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ABSTRACT This study evaluated Mn concentration in the seeds of 120 RILs of lentil developed from the
cross “CDC Redberry” · “ILL7502”. Micronutrient analysis using atomic absorption spectrometry indicated
mean seed manganese (Mn) concentrations ranging from 8.5 to 26.8 mg/kg, based on replicated field trials
grown at three locations in Turkey in 2012 and 2013. A linkage map of lentil was constructed and consisted
of seven linkage groups with 5,385 DNA markers. The total map length was 973.1 cM, with an average
distance between markers of 0.18 cM. A total of 6 QTL for Mn concentration were identified using com-
posite interval mapping (CIM). All QTL were statistically significant and explained 15.3–24.1% of the phe-
notypic variation, with LOD scores ranging from 3.00 to 4.42. The high-density genetic map reported in this
study will increase fundamental knowledge of the genome structure of lentil, and will be the basis for the
development of micronutrient-enriched lentil genotypes to support biofortification efforts.
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Lentil originated in southwesternAsia and its seedshavebeen consumed
sinceprehistoric times.Theoriginof cultivated lentil is theNearEastArc
and Asia Minor (Muehlbauer and McPhee 2005). Lentils are grown
throughout the world, with production from Canada, India, Turkey,
and Australia providing most of the world’s supply (Ford et al. 2007).
Lentil seeds are an excellent source of manganese (Mn), yet deficiency
of this micronutrient affects 35% of children worldwide (Qaim et al.
2007).

Mn is an essentialmicronutrientwitha recommendeddaily intakeof
0.7 to 22.0 mg for adults (Santos et al. 2004).Mn health benefits include
development of normal bone structure, metabolism of bones, and pro-
motion of the necessary enzymes for bone health (Price et al. 2012). Mn
acts as a co-enzyme to assist metabolic activity in the body (Finkelstein
et al. 2007) and is involved in the synthesis of RNA, DNA, and proteins
(Xu et al. 2002). Other health benefits associated with adequate Mn

intake include the formation of joint tissues (Kannus 2000), proper
functioning of the thyroid gland and sex hormones (Soldin and Asch-
ner 2007), metabolism of carbohydrates and fats, and regulation of
blood sugar levels (Van den Berghe 2004). Adequate Mn is important
for brain function (Takeda 2003) and nervous system activity through-
out the body (Erikson and Aschner 2003). Symptoms of Mn deficiency
include skeletal abnormality, heart ailments (Witte et al. 2001), high
cholesterol (Davis et al. 1990), muscular contraction, poor visual and
auditory function, high blood pressure, tremors and shivers (Komaki
et al. 1999), severememory loss, and bonemalformation (Bourre 2006).

Plant-based dietaryhabits are the leading cause ofMndeficiencydue
to the low micronutrient density of foods, a problem that can be
addressed by biofortification, dietary diversification, or supplementa-
tion. For the past two decades, researchers have focused on biofortifi-
cation strategies (Zhu et al. 2007; Mayer et al. 2008; Blancquaert et al.
2014; Zou et al. 2014; Ates et al. 2016; Nakandalage et al. 2016; Aldemir
et al. 2017; Garcia-Casal et al. 2017; Giuliano 2017; Sharma et al. 2017).
Biofortification is a means of increasing the daily micronutrient con-
sumption of individuals who suffer from micronutrient malnutrition
(Bouis 2003). The goal of biofortification is to increase the concentra-
tion of micronutrients in the edible part of crop plants through plant
breeding (Carvalho and Vasconcelos 2013). Research on increasing the
concentration of minerals in seeds has largely focused on crops such as
maize (Oikeh et al. 2003; Gupta et al. 2015; Prasad et al. 2015), rice
(Gregorio et al. 2000; Gupta et al. 2015; Prasad et al. 2015; Nakandalage
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et al. 2016), wheat (Monasterio and Graham 2000; Garvin et al. 2006;
Gupta et al. 2015; Prasad et al. 2015), barley (Ma et al. 2004; Rodrigo
et al. 2013), and lentil (Ates et al. 2016; Aldemir et al. 2017). Identifying
the quantitative trait loci (QTL) that control the concentration ofMn in
lentils would aid in the development of biofortified cultivars through
the use of closely linkedmolecularmarkers, whichwould allow breeders
to screen and select for micronutrient dense genotypes. QTL control-
ling Mn uptake and identified using QTL analysis have been published
for cabbage (Wu et al. 2008), Lotus japonicus (Klein and Grusak 2009),
clover (Sankaran et al. 2009), canola (Ding et al. 2010), and Arabidopsis
(Willems et al. 2010). To date, however, no QTL controlling the con-
centration of Mn in lentil seeds have been identified. The objectives of
this study were to (i) determine the Mn concentration of lentil seeds
from recombinant inbred lines (RILs), (ii) calculate genetic variation of
Mn concentration among RILs, locations, and years, and (iii) identify
QTL controlling Mn concentration in lentil seeds.

MATERIALS AND METHODS

Soil analysis
Soil samples were collected from experimental fields in three loca-
tions in Turkey (Izmir, Adana, and Sanliurfa) to determine the
physical and chemical properties of each soil. Soil pH analysis (Black
1965), total soluble salt analysis (Richards 1954), texture analysis
(Bouyoucos 1955), organic matter analysis (Black 1965), CaCO3

analysis (Schlicting and Blume 1966), and macro- and micro-nu-
trient analysis (Bingham 1949; Pratt 1965; Lindsay and Norvell
1978) were carried out at the Department of Plant and Soil Science
at Ege University in Izmir, Turkey.

Plant materials
Apopulationof 120RILswasdeveloped fromthe cross “CDCRedberry”
(P1) · “ILL7502” (P2) and designated LR-8. P1 was developed from a
cross made in 1997 between CDC breeding lines 1049F3 / 819-5R. Line
1049F3 was derived from the cross 567-16 / 545-8. Line 819-5R was
derived from the cross 86-360 / (458-258G / (458-122 / C8L27- RC //
Precoz) F2) F1 (Vandenberg et al. 2006). P2 is a lentil cultivar released
in Bangladesh (Sarker et al. 1999). The LR-8 population was generated
by advancing F1 plants from the simple cross to the F2 generation, and
the RILs developed by single seed descent from the F2 to the F7 gener-
ation. The RILs were produced at the University of Saskatchewan,
Canada where resources for genetic and genomic studies of lentil have
been developed since 2001.

Micronutrient analysis and heritability
The RILs were grown in 2 years (2012 and 2013) in three different
locations in Turkey—Ege University Izmir (27�09’ E, 38�25’ N),
Cukurova University in Adana (35�18’ E, 37�01’ N), and Harran Uni-
versity in Sanliurfa (38�46’ E, 37�08’ N)—and placed with three repli-
cations in a randomized complete block design (RCBD) with three
factors (year, location, genotype) for micronutrient analysis. An atomic
absortion spectrometer (AAS) (Varian, SpectrAA 220/ FS, California,
USA) was used to estimate Mn concentrations in all seed samples.
Samples were prepared for analysis as per a previous study (Kacar
1972). Seed samples (2 g) were first washed with tap water and then
with pure water to remove surface contaminants. The washed seeds
were dried in a hot air oven at 65�. The dried samples were ground
using an analytic mill (IKA, A11, Staufen, Germany) and then each 2-g
ground sample placed into a 150-mL flask to which 24mL of 4:1 nitric:
percholoric acid were added to decompose the samples. All procedures
were performed with three replications. Spectrophometric readings for

totalMn concentrationswere converted tomg/kg concentration in seed
(Kacar 1972; Kacar and Inal 2008). To confirm the accuracy of the AAS,
standard Mn solutions (1.0, 2.0, 3.0, 4.0, 5.0 ppm) were analyzed to
form a calibration curve (r2 = 0.9999). Heritability (H) based on lentil
populationmeans was calculated with the formula H = [MSamong families

– MSyear�family]/MSamong families, where MS is the mean square
(Courtney et al. 2008).

Variance analysis
Analysis of variance (ANOVA) was used to determine variation in Mn
concentrations of the LR-8 RIL population grown in different years and
locations using TOTEMSTAT software (Acikgoz et al. 2004). Geno-
types were accepted as fixed while year and location were random.
Variation of year (Y) · location (L), Y · genotype (G), L · G, and
Y · L · G interactions were calculated and significance was accepted at
the P # 0.01 and # 0.05 levels.

DNA isolation
Young leaves from4-to6-week-oldseedlingofall lentil genotypesgrown
at the Izmir locationwere harvested andplaced in labeled aluminum foil
containers and then immediately placed in liquid nitrogen. Frozen leaf
samples were kept in a deep freezer (-86�) until analysis. GenomicDNA
from 120 RILs and the parents were extracted from frozen leaf tissue
using the Fermentas DNA Isolation Kit (Thermo Scientific, Hanover,
MD, USA). Purity of the DNA was confirmed on 1% agarose gel and
the purified DNA then quantified with a Qubit2.0 Fluorometer (Life
Technologies, US).

DArT analysis
DArTanalyseswere carried out followingAldemir et al. (2017). The raw
data for SNP discovery are presented as supplemental file 1 (File S1).

Linkage mapping and QTL analysis
JoinMap4.0 software described by Van Ooijen and Voorrips (2004)
was used for linkage mapping analysis. A maximum recombination
frequency of 0.50 and the kosambi function were used as options in
linkage mapping. Distorted markers were eliminated. MapQTL
version 6.0 (Van Ooijen 2009) was used for QTL analysis. The
effects and positions of QTL were determined following composite
interval mapping (CIM). The significant threshold was calculated
based on 1000 permutations at the P# 0.01 and# 0.05 levels (Van
Ooijen and Voorrips 2004), and QTL that passed the threshold
significance are reported. The proportion of observed phenotypic
variation explained due to a particular QTL was estimated by the
coefficient of determination (R2) using maximum likehood for
CIM.

Data Availability
File S1 contains SNP data. File S2 contains Mn phenotyping data.

RESULTS

Soil properties
Thephysico-chemical properties of soil samples from Izmir,Adana, and
Sanliurfa locations are presented in Table 1. Soil samples from all
locations were slighty alkaline, non-saline, and calcareous. Soil from
Adana had a loamy clay texture and soils from the other two locations
had a loamy texture. The bioavailability of Mn by plants from soil is the
degree to which an extractable solid-phase quantity is correlated with
measured tissue concentration, which is called available Mn (Lindsay
and Norvell, 1978). Available Mn contents were low for all three soils.
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Mn concentration in seeds of the LR-8 population
Mn concentrations in P1 and P2 of the LR-8 lentil population are
shown in Table 2. The overall mean Mn concentration in seeds of the
parents was 9.6 mg/kg for P2 and 27.6 mg/kg for P1. Mn concentra-
tions in seeds of the RILs of the LR-8 population varied from 8.5 to
26.8 mg/kg with a mean of 17.6 mg/kg. The highest concentration of
Mn was detected in RIL LR8-113. Heritability for Mn concentrations
was detected as 0.76 and 0.74 for 2012 and 2013, respectively (Table
2). This means that Mn accumulation in the seed is affected by ge-
netics rather than the environment. The frequency distribution of Mn
concentrations in seeds of the LR-8 population as a mean across three
locations and 2 years (Figure 1) shows that concentrations for the RIL
population were also continuous but with a near to normal binomial
distribution.

Variance analysis showed that Mn concentration in seeds among
RILs was significant at the P # 0.01 level. It was also statistically
significant among locations (Table 3). The effects of Y · L, Y · G,
L · G, and Y · L · G interactions were statistically significant. Geno-
types accumulated Mn in seed at different levels according to year and
location.

Construction of linkage maps
Missing data and the data showing segregation distortion were filtered.
After filtering, a total of 10,552 SNPs were developed through DArT.
Among them, 5,385 SNPs could be mapped in the lentil genome. The
LR-8 population was genotyped using the 5,385 SNP markers that
covered seven linkage groups (LG). LG1had the highest number (1,102)
of SNPs and LG6 the lowest (439) (Table 4).

Linkage group size and average distance between adjacent markers
are shown in Table 4. The smallest LG was LG7 (88.8 cM) and the
largest was LG2 (175.2 cM). The total map length was 973.1 cMwith an
average distance of 0.18 cM between adjacent markers (Figure 2).

QTL analysis of Mn
Six QTL, with LOD scores ranging from 3.02 to 4.42 and distributed
across three linkage groups (LG1, LG3, and LG7) (Figure 2), were as-
sociated with seed Mn concentration and explained between 16.1 and
24.1% of the phenotypic variation (Table 5). The largest number of QTL
regions for Mn concentration (3 QTL regions) were identified on LG3.

MnQTL3.1, located between 27.0-27.6 cM, was clustered with
24 SNP markers and explained 18.0% of the phenotypic variance.
MnQTL3.2 and MnQTL3.3, located between 56.6-57.7 cM and
114.6-124.1 cM on LG3, explained 22.4 and 21.6% of the phenotypic
variance, respectively. MnQTL3.2 clustered with 10 SNPs and
MnQTL3.3 contained 103 SNPs. LG7 contained only one QTL region
for Mn concentration. MnQTL7.1 was located between 2.3 and 7.7 cM
onLG7andexplained 16.1%of thephenotypic variance.Additive effects
of QTL regions of Mn are presented in Table 5.

DISCUSSION
Micronutrient malnutrition affects more than one-half of the total
human population, with children and women at the highest risk
(Ahmed et al. 2016). Biofortification aims to increase the total amount
of minerals in the edible parts of crops by increasing the concentration
of compounds, such as Mn, thus promoting their uptake by humans
(Graham andWelch 1996). The biofortification strategy for alleviating
this form of malnutrition is to increase the consistent daily intake of
food staples by all family members, especially children and women, and
to target the bridge between human nutrition and agriculture (Graham
et al. 1999).

Mn accumulation in seed was determined to be quantitatively
inherited in lentil. Supporting our results, previous QTL studies show

n Table 2 Minimum, maximum, and mean Mn concentration in
seeds of the LR-8 lentil population grown at Izmir, Adana, and
Sanliurfa in 2012 and 2013

Mn concentration (mg/kg)

Location Izmir Adana Sanliurfa

MeanYear 2012 2013 2012 2013 2012 2013

P1 25.5 29.3 24.0 32.1 27.5 27.1 27.6
P2 7.7 8.8 9.5 10.6 8.0 12.7 9.6
Minimum 7.7 10.8 7.5 9.2 8.0 9.0 8.5
Maximum 27.8 31.9 27.5 26.3 28.5 25.1 26.8
Mean 17.8 20.4 17.5 17.3 17.8 17.3 17.6
Mn heritability 2012 2013

0.76 0.74
Std dev 4.2 4.0

Figure 1 Frequency distribution of Mn concentration in lentil seeds of
120 RILs and their parents, averaged over three locations (Izmir,
Adana, and Sanliurfa) and 2 years (2012 and 2013).

n Table 1 Physico-chemical properties of soil samples from Izmir,
Adana, and Sanliurfa

Soil properties Izmir Adana Sanliurfa

pH 7.82 7.74 7.76
Total salt (%) 0.04 0.03 0.04
CaCo3 (%) 29.4 48.0 34.5
Organic matter (%) 1.86 1.29 1.96
Fine sand (%) 50.24 44.24 44.24
Silt (%) 28.00 26.00 32.00
Clay (%) 21.76 29.76 23.76
Texture Loamy Loamy clay Loamy
Total N (%) 0.06 0.05 0.05
Available P (mg/kg) 3.29 2.62 1.87
Available K (mg/kg) 417 116 485
Available Ca (mg/kg) 6,272 6,762 7,252
Available Mg (mg/kg) 554 170 430
Available Na (mg/kg) 220 307 20
Available Fe (mg/kg) 4.93 5.01 6.52
Available Zn (mg/kg) 0.73 0.45 1.05
Available Cu (mg/kg) 1.13 0.19 0.65
Available Mn (mg/kg) 5.30 4.61 8.07
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that Mn concentration of seeds is quantitatively inherited in cabbage
(Wu et al. 2008), Lotus japonicus (Klein and Grusak 2009), clover
(Sankaran et al. 2009), canola (Ding et al. 2010), and Arabidopsis
(Willems et al. 2010). Therefore, this study is also important with re-
spect to understanding the genetic nature of Mn accumulation in seed.
To date, no studies have identified QTL for Mn concentration in lentil.
Identification of the QTL associated with high Mn concentration in
lentil seeds could help select lines containing high Mn concentration in
lentil breeding programs. This type of knowledge can be used to de-
velop genetic strategies for molecular breeding to help increase the
micronutrient content of edible parts of the lentil plant. Increased
consumption of lentil with elevated levels of micronutrients could help
to overcome micronutrient deficiency (Cichy et al. 2009), and the large
variation in Mn concentration among the RILs could be the basis for
developing such a strategy (Beebe et al. 2000).

Mn variation
Mean Mn concentrations of seeds of RILs in the LR-8 population
grown at three locations in 2 years varied from 8.5 to 26.8 mg/kg and
represented a �threefold variation (Table 2). Previous reports indi-
cate Mn concentrations range from 11.5 to 16.2 mg/kg for lentil
landraces and from 11.5 to 15.4 mg/kg for lentil cultivars (Karaköy
et al. 2012). Mn concentrations reported by Karaköy et al. (2012) are
lower than those from the current study, which could be due to the
different genotypes they used as well as different soil chemical prop-
erties of their experimental field. Per capita global lentil consumption
is being increased rapidly and lentil fortification is a simple and
promising approach to help decreased Mn deficiency (Podder et al.
2018). The data show that the Mn concentrations we observed could
provide a significant amount of the required daily Mn from lentil in a
given meal. For example, daily cooked lentil dal (50g/day) contains
approximately 1 mg Mn (Mn concentrations in the current research
found as a mean of 17.6 mg/kg, Table 2) which falls into recom-
mended daily allowance (RDA) indicated by Santos et al. (2004)
(0.7 to 22.0 mg for adults). In previous studies, Mn concentration
was detected as a mean of 14 mg/kg in common bean seeds (Pinheiro
et al. 2010). TheMn concentration was ranged between 9.2 -14.6mg/kg
in pea, between 4.4 and 12.6 mg/kg in buckwheat (Beitane and Kru-
mina-Zemture 2017) and 16.8 mg/kg in seeds of chickpea (Kahraman
et al. 2017). Mn value detected in the currrent study was higher as
compared to other legumes.

The ANOVA for Mn concentration shows that location, year, and
genotype interactions are statistically significant (Table 3). Interactions
among genotypes, locations, and years are likely due to different envi-
ronmental conditions affecting the availability of Mn in the pool of soil
micronutrients available for plant uptake (Sankaran et al. 2009).

Linkage mapping
DArT analysis allowed the construction of high-density linkage maps
withavery largenumberofSNPs. In thecurrent study, theDArTmethod
generated 10,552 SNPs. Using this DArT approach on the parental RIL
populations, a total of 5,385 SNPs were mapped (Table 4). The amount
of data used for mapping purposes was similar to previous DArT anal-
ysis studies (Poland et al. 2012; Li et al. 2014; Han et al. 2016).

In this study, the linkage map of lentil consisted of seven linkage
groups with 5,385 SNPmarkers. The total map length (973.1 cM) in the
current study is shorter than for many previous lentil mapping studies,
e.g., 1,073 cM (Eujayl et al. 1997), 1,868 cM (Tullu et al. 2008), 1,396.3
cM (Tanyolac et al. 2010), 3,843 cM (Gupta et al. 2012), and 834.7 cM
(Sharpe et al. 2013). Recently, the lentil genomewasmapped with 1,784
markers (including SNP and SSR) covering a genome size of 4,060.6 cM
using genotype by sequencing (GBS) in RILs developed from “PI
320937” · “Eston” parents (Ates et al. 2016). On the other hand, a total
map length of 784.1 cM, which is close to our map length, was detected
using a few markers [100 Random Amplified Polymorphic DNA
(RAPDs), 11 Inter Simple Sequence Repeats (ISSRs) and 3 Resistance
Gene Analogs (RGAs)] (Rubeena et al. 2003). Another study con-
structed a genetic linkage map using 6 SSRs and 537 contigs covering
a genome size of 834.7 cM (Sharpe et al. 2013). Overall, the genetic map
in this study is more robust compared to previous QTL mapping
studies in lentil (Eujayl et al. 1997; Tullu et al. 2008; Tanyolac et al.
2010; Gupta et al. 2012; Sharpe et al. 2013).

The sevenmajor LGs constructed in the current study correspond to
the seven haploid chromosome number of lentil (Sharpe et al. 2013; Ates
et al. 2016). Differences in the estimated distances of both parental maps
may reflect differences in the recombination frequencies of both parents.
Putative causes for the difference between the two estimated parental
genome maps include marker distribution along the chromosome that
varies between parents, and male and female gametes that probably
display different recombination frequencies (Khadari et al. 2010).

QTL analysis of Mn
This study is the first to map QTL for Mn concentration in lentil seeds
and uses a larger number of SNPs than previous studies mapping the
lentil genome. P1 (CDCRedberry) is adapted to the northern temperate

n Table 3 ANOVA for Mn concentrations in seeds of LR-8 lentil
RILs grown at three different locations for two years

Mn concentration

Source of
Variation df

Mean
Square F

F prob.
5%

F prob.
1%

Block 2 4.1 2.4 ns 3.1 4.8
Year (Y) 1 55.7 31.6 �� 3.9 6.9
Location (L) 2 14.1 8.0 �� 3.1 4.8
Genoype (G) 119 306.0 173.4 �� 1.4 1.5
Y · L 2 18.5 10.5 �� 3.1 4.8
Y · G 119 3.1 1.8 �� 1.4 1.5
L · G 238 4.0 2.3 �� 1.3 1.4
Y · L · G 238 3.8 2.2 �� 1.3 1.4
Error 1246 1.765
General 1871

Coefficient of variation (CV)= 7.71%

df: degree of freedom. ns: not significant.
��: Significant at P # 0.01.

n Table 4 Characteristics of the linkage groups of the LR-8 lentil
population

Linkage
group

Length
(cM)

Number of
SNP

markers

Number
of SNP
markers

(%)

Average
distance
between

markers (cM)

LG1 151.8 1,102 20.5 0.13
LG2 175.2 676 12.5 0.25
LG3 167.7 940 17.4 0.17
LG4 169.2 835 15.5 0.20
LG5 102.5 849 15.8 0.12
LG6 117.9 439 8.1 0.26
LG7 88.8 544 10.1 0.16
Total 973.1 5,385 Average: 0.18
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Figure 2 Genetic linkage map for lentil derived from the cross P1 · P2. Left bar of the LGs is cM and the right bar is marker names. QTL for Mn
marked with red.
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zone, andwas the parent that had the highest seedMn concentration. A
totalof6QTLforMnconcentration in seedsof theLR-8populationwere
identifiedusingCIM.Thesewere distributedacross three linkage groups
in the LR-8 lentil population (Table 5).

In a study of QTL associated with Mn concentration in Lotus japo-
nicus (Klein and Grusak 2009) two QTL explaining 35.2% of the phe-
notypic variation were identified on chromosomes 1 and 2. Ten QTL
for Mn concentration were distributed across 8 chromosomes, with
LOD scores ranging between 3.34-6.55, explaining between 9.06 and
16.43% of the phenotypic variation in Brassica napa (Ding et al. 2010).
In other similar studies, six QTL for Mn concentration were found in
one of two wheat populations (Pu et al. 2013), two QTL were mapped
in soybean (Ramamurthy et al. 2014), and four QTL associated with
Mn concentration were identified in rice (Yu et al. 2015). Here, the
number of QTL detected was high; micronutrient accumulation in
seeds continues to be a complex process controlled by poly-genes
(Grusak and DellaPenna 1999).

For Mn in lentil seeds, six QTL were statistically significant, and the
phenotypic variation ranged from 16.1 to 24.1% with LOD scores of
3.02-4.42. QTL analysis of nutrient element accumulation in seeds of
other crops shows that the value for explaining phenotypic variation
typically ranges between 9.06 and 35.2% (Ding et al. 2010; Klein and
Grusak 2009; Yu et al. 2015). The value we found falls within the same
range, and our estimates of phenotypic variation of seed Mn concen-
tration in lentil were similar to those for canola (Ding et al. 2010) and
wheat (Pu et al. 2013).

Conclusions
The LR-8 lentil population studied here demonstrated large phenotypic
variation in terms ofMn concentrations in seeds.Mn concentrations in
lentil seeds were observed to be quantitatively inherited. DArT analysis
allowed the construction of high-density linkage maps with a large
number of SNPs. The QTL that were stable across 2 years and three
locations were unaffected by environmental conditions, and therefore
could be used in marker-assisted selection in lentil breeding programs.
We believe that this work is the first tomapQTL forMn concentrations
in lentil seeds. The discovery of QTL for seed Mn concentration could
have significant implications for biofortificationbreeding strategies. The
QTL analysis might help to resolve some of the complexity with respect
to Mn accumulation in lentil grain. RIL LR8-113, which contained the
highest Mn concentration, could be used as a parent in breeding
programs. The results of this study can be applied to the development
of lentil genotypes with higher Mn concentrations. The high-density
maps could increase fundamental knowledge of the genome structure of
lentil, help in future construction of physical maps, and serve as a basis
for map-based cloning in lentil.
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