

Framework F-score Training Time (s) Testing Time (s)

DTMiner 0.863 24 241

BeFree 0.898 384 4393

Bold text signifies the best performer in the column.
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3.3 Ranking
The ground truth is obtained from DisGeNET. We selected 10 dis-

eases and computed the mean reciprocal rank (MRR)of ranks ob-

tained by the three methods mentioned above. The result is shown

in Table 6. For most diseases, the suppressed PageRank achieves the

best performance. Overall, compared with the frequency-based

method, the MRR increased 10.6% if we weighted the paper with

PageRank score. And, after suppressing the contribution of the same

author, the MRR increased by 8.4% .

Then, we randomly chose five different diseases (cerebrovascular

accident, brain ischemia, hernia diaphragmatic, thrombocytopenia

and retinitis pigmentosa) and evaluated the top K ranking of our re-

sults. The result is shown in Table 7. If we select the top-50 genes,

the Suppressed PageRank method achieves the better result com-

pared with other methods. While K increases, the performance of

these four methods’ is similar. This is because when K increases,

most of the known disease-related genes are ranked on top. The

numbers of true positives, false positives and false negatives for the

Suppressed PageRank method are listed in the supplementary mater

ial, as well as some examples.

We also compared our results with BeFree (Bravo et al., 2015)

and Copub (Frijters et al., 2008). The results are shown in Figure 4.

In most cases, Suppressed PageRank results are about 0.03 higher

than CoPub and BeFree. In addition, our system extracts many

more genes associated with a specific disease. (cerebrovascular

accident: 1238 associated genes; brain ischemia: 1588; hernia

diaphragmatic: 266; thrombocytopenia: 1049; retinitis pigmentosa:

818) For example, we extracted 818 genes associated with retinitis

pigmentosa, while BeFree only extracts 193 genes (of which 142 are

in our results) and Copub extracts 179 genes (of which 124 are in

our results). Manual inspection of 40 of the 818 genes reveals that 34

of these associations are correct. This shows that our approach not

only achieves much better coverage, but also competitive accuracy.

3.4 Web-based service
The DTMiner web server is a gene–disease association discovery

platform using the U.S. National Library of Medicine (NLM) jour-

nal citation database, MEDLINE, as a data source. It is accessible

from the website: http://gdr-web.rwebox.com/public_html/index.

php. DTMiner allows user-friendly access to a gene–disease relation-

ship database. The associations between genes and diseases are rep-

resented in a bipartite graph and it permits both queries of genes

and diseases. For a disease (or gene) query, DTMiner will provide

multiple disease (or gene) choices ranked by the string similarity of

the users’ input. Next, the website displays all the genes (or diseases)

related to the users’ selection according to their relative weighted

PageRank. Further, a user can find the evidence of each disease-

gene pair (the papers where they co-occur) for further details. See

Figures 5–7 for example.

We also provide a URL for users to submit a query directly from

a program and return Json-encoded results to the program, which is

http://gdr-web.rwebox.com/public_html/get-disease.php for disease

and http://gdr-web.rwebox.com/public_html/get-gene.php for gene.

Please see http://gdr-web.rwebox.com/public_html/index.php?

page¼help.php for more details.

4 Discussion

In the named entity recognition phase, the dictionary-only method,

which is similar to the method BeFree (Bravo et al., 2015) and

Table 6. MRR results of different ranking methods

Disease Frequency-

based

PageRank-

based

Suppressed

PageRank

Weighted

PageRank

Retinitis pigmentosa 0.111 0.141 0.146 0.156

Adrenal gland

chromaffinoma

0.161 0.194 0.212 0.207

Bipolar I disorder 0.26 0.268 0.273 0.26

Hyperlipidemia 0.267 0.279 0.325 0.325

Papilloma 0.183 0.24 0.321 0.226

Thrombocytopenia 0.089 0.072 0.063 0.063

Glioblastoma 0.278 0.3 0.346 0.274

Hernia diaphragmatic 0.026 0.028 0.029 0.027

Brain ischemia 0.052 0.076 0.067 0.06

Cerebrovascular

accident

0.178 0.178 0.147 0.175

Overall 0.161 0.178 0.193 0.177

Table 7. F-score of top-K of the rankings

Top K Freq-Based PR-Based Weighted PR Sup-PR BeFree CoPub

K¼ 50 0.221 0.228 0.237 0.241 0.213 0.212

K¼ 100 0.236 0.235 0.230 0.238 0.214 0.211

K¼ 150 0.22 0.221 0.216 0.216 0.186 0.192

K¼ 200 0.196 0.196 0.201 0.197 0.167 0.175

Fig. 4. F-score of Top-K Rankings

Fig. 5. Search for lung disease

Fig. 6. Select the first choice
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CoPub (Frijters et al., 2008) used, shows an F-score of 0.738. We

achieved a 0.125 improvement on the F-score by combining the

Stanford NER tool with the dictionary-based method. The CRF

model behind the Stanford NER tool takes advantage of the

distribution information of words and thus compensates the

dictionary-only method. Incorporating the Internet search engine

further improved the F-score by 0.014, for that information from

the Internet enriched our gene/disease libraries.

In the relation extraction phase, we achieved an F-score of 0.863

using both the local lexical features and global syntactic features.

Using the local lexical features or the global syntactic features alone

gives a lower F-score, which indicates that, both the local and the

global features are effective and necessary. While the F-score of our

method is nearly as good as that of BeFree (Bravo et al., 2015), our

speed is more than 10 times faster. It is because we utilized fewer

but more representative features than BeFree so that we can achieve

this advantage in speed while maintaining the F-score.

In terms of the MRR results, the suppressed PageRank method

achieved the best overall performance. The PageRank-based method

increased the overall MRR by 10.6%. This is because our

PageRank-based method weighted the trustworthiness of each paper

according to the citation information. The suppressed PageRank

method further improved the overall MRR by 8.4%. This supports

our assumption that some authors wrote multiple papers about the

same gene–disease association and such behavior will falsely boost

the ranking of the aforementioned association in the PageRank-

based method. The same judgement on the performance of the four

ranking methods is given by the F-score results. Adding a time factor

in the PageRank function does not seem to improve the MRR. This

may suggest that cutting edge research get cited frequently despite

the short amount of time since publication.

Furthermore, our end-to-end results showed that our system ex-

tracted much more genes related to a given disease than BeFree

(Bravo et al., 2015) and CoPub (Frijters et al., 2008) did. This is due

to the large scale of our input and the good performance of our

NER method and relationship extraction method.

5 Conclusion

In this paper, we proposed a framework for the automatic extrac-

tion of gene–disease relation from biomedical literature. For the

gene and disease recognition, we built large gene and disease libra-

ries by combining and cross referencing existing biomedical know-

ledge bases. We enriched our dictionary by identifying new

synonyms using search engines. For association detection, we

designated effective features and built an efficient SVM classifier.

For the ranking, we considered the weight of papers and the other

contributions by the same authors and proposed three different algo-

rithms for ranking. In addition, we launched a web service for public

access to our results. Overall, our system created a disease-gene as-

sociation dataset that is several times larger than any previously re-

ported dataset of similar nature, achieved a good balance between

accuracy and computation time, and outperformed existing state-of-

the-art systems on similar tasks. The system has been made available

online for free public access, which will potentially enable the dis-

covery and development of new therapeutics and breakthrough in

diagnostics.
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