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Abstract: Although automatic target recognition (ATR) with synthetic aperture radar (SAR) images
has been one of the most important research topics, there is an inherent problem of performance
degradation when the number of labeled SAR target images for training a classifier is limited. To
address this problem, this article proposes a double squeeze-adaptive excitation (DS-AE) network
where new channel attention modules are inserted into the convolutional neural network (CNN)
with a modified ResNet18 architecture. Based on the squeeze-excitation (SE) network that employs
a representative channel attention mechanism, the squeeze operation of the DS-AE network is
carried out by additional fully connected layers to prevent drastic loss in the original channel
information. Then, the subsequent excitation operation is performed by a new activation function,
called the parametric sigmoid, to improve the adaptivity of selective emphasis of the useful channel
information. Using the public SAR target dataset, the recognition rates from different network
structures are compared by reducing the number of training images. The analysis results and
performance comparison demonstrate that the DS-AE network showed much more improved SAR
target recognition performances for small training datasets in relation to the CNN without channel
attention modules and with the conventional SE channel attention modules.

Keywords: synthetic aperture radar (SAR); automatic target recognition (ATR); deep learning; con-
volutional neural network (CNN); channel attention; double-squeeze-adaptive-excitation network;
limited labeled data

1. Introduction

As the images from the synthetic aperture radar (SAR) can be acquired in all-weather
and day-and-night conditions, they are widely used for surveillance and reconnaissance in
the civil and military fields. As the numbers of operating SAR sensors and the images to be
interpreted have increased, automatic target recognition using SAR images (SAR-ATR) has
been one of the most important research topics in the last 30 years. According to [1], the
recognition methods for SAR-ATR are classified into three taxa: feature-based taxon, model-
based taxon, and semi model-based taxon. Among these, feature-based methods that
include the template matching [2,3] and the pattern recognition [4–9] have brought more
research attention in the SAR-ATR field. In recent years, deep learning-based methods such
as the convolutional neural network (CNN) have rapidly replaced conventional pattern
recognition methods as they dramatically improved the performances by automatically
learning the discriminative features for SAR target recognition. In most relevant studies,
excellent SAR target recognition performances were achieved by the combination of the
CNN and pattern recognition [10–13], extraction of multi-view features [14–16], adoption
of state-of-the-art deep learning network structures [17–22], fusion of feature maps [23],
data augmentation [24,25], and transfer learning [26,27].

Unlike optical images, SAR target images formed by electromagnetic scattering phe-
nomena are highly sensitive to changes in target poses or aspect angles. Therefore, in
order to construct the deep learning networks for SAR-ATR with high performances, it is
necessary to collect labeled target images with a variety of aspect angles and apply them to
the network training. In practice, however, the SAR measurement process has a high cost
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and targets of interest may be located in inaccessible areas. This means that the quantity of
the images would be limited to train the CNN and thus lead to performance degradation.
Several studies have concentrated on the improvement of target recognition performance
under this limited training data condition by approaching from a variety of perspectives.
For example, in [28], Lin et al. proposed convolutional highway unit networks (CHU-net)
that introduce adaptive gating algorithms to existing CNN structures. By designing an
ensemble network using two CHU-nets, its inference resulted in a recognition rate near 95%
using about 30% of training images. In [29], Zhang et al. applied the multi-view sequence
of SAR target images to a bidirectional long short-term memory (Bi-LSTM), which is a kind
of recurrent neural network (RNN). Based on multi-view image sequence data, compre-
hensive spatial features from Gabor filters with various directions and local binary pattern
encodings were combined for application to the multi-aspect-aware Bi-LSTM. The pre-
sented framework demonstrated robustness to limited labeled data situations. In [30], Cho
et al. developed the CNN with multiple feature aggregation based on the consideration
of SAR image characteristics. Starting from the common feature map from a sequence of
convolutional layers of CNN, it is separately operated with two different feature extraction
paths. Then, the output feature maps with different scales are aggregated into a composite
feature vector that is finally used for softmax classification. It showed a recognition rate
of more than 90% in the case of 20% of training images. Similar to the approach in [30],
Yu et al. presented the fusion of multi-scale feature maps derived from different layers
of the CNN in [31]. By augmenting an input SAR image using multi-scale convolutional
layers initialized by Gabor filters with different scales and directions, the resultant image
cube is then passed through the CNN whose output feature maps from different network
branches are combined before the classification process. It also achieved a recognition rate
of more than 90% for 20% of training images. More recently, some studies have introduced
new schemes for deep learning specialized to limited labeled data situations. In [32], Wang
et al. proposed the few-shot learning for semi-supervised learning where support and
query datasets of simulated SAR images help improve the recognition performance of
unlabeled real SAR images. However, this study assumed that in spite of limited labeled
data, other unlabeled data are relatively sufficient for guiding the decision boundary for
classification. Thus, this is beyond the scope of this article where the quantity of target
images for training is limited. In [33], Wang et al. proposed a few-shot learning scheme for
SAR ATR based on a CNN for embedding feature projection, and an enhanced loss function
for a hybrid method between inductive and transductive inferences. In [34], they proposed
another approach for the few-shot learning scheme where a new network structure based
on Bi-LSTM is applied to the feature map derived from the CNN. Apart from the few-shot
learning, methods for supplementing SAR target images have also been proposed, recently
aided by generative networks. In [35], Song et al. introduced zero-shot learning using
the virtual SAR target images from a generative adversarial network (GAN). In [36], Cao
et al. developed a label-directed GAN (LDGAN) based on the Wasserstein distance, and
generated more realistic SAR target images to help improve the recognition performance in
the situation of data shortage. Although they showed a promising potential in the case of
extremely limited training images, the performance for real measured SAR images needs to
be further improved. The aforementioned studies have dealt with the problem of limited
training data in SAR-ATR from the viewpoint of network structures, multi-view image
sequences, feature map fusion, and learning schemes, respectively.

From the viewpoint of network structures, this article proposes a double squeeze-
adaptive excitation (DS-AE) network to address the problem of limited training SAR target
images. The DS-AE network is a kind of deep learning network consisting of a basic CNN
such as a Residual Network (ResNet) [37] combined with the channel attention modules
particularly designed in this article. According to the fundamental idea of the ‘squeeze-
and-excitation (SE)’ network [38], which employs one of the most well-known channel
attention methods, the channel attention mechanism can selectively emphasize the features
useful for image classification and suppress the less useful ones included in the feature
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maps of the CNN. Due to this operation, the channel attention mechanism can have the
potential to enhance the power of the CNN for representing discriminative features of SAR
target images in spite of limited training data. However, because of two limitations of
the SE network, the DS-AE network proposed in this article aims to further enhance the
representation power of the SE network in the case of limited training images. First, in the
squeeze stage of the original SE network, the channel information explicitly modeled by the
global average pooling (GAP) operation suffers from drastic dimension reduction that may
cause degradation of channel interaction, as noted in [39]. Thus, the DS-AE network has a
double squeeze structure composed of one more fully connected layer (FC) for dimension
reduction and one more FC for dimension recovery. This double squeeze operation acts as
a ‘buffer’ that prevents a drastic change in the channel information and facilitates more
channel interactions by augmented FC operations. Second, in the excitation stage of the
SE network, the excitation vector is derived from the channel information activated by a
fixed nonlinear function. Even though the tendency of using a fixed activation such as
a rectified linear unit (ReLU) and sigmoid in the CNNs is highly common, introducing
learnable parameters to the activation functions can bring a positive effect on improving the
recognition performance, as noted in [40]. In this article, a new activation function referred
to as parametric sigmoid (Psig) is devised to raise the adaptivity of the excitation vector,
which is directly related to the discriminating capability of the feature map influenced by
the channel attention mechanism.

The main contribution of this article is twofold. First, to the best of the authors’ knowl-
edge, this article attempts to address the problem of limited training images for SAR-ATR
by the approach of channel attention in the CNN for the first time. Although a number of
studies have presented applications of attention mechanisms to the problems of SAR target
recognition [41,42], and SAR ship detection [43–45] in the meantime, the aforementioned
problem has not been discussed. Second, the SE network is further improved from a
network structural point of view by introducing the double squeeze operation and the
adaptive activation function in the excitation process. Their advantages can be summarized
as follows:

1. Double squeeze: It has been reported that drastic dimension reduction of the channel
feature vector can cause destruction of the direct correspondence between channels.
By inserting additional FCs and activation functions, the double squeeze operation
can prevent this drastic loss, thus leading to the enhancement of selective emphasis
on the channel information.

2. Adaptive excitation: Although existing channel attention methods use fixed activation
functions, such as the sigmoid, this article newly introduces the parametric sigmoid
whose translation and gradient are adaptively varied based on the dataset. By raising
adaptivity in the excitation process, further performance improvement is expected for
the limited training SAR images.

3. Combination: The main factors of the DS-AE network, double squeeze and adap-
tive excitation, are complementary to each other. This effect was verified in the
ablation study.

The remainder of this article is organized as follows. Section 2 explains ResNet18
modified for application to SAR-ATR as a basic CNN of the DS-AE network. In Section 3, a
new channel attention module of the DS-AE network is described based on a brief review
of the existing SE network. In Section 4, an ablation study using the moving and stationary
target acquisition and recognition (MSTAR) dataset, where only 25% of training images
are utilized for network learning, is performed with different network structures. Based
on this study, analyses on how the channel attention of the proposed network improves
the recognition performance are also provided. In Section 5, recognition performances are
presented for different situations of limited SAR training images of the MSTAR dataset.
Further comparison work with other previous studies is also briefly given in Section 5.
Finally, Section 6 provides a conclusion of this article.
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2. Basic CNN of DS-AE Network

In this article, a Residual Network with 18 learnable layers (ResNet18) is employed as a
basic CNN of the proposed DS-AR network. As described in [37], ResNet18 is characterized
by skip connections that provide robustness to gradient vanishing of the deep CNNs. Here,
this ResNet18 was modified for the application of SAR-ATR as follows:

1. The input size of the network was changed to 128 × 128 × 1 (height × width × channel)
considering the SAR target image as a kind of gray-scale image.

2. The receptive field of the first convolutional layer with respect to the input image was
changed from 7 × 7 to 3 × 3 considering the decreased size of the input image.

3. No pooling operation such as the max-pooling or the average-pooling was included
in this base CNN. Only convolutional operation with a stride of two was applied to
size reduction of the feature maps.

4. The number of nodes in the last FC was given as 10, which is the class number of the
MSTAR dataset collected under standard operating conditions (SOCs).

5. The pre-activation structure where the nonlinear activation (ReLU) is carried out
before the convolutional operation was adopted to impose the attention mechanism
onto the feature map from the residual connection, which is another path with convo-
lutional units located parallel to the skip connection.

The whole architecture of the modified ResNet18 is shown in Figure 1. For better
understanding of the network structure, the detailed layer composition of the input—first
convolutional part—first half part of stage 1 is shown on the left side of Figure 1.

Figure 1. Structure of the ResNet18 modified for SAR-ATR application. The above ResNet18 has 18 layers with learnable
parameters and 8 skip connections, identical to the original ResNet18. The main modifications are: the input size, the
receptive field size of the first convolutional layer, the number of nodes of the last fully connected layer, and the adoption of
the pre-activation structure.

In Figure 1, there are 18 layers with learnable parameters and 8 skip connections that
perform identity mapping by element-wise addition of the input feature map and the
output of the stacked layers, namely the residual connection. For the input image with
a size of 128 × 128 × 1, the first convolutional unit ‘conv 3 × 3 @64/s2p1+BR’ denotes
that a two-dimensional convolutional layer with a kernel size of 3 × 3, a kernel number
of 64, a stride of 2, and a zero-padding around the feature map (or input image) of 1 is
followed by ‘BR’ that represents a sequence of a batch normalization layer and a ReLU
nonlinear activation layer. By the zero-padding of the convolutional operation, the spatial
size (height and width) of the output feature map becomes the original one divided by
the stride number. The kernel number is directly related to the channel number of the
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output feature map. Thus, the output size of the first convolutional unit is 64 × 64 × 64,
and this principle can be applied to other convolutional units. Subsequent convolutional
units expressed by ‘BR+conv 3 × 3@C/s1p1’ have a different order of layer arrangement.
As the ReLU activation is performed before the convolutional operation, it is referred to
as the pre-activation. When investigating the overall network structure, there are four
stages where the spatial sizes and the channel numbers of the feature maps decrease and
increase, respectively. As shown in Figure 1, the first stage (stage 1) deals with the feature
map with a size of 64 × 64 × 64 and the last stage (stage 4) processes that with a size of
8 × 8 × 512. That is, for the stage number of n, the spatial size and the channel number are
27−n and 25+n, respectively. It is noted that the first convolutional layer in each stage has a
stride of 2 that is related to spatial size reduction of the feature map. After passing through
four stages, the input image is abstracted into a 512-element vector by the GAP operation,
and then becomes a 10-element vector by the FC. This vector whose element number is
the same as the number of SAR target classes of the MSTAR dataset is finally applied to
the softmax nonlinear function. In the training step, the cross-entropy loss is minimized
by the iterative comparison between the predicted vector from the softmax and the true
label vector of the training SAR target image. In addition, L2-regularization is included to
prevent the overfitting of network learning.

3. Channel Attention Module of DS-AE Network
3.1. Brief Review on SE Network

The SE network [38] is a network consisting of a basic CNN and SE channel attention
modules with a representative channel attention mechanism. As any type of the basic CNN
is available in the SE network, combining with ResNet18 is usually called SE-ResNet18.
The SE channel attention module shown in Figure 2 is composed of two main steps. The
first step is ‘squeeze’ where the input feature map with a size of M × M × C is encoded
into a C-element vector through the GAP operation and two FCs with two nonlinear
activations, ReLU and sigmoid. After computing the raw channel feature vector with a size
of 1 × 1 × C via the GAP, its size is reduced by the first FC with C/r nodes. After activation
with the ReLU, the channel feature vector is then recovered to its original size by the second
FC with C nodes. Then, the sigmoid function acts as the final activation to the recovered
channel feature vector to make an excitation vector with a size of 1 × 1 × C. For a reduction
ratio of r, there is no fixed rule for its selection, which is dependent on applications. This
article employs 16, as noted in the original paper of the SE network [38], where r of 16
was selected for balance between accuracy and complexity. Although r is less related to
accuracy, its large value can relieve complexity by decreasing the node number of FCs in
the SE channel attention module. The excitation vector resulting from the squeeze step can
be regarded as numerically modeling the relative importance of individual channels by
updating the parameters of two FCs. The second step is ‘excitation’ where the input feature
map is multiplied by the result of the squeeze step (excitation vector) along the channel
direction. Through this excitation step, the feature map channels with the discriminative
information useful for SAR target recognition can be emphasized and those with relatively
unimportant information are suppressed. In other words, ‘attention’ is performed by
concentrating the attention of the network learning on the feature map channels with more
important information. By this process, it is assumed that channel attention in the CNN is
expected to improve the SAR target recognition performance under the limited training
data as follows:

1. From the explanation of the SE network, the channel attention mechanism can enhance
the efficiency of the network learning by explicitly modeling the channel importance.
This can lead the network to search for more discriminative features helpful for SAR
target recognition.

2. In the situation of limited training data, it is readily predicted that the performance of
the network for target recognition becomes degraded especially for the SAR target
images, which is highly sensitive to target poses and aspect angles. Nevertheless,
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the channel attention mechanism is expected to better capture the common features
of target images belonging to the same category by the iterative learning of channel
importance modeling. This assumption served as a major research motivation of
this article.

Figure 2. Structure of the SE channel attention module. The input feature map is squeezed and
recalibrated via the global average pooling and two fully connected layers. Each fully connected
layer is followed by the activation functions, the ReLU and the sigmoid.

3.2. Proposed Channel Attention Module of DS-AE Network

Although the SE network showed the enhanced representation power of the CNN in
a number of relevant studies, each step of the channel attention process in the SE network
has its own drawback to be improved. Thus, as described below, this article proposes
a new channel attention module aiming to overcome the limitations of the existing SE
network. Figure 3 shows the proposed channel attention module with the structures of
double squeeze (DS) and adaptive excitation (AE). The DS is performed by the first eight
layers (from the global average pooling layer to the fourth FC) and then derives a channel
feature vector with a size of 1 × 1 × C. The AE starts from the application of the channel
vector to the parametric sigmoid. Then, the activated channel vector, namely the channel
excitation vector, is used for excitation of the input feature map by multiplying it along the
channel direction.

In the squeeze step of the SE channel attention module, the channel feature vector
derived from the GAP operation to the input feature map is compressed into a vector
reduced by 1/r times in the number of elements. In the feature map, the interaction
between its adjacent channels plays a role of providing discriminative information on
image classification. However, as discussed in [39], it has been reported that this drastic
dimension reduction of the channel feature vector may cause destruction of the direct
correspondence between channels and lead to a decrease in the channel attention effect.
To cope with this problem, the method without any dimensionality reduction based on
the one-dimensional convolution was presented in [39]. Another method that circumvents
the dimensionality reduction problem via the all-convolutional channel attention module
was proposed in [42]. This article selects a different approach to gradually reducing and
recovering the dimension of the channel feature vector by inserting two more FCs. As
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shown in Figure 3, the raw channel feature vector (1 × 1 × C) from the GAP is reduced
into a C/r-element vector through the double FCs. Among these double FCs, the first
one has 2C/r nodes to mitigate drastic loss in the channel information and the second
one has the same number of C/r nodes as the node number of the single FC in the SE
network. The gradually compressed vector with a size of 1 × 1 × C/r is then recovered to
the original size in the reverse order of the previous reduction process. For activation of
these vectors, the ReLU layer is located between each FC similar to the original SE network.
In summary, the structure of ‘double squeeze’ is employed in the channel attention module
of the proposed network to prevent drastic dimension reduction of the channel vector and
to facilitate more interactions between channels by the augmented FCs.

Figure 3. Structure of the channel attention module of the DS-AE network. It has the double squeeze
structure implemented by four sequential fully connected layers where each one is activated by the
ReLU except for the last one followed by the parametric sigmoid with more adaptivity compared to
the original sigmoid.

Just before the excitation step of the SE channel attention module, the excitation vector
directly applied to the input feature map is calculated from a fixed nonlinear activation
function, which is the sigmoid, as presented in Figure 2. In most of the studies dealing
with CNNs for image classification, there is a general tendency to use activation functions
with fixed parameters. However, the introduction of additional learnable parameters to the
activation functions can bring a positive effect on improving the recognition performance
by increased adaptivity. In [40], thanks to a new variant of ReLU referred to as parametric
ReLU (PReLU) whose learnable parameters control the gradient in the negative input do-
main, the ‘PReLU-Net’ became the first one to surpass the human-level image classification
performance for the ImageNet dataset [46]. Motivated by this result, this article devises
another new activation function, ‘parametric sigmoid (Psig),’ to raise the adaptivity of the
excitation vector. The Psig adds two more learnable parameters a and b that have influences
on the gradient and the translation of the original sigmoid (Figure 4) as follows:

eax

b + eax (1)
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Figure 4. Shape of the parametric sigmoid (a) for different values of a and fixed b as 1, and (b) for
different values of b and fixed a as 1. Note that both a and b are adaptively determined during the
network learning process. When both a and b are 1, the parametric sigmoid is degenerated into the
original sigmoid.

In this article, the channel attention modules of the SE network and DS-AE network
were inserted right before stage 1 and into element-wise addition layers of the basic CNN
(modified ResNet18 in Section 2), as marked with the red dotted lines in Figure 1. It
is noted that the channel attention modules were not inserted in the last stage of the
basic CNN, as little performance improvement was expected for a feature map with the
relatively large number of channels, as compared with the increase in the number of
network parameters [38]. This is because, in the last stage, the excitation vectors from
the channel attention module show weak or saturated responses that have less selective
emphasis on channel information. By contrast, the last stage has a relatively large number
of nodes, leading to a significant increase in the network complexity.

4. Ablation Study

In this section, the ablation study was carried out by applying the MSTAR dataset of
SAR target images to five different types of networks listed below:

1. Basic CNN without any channel attention modules;
2. Basic CNN with SE channel attention modules (SE network);
3. Basic CNN with SE channel attention modules whose squeeze operations are replaced

by the double squeeze operations (DS-E network);
4. Basic CNN with SE channel attention modules whose activation functions for com-

puting the excitation vectors are replaced by the parametric sigmoid (S-AE network);
5. Basic CNN with channel attention modules combined with 3 and 4 (DS-AE network).

4.1. MSTAR Dataset

The MSTAR public dataset acquired from the MSTAR project led by U.S. Air Force
Research Laboratory (AFRL) is a well-known benchmark dataset for SAR-ATR of ground
military targets. With the MSTAR dataset, most related studies developed their ATR
algorithms. This article also used this dataset with 10 targets collected under the standard
operating conditions, as summarized in Table 1. The targets were classified as several
categories as follows: the tracked armored personnel carrier (BMP2), the wheeled armored
personnel carrier (BTR70, BRDM2, and BTR60), the main battle tank (T72 and T62), the
self-propelled howitzer (2S1), the anti-aircraft gun (ZSU234), the truck (ZIL131), and the
bulldozer (D7). The SAR target images measured from a 17◦ depression angle were used
to train the networks, and those from a 15◦ depression angle served as the test images
applied to the evaluation of the trained networks. The optical images of these targets and
corresponding SAR target images are depicted in Figure 5.
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Table 1. Information on the SAR target images of MSTAR dataset collected under SOC.

Target Type Serial Number Training Images Test Images

BMP2 9563 233 196
BTR70 C71 233 196

T72 132 232 196
BTR60 k10yt7532 256 195

2S1 b01 299 274
BRDM2 E71 298 274

D7 92v13015 299 274
T62 A51 299 273

ZIL131 E12 299 274
ZSU234 D08 299 274

Figure 5. Optical and SAR images of 10 targets in the MSTAR dataset.

As in the previous studies, only a fraction of the training images were used to simulate
the situations of the limited training data. Here, ‘training ratio’ is defined as the ratio of the
used training SAR target images to the whole training set. For example, when the training
ratio is given as 50%, only half of the training images of each target class are randomly
chosen and utilized for network learning. Note that all the test images were used for
evaluation of the recognition performances.

4.2. Ablation Study with 25% of MSTAR Training Images

In the ablation study, five different types of network structures were evaluated with the
MSTAR dataset described earlier. Each network structure (basic CNN, SE network, DS-E
network, S-AE network, and DS-AE network) was trained with 25% of the training images
of the MSTAR dataset. The recognition rate defined as the percentage of the test image
correctly classified in the entire test dataset was employed as the evaluation metric. The
networks were implemented using the Deep Learning Toolbox of MATLAB 2019b software,
and they were trained from scratch based on the hardware with an Intel Xeon E5-2660 CPU
and NVIDIA Geforce GTX 1080 GPU. The number of training images in a mini-batch is 32,
and with this mini-batch scheme, stochastic gradient descent with momentum (SGDM) is
adopted to minimize the cross-entropy loss of supervised learning. The image in a mini-
batch are shuffled every epoch, which is the number of times the whole batch of the training
images has been used during training. For a maximum epoch number of 200, the initial
learning rate that determines the step size of the loss minimization is provided as 0.001,
dropping by 50% at a period of 50 epochs based on the heuristic learning schedule. For
data augmentation, the training images initially reduced to 25% are augmented by simple
random pixel translations along the height and the width directions. It is noted that more
sophisticated data augmentation methods such as noise addition and attributed scattering
centers manipulation can be used for robust network training [24,47]. Considering that the
SAR target images can be affected by uncertainty, several fuzzy preprocessing techniques
used in other graphics fields may be required [48–50], although it is beyond the scope of
the article focusing on the network structure.

Table 2 shows the result of the ablation study in terms of the recognition rates and
the numbers of learnable parameters for five network structures. The SE network showed
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a recognition rate 8.6% larger than that of the basic CNN (modified Resnet18 with no
channel attention). The DS-E network and the S-AE network exhibited slightly increased
recognition rates. However, their combination, namely the DS-AE network, showed the
much more improved recognition rate of 95.4%. It has been shown that two structural
changes of double squeeze and adaptive excitation are complementary to each other and
thus show a synergistic effect that is reviewed in the next subsection. In terms of the
network size and efficiency, the parameter number of the DS-AE network increased by just
0.45% compared to that of the basic CNN and 0.27% compared to that of the SE network,
respectively. For the training time, the networks with channel attention modules were
inevitably time-consuming owing to the back-propagation training process through the
increased layers that need high memory usage. However, there was little difference in
inference time per one test image. Tables 3–5 show the confusion matrices with the detailed
recognition results from the basic CNN, the SE network, and the DS-AE network. In the
confusion matrix, each row denotes the actual target class, and each column represents
the target class predicted by each network structure. ‘Pcc’ denotes the recognition rate
of correct classification with respect to each target class and the whole classes. Several
observations from these confusion matrices are listed as follows:

1. When the training ratio was given as 25%, numerous BMP2 target images were
misclassified as the T72 target in the case of the basic CNN. This kind of phenomenon
appears to originate from the resemblance between target configurations of BMP2
and T72, as discussed in [22]. When the channel attention modules were applied
to the basic CNN, this problem was mitigated and was further improved in the
DS-AE network.

2. In the results from the basic CNN and the SE network, a number of BTR60 target
images were confused by BTR70, which was included in the same category of the
wheeled armored personnel carrier. However, by the enhanced representation power
of the proposed DS-AE network, the number of misclassifications of BTR60 target
images was substantially decreased.

3. Although ZIL131 was the only target included in the category of trucks, a number
of its target images were misclassified independently of categories, such as 2S1 (self-
propelled howitzer), T62 (tank), and ZSU234 (anti-aircraft gun). The SE network was
still confused in classifying between ZIL131 and T62. However, the DS-SE network
showed more improved results in the classification of this target. In addition, for the
D7 target, which was the only one included in the category of bulldozers, the DS-SE
network had more discrimination capability in relation to the other two results in
Tables 3 and 4.

4. Directly compared to the SE network and the DS-AE network, the latter showed
higher or equal performances than the former for eight targets except for two targets,
2S1 and BRDM2. In the authors’ opinion, this misclassification of 2S1 may be caused
by the fact that the appearance of 2S1 approximately resembles those of tanks, and its
main body is built based on the armored personnel carriers. Thus, the DS-AE network
is somewhat vulnerable to distinguishing 2S1 target images.

Table 2. Result of the ablation study with 25% of MSTAR training images.

Network
Structure

Recognition
Rate

Parameter
Number

Training
Time

Inference
Time

Basic CNN 85.70% 11.18 M 35 min 1.81 ms
SE network 94.23% 11.20 M 146 min 2.08 ms

DS-E network 94.40% 11.22 M 171 min 2.16 ms
S-AE network 94.64% 11.20 M 160 min 2.12 ms

DS-AE network 95.42% 11.23 M 189 min 2.18 ms
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Table 3. Confusion matrix of the recognition result from the basic CNN related to Table 2.

Class BMP2 BTR70 T72 BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU234 Pcc (%)

BMP2 145 6 24 8 8 2 0 1 1 1 73.80
BTR70 4 169 2 9 8 3 0 1 0 0 86.22

T72 6 1 178 0 2 0 0 6 1 2 90.82
BTR60 0 15 2 167 0 1 3 5 0 2 85.64

2S1 0 10 0 17 222 1 0 21 3 0 81.02
BRDM2 23 0 0 3 9 230 0 0 6 3 83.94

D7 0 0 0 0 0 0 263 1 4 6 95.99
T62 0 0 4 2 1 0 2 237 5 22 86.81

ZIL131 0 0 1 0 14 2 3 16 204 32 74.45
ZSU234 0 0 0 0 1 0 5 1 3 264 96.35

Total 85.70

Table 4. Confusion matrix of the recognition result from the SE network related to Table 2.

Class BMP2 BTR70 T72 BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU234 Pcc (%)

BMP2 176 4 7 3 5 0 0 1 0 0 89.80
BTR70 4 185 1 5 1 0 0 0 0 0 94.39

T72 3 1 186 0 3 0 0 1 0 2 94.90
BTR60 1 14 12 163 1 0 0 0 0 4 83.59

2S1 0 4 7 0 259 0 0 3 1 0 94.53
BRDM2 1 0 0 0 1 272 0 0 0 0 99.27

D7 1 0 0 0 0 0 261 0 1 11 95.26
T62 0 0 2 0 1 0 0 264 0 6 96.70

ZIL131 1 0 0 0 6 1 1 15 247 3 90.15
ZSU234 0 0 0 0 0 0 1 0 0 273 99.64

Total 94.23

Table 5. Confusion matrix of the recognition result from the DS-AE network related to Table 2.

Class BMP2 BTR70 T72 BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU234 Pcc (%)

BMP2 184 0 4 1 5 1 0 1 0 0 93.88
BTR70 4 185 2 4 0 1 0 0 0 0 94.39

T72 2 0 186 0 1 0 0 4 3 0 94.90
BTR60 2 7 4 175 1 0 0 0 0 6 89.74

2S1 4 4 1 1 248 2 0 7 7 0 90.51
BRDM2 2 0 0 0 1 270 1 0 0 0 98.54

D7 0 0 0 0 0 0 268 0 2 4 97.81
T62 0 0 2 0 1 0 0 267 1 2 97.80

ZIL131 0 0 0 0 3 0 2 9 258 2 94.16
ZSU234 0 0 0 0 0 0 0 0 0 0 100.00

Total 95.42

The most remarkable points of this ablation study can be summarized as follows:

1. The approach of the channel attention mechanism in the CNN has high potential in
solving the problem of performance degradation in the case of limited training data.

2. The DS-AE network shows further improved recognition performance in relation to
the existing SE network by its squeeze structure and adaptive excitation.

4.3. Further Analyses of Ablation Study

In this subsection, further works are presented for more in-depth analyses of why
the proposed network improves the recognition performance using the class activation
maps [51], and channel-wise activation maps [22,41]. The learned parameters of Psig
controlling the original sigmoid shape and the effect of double squeeze and adaptive
excitation on the excitation vectors are also discussed.
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4.3.1. Analysis with Class Activation Maps

Figure 6 shows the class activation maps of two example test images to give more
insight into the classification performed by the networks. The class activation map is
a useful tool for explainable artificial intelligence and helps identify which part of the
SAR target image is responsible for the classification result. The first column describes
the original SAR target images of T72 and BMP2 targets. From the second to the fourth
columns in Figure 6, the class activation maps from three network structures trained
with 25% of training images are overlapped with the SAR target images. In the first row
exhibiting the test SAR target image of T72, the strong part of the class activation map from
the basic CNN is deviated from the central target region, and thus the shadow region is
mainly attributed to the classification result. The maps from the networks with the channel
attention mechanism show a higher concentration on the target part. In the case of the SE
network, however, the map is widespread throughout the image including the background
region. This means that not only the target region but also the background contributes
to the classification result. In several studies [17,52], the recognition performances were
evaluated using the images with only target regions segmented to exclude the effect of
the background region. On the contrary, the DS-AE network yields a class activation
map more focused on the target region. For the second row of the BMP2 target, the map
from the DS-AE network shows a high concentration on the target region and the shadow
region that are both used for classification. In contrast, the other two networks yield maps
deviated from the target region or widespread throughout the image, including the part
unrelated to the target signature. This analysis using the class activation maps indirectly
demonstrate that the DS-AE network has the advantage of SAR target recognition for
limited training data.

Figure 6. SAR target images and class activation maps of T72 (1st row) and BMP2 (2nd row).

4.3.2. Analysis with Channel-Wise Activation Maps

For further analysis of the channel attention effect on performance improvement,
channel-wise activation maps, the feature maps sliced along the channel direction, were
compared for three different networks, as shown in Figures 7 and 8. Note that due to space
limitations, only the 16 strongest maps out of 64 channels at the end of the stage 1 (basic
CNN in Figure 1) are provided for the target images used in the previous subsection. It
is also noted that a more intuitive observation is possible in the shallow stage with a low
degree of feature abstraction.

For all the networks trained with 25% of SAR training images, the channel-wise
activation maps from the basic CNN (Figures 7a and 8a) show relatively weak responses
from the target part of the image, while the other maps affected by channel attention exhibit
more apparent activation appearances. From the maps in Figures 7b and 8b, the channel
attention modules in the SE network enhance the responses from the target regions and
those from the shadow regions, particularly in Figure 8b. This emphasis on the shadow
region can be related to the distribution of the class activation map observed in Figure 6.
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Although the shadow responses are suppressed compared to the maps from the SE network,
those from the DS-AE network show much stronger target responses related to further
improvement of the recognition performance. This characteristic will be beneficial to other
datasets of SAR target images where accurate identification of the shadow regions is not
available. One more peculiar observation from the above channel-wise activation maps
is that the weakest one of the 16 maps from the DS-AE network appears to be nearly
blank. As discussed in [41], this indicates that the channel attention modules in the DS-
AE network emphasize the important features and suppress the less useful ones more
selectively than the original SE channel attention modules. The comparison of channel-wise
activation maps provides additional evidences to support that channel attention is effective
for improving the SAR-ATR performance under the condition of training data restricted
to 25%.

Figure 7. 16 strongest channel-wise activation maps of T72 SAR target image. (a) Activation maps from the basic CNN;
(b) activation maps from the SE network; (c) activation maps from the DS-AE network.

Figure 8. 16 strongest channel-wise activation maps of BMP2 SAR target image. (a) Activation maps from the basic CNN;
(b) activation maps from the SE network; (c) activation maps from the DS-AE network.

4.3.3. Discussion on the Learned Parameters of Psig

The parametric sigmoid (Psig) with two learnable parameters is defined for each
element of the channel excitation vector. For example, at stage 1 of the network where a
feature map has 64 channels, 64 Psigs have their own learned parameters a and b related to
the gradient and the translation of the original sigmoid. In this subsection, the additional
parameters of Psigs are checked after network learning of the DS-AE network. For the
shape of the original sigmoid shown in Figure 9a, the shapes of the Psigs corresponding
to the channels of the eight strongest responses (red lines) and eight weakest responses
(blue lines) for the input test image of T72 are shown in Figure 9b–d. Figure 9b–d present
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the Psigs at the end of stage 1, stage 2, and stage 3 of the DS-AE network, respectively. As
mentioned before, there is no Psig in stage 4. From Figure 9, all the Psig have different
shapes from that of the original sigmoid by additional parameters to be learned. The most
remarkable observation is that the ‘red’ Psigs shows more different aspects of shapes in
relation to the ‘blue’ Psigs. Thus, it is assumed that the channels with the strong target
responses have Psigs whose parameters change the original sigmoid to a greater extent.
Figure 10 for the input test image of BMP2 presents a similar trend between the Psigs of
strong and weak channel responses. The discussion of the parameters of Psig illustrates
the adaptivity of the excitation process carried out in the DS-AE network.

Figure 9. Shapes of the original sigmoid and the parametric sigmoids for the test image of T72 input to the DS-AE network
learned by 25% of MSTAR training images. The red and blue correspond to the parametric sigmoids of channels with strong
and weak responses, respectively. (a) Original sigmoid; (b) parametric sigmoids of stage 1 in the basic CNN; (c) parametric
sigmoids of stage 2 in the basic CNN; (d) parametric sigmoids of stage 3 in the basic CNN.

Figure 10. Shapes of the original sigmoid and the parametric sigmoids for the test image of BMP2 input to the DS-AE
network learned by 25% of MSTAR training images. The red and blue correspond to the parametric sigmoids of channels
with strong and weak responses, respectively. (a) Original sigmoid; (b) parametric sigmoids of stage 1 in the basic CNN;
(c) parametric sigmoids of stage 2 in the basic CNN; (d) parametric sigmoids of stage 3 in the basic CNN.

4.3.4. Investigation into Excitation Vectors from Double Squeeze and Adaptive Excitation

In this last subsection, the channel excitation vectors from the output of the respective
stages of the DS-AE network are investigated to analyze the effect of double squeeze and
adaptive excitation on channel attention. Figure 11 shows the excitation vectors with the
double squeeze operation only and with both double squeeze and excitation when the
input test image of BMP2 target is applied to the DS-AE network. For the output from
stage 1 shown in Figure 11a, the vector only with double squeeze (blue line) has values
generally less than those of the vector with the single squeeze in the SE network (red
line). In Figure 11b, depicting after adaptive excitation by the Psig, the difference between
the emphasized and suppressed values becomes more discernible in the excitation vector
from the DS-AE network (red line) than that from the original sigmoid of the SE network
(blue line). The excitation vector from the SE network is just shifted to the response range
between 0 and 1 by the original sigmoid. This observation result is closely related to the
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results of channel-wise activation maps. For the output from stage 2 shown in Figure 11c,d,
the vectors from the DS-AE network (blue lines) present more discrimination capability
between the channels in the case both before and after adaptive excitation. It is assumed
that the double squeeze operation of this stage is relatively important for improving the
SAR target recognition performance. For the output from stage 3 shown in Figure 11e,f,
however, it is difficult to find the remarkable difference between the excitation vectors
from the DS-AE network and the SE network. As discussed in [38], this observation is
in accordance with the fact that small performance improvement is expected by channel
attention for the feature map with a number of channels. In summary, the investigation into
the excitation vectors can support the complementary and synergic relationship between
double squeeze and adaptive excitation. When the double squeeze operation derives the
vector with good discrimination between important and unimportant channel features, the
resultant excitation vector from the Psig can have a more improved selectivity of channels.
In contrast, if the double squeeze operation yields small responses, the adaptive excitation
by the Psig can supplement it, as shown in Figure 11a,b.

Figure 11. Channel excitation vectors from the DS-AE network (blue line) and the SE network (red line) for stages 1, 2, and
3. (a) Channel excitation vectors at the output of stage 1 before excitation; (b) channel excitation vectors at the output of
stage 1 after excitation; (c) channel excitation vectors at the output of stage 2 before excitation; (d) channel excitation vectors
at the output of stage 2 after excitation; (e) channel excitation vectors at the output of stage 3 before excitation; (f) channel
excitation vectors at the output of stage 3 after excitation.

5. Experimental Results for Various Conditions of Limited Training Data

Based on the ablation study, the DS-AE network was evaluated for various conditions
of limited training data where the training ratios are given as 10%, 20%, 25%, 30%, 50%,
and 100%, respectively. The hyper-parameters and other settings for network training are
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the same as those in the previous section. Table 6 presents the recognition rates of the
network structures used in the ablation study, the basic CNN, the SE network, and the
DS-SE network. When all the training SAR target images are used (100% of training ratio),
not only the networks with channel attention modules but also the basic CNN can achieve
a recognition rate more than 99% for the MSTAR dataset. Even if the DS-AE network shows
the best performance of 99.30%, there is little difference between the networks with and
without channel attention modules. This is because only a few learnable parameters are
added to the basic CNN, which has many more parameters in the situation of sufficient
training data. However, the fewer images used for network training, the more differences
in target recognition rates can be observed between the CNN with and without the channel
attention modules. In particular, the DS-AE network shows a recognition rate of more
than 98% for the training ratio of 50% and 95.75% for the training ratio of 30%. When the
training ratio decreases to nearly 20%, the performance of the DS-AE network remains at
around 95% of the recognition rate contrary to that of the SE network. For the training ratio
of 10% where the aspect angular interval between adjacent images is 13◦ on average, more
than 80% of the test SAR target images are correctly classified, which is 14.3% and 6.7%
higher than the basic CNN and the SE network, respectively.

Table 6. Comparison of SAR target recognition rates for different training ratios.

Network Structure
Training Ratio

10% 20% 25% 30% 50% 100%

basic CNN 67.93% 83.14% 85.70% 89.65% 94.02% 99.01%
SE net 75.43% 92.87% 94.23% 94.85% 97.28% 99.13%

DS-AE net 82.19% 94.85% 95.42% 95.75% 98.06% 99.30%

Lin [28] ~35% ~75% - 94.97% 97~98% 99.09%
Zhang [29] - - 95.79% - 97.74% 99.90%

Cho [30] 69.81% 91.08% - 92.95% 94.85% 95.52%
Yu [31] - 92.12% - ~95% ~97% 99.83%

In Table 6, the recognition rates in previous studies are also presented for comparison.
It is noted that these results were not reproduced here but cited as published in the
references [28–31]. As all of these studies randomly selected a portion of training images
to simulate the situation of limited data, the detailed composition of the training images
in this article can be different from those of previous studies. Although reproduction of
their results using the same training data may be desirable for more accurate performance
comparison, their detailed implementation procedures are not available, and implementing
them only with descriptions in those references may lead to distorted results. Therefore,
Table 6 provides these recognition rates to indirectly show the feasibility and validity of the
proposed DS-AE network and not to clarify its superiority to other methods. Here, there
are three notations of the recognition rates:

1. The notation ‘00.00%’ means the rate explicitly described in the references.
2. The notation with the numerical range ‘~’ means the estimated value from the graph

presented in the references where its numerical value could not be found.
3. The notation ‘-’ means the rate not presented in the references.

When the training ratio is given as more than 50%, all the results from the DS-AE
network and other studies present high recognition rates. Several previous results remain
near 95% for the training ratios of 25% and 30%. However, for the training ratio of
less than 20%, the performances are shown to be degraded by the limited training data.
The experimental results in Table 6 demonstrate that the DS-AE network can achieve
competitive performances compared to other studies, and can be an effective alternative
for enhancing the performance for the case of limited training data.



Sensors 2021, 21, 4538 17 of 19

6. Conclusions

In order to address the problem of SAR-ATR performance degradation for the limited
training data, this article proposed a new network structure, a DS-AE network with a
modified ResNet18 as the basic CNN and channel attention modules. The double squeeze
structure in the proposed modules prevents drastic dimension reduction of the channel
vector and then leads to more interactions between channels by augmented FCs. The
adaptive excitation of the DS-AE network is performed by the parametric sigmoid that
has more learnable parameters controlling the sigmoid function. From the ablation study,
the analysis results showed that in the case of limited training data, the DS-AE network
improved the SAR target recognition performance in relation to the CNN without the
channel attention mechanism and the SE network. Further experiments with various
conditions of limited training data and comparisons with other previous studies also
demonstrated that the approach proposed in this article can have competitive performance.
In conclusion, this article has shown two main contributions: by validating the effectiveness
of channel attention to cope with limited training data and by presenting new network
structures that enhance the existing SE network.
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