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Abstract

The causal effect of an exposure on an outcome of interest in an observational study cannot

be estimated directly if the confounding variables are not controlled. Many approaches are

available for estimating the causal effect of an exposure. In this manuscript, we demonstrate

the advantages associated with using inverse probability weighting (IPW) and doubly robust

estimation of the odds ratio in terms of reduced bias. IPW approach can be used to adjust

for confounding variables and provide unbiased estimates of the exposure’s causal effect.

For cluster-structured data, as is common in animal populations, inverse conditional proba-

bility weighting (ICPW) approach can provide a robust estimation of the causal effect. Dou-

bly robust estimation can provide a robust method even when the specification of the model

form is uncertain. In this paper, the usage of IPW, ICPW, and doubly robust approaches are

illustrated with a subset of data with complete covariates from the Australian-based National

Bovine Respiratory Disease Initiative as well as simulated data. We evaluate the causal

effect of prior bovine viral diarrhea exposure on bovine respiratory disease in feedlot cattle.

The results show that the IPW, ICPW and doubly robust approaches would provide a more

accurate estimation of the exposure effect than the traditional outcome regression model,

and doubly robust approaches are the most preferable overall.

Introduction

In veterinary science, the goal of many observational studies is to estimate the causal effect of

exposures on disease outcomes. There are many approaches to estimation. In general, methods
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used to adjust for confounding in observational studies can be classified into two categories:

G-methods and stratification-based methods. G-methods include IPW, standardization and

G-estimation, where the conditional exchangeability has been used in subsets defined by

covariates to estimate the causal effect of exposures on outcomes in the entire population

(marginal). Stratification-based methods include stratification, restriction and matching, but

the conditional exchangeability is used in subsets defined by covariates to estimate the associa-

tion between exposures and outcomes in those subsets only (conditional) [1]. The commonly

used outcome regression models belong to the stratification-based category. Therefore, in this

manuscript, we illustrate the advantages of methods from G-methods category to illustrate the

advantages to the estimation of the average causal effect and contrast them with more com-

monly used outcome regression models that are likely more recognizable to veterinary

researchers. Specifically, we only focus on three methods to estimate the average causal effect:

IPW, inverse conditional probability weighting (ICPW) and the doubly robust approach,

and we refer them as the causal inference estimation approaches throughout the paper. The

rationale for this paper is to introduce causal inference estimation approaches to veterinary

researchers using realistic example data and to illustrate the advantages (reduced bias in the

estimation of the average causal effect) when compared to traditional outcome regression

model-based approaches to estimation.

In this paper, the advantages of causal inference methods will be illustrated by showing

their ability to provide an unbiased estimation of the average causal effect. Because of our goal

to illustrate the advantages of causal inference approaches, the target reader for the paper is a

quantitative epidemiologist comfortable with regression modeling approaches, estimation

approaches, matrix algebra, and reading mathematical formulas. We have provided more sta-

tistical detail than most veterinary methods manuscripts and less than most statistical method-

ology papers. This paper is not intended as either a step-by-step tutorial for causal inference

methods nor a treatise on causal inference methods. We provide appropriate references

throughout for readers who want more in-depth knowledge.

There is a need for an illustrative example with causal inference methods because, although

causal inference approaches have been available for a long time [2], adoption of the methods

in veterinary epidemiology appears to lag behind other epidemiology disciplines. For example,

in 2018 the American Journal of Epidemiology published 344 articles, of which 14 referred to

logistic regression (an outcome regression model approach) and 18 referred to inverse proba-

bility weighting or propensity scoring in the title or abstract. By contrast in 2018, Preventive

Veterinary Medicine published 268 articles, of which 31 referred to logistic regression and

one referred to inverse probability weighting or propensity scoring in the title or abstract (see

Appendix for exact search string). These statistics are an imperfect measure of uptake of the

methods, but they are likely reflective of the differences in uptake.

This paper is organized as follows: Section 2 briefly recaps the main concepts of marginal

models and estimation of average causal effects using an example based on infectious causes of

Bovine Respiratory Disease (BRD). The BRD example is carried throughout the paper and was

chosen because it is a common topic of research in veterinary science. As respiratory disease is

common in all species, the topic provides a relatable example for many veterinary epidemiolo-

gists, even those not working in bovine production. We purposefully selected a subset of

data with complete covariates for our example. This subset of data is not necessarily represen-

tative of the original dataset. For a thorough analysis of the original data and the associations

found in the dataset, we direct the readers to [3–5]. Section 3 outlines in detail each of the

approaches, models used in the analysis, and the estimation equations. Aspects of Section 3

require an understanding of matrix algebra notation. This section is intended to set the stage

for the later sections by introducing the models and estimation equations to be used. Readers
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who are unfamiliar with matrix algebra or who already know the basics for the estimation

methods can skip Section 3. Section 4 reports the results of the approaches applied to realistic

BRD data and simulation studies which document the advantages of causal inference methods

in reducing the biases in estimation. Comparisons among the approaches are discussed in Sec-

tion 5. Section 6 concludes with a summary and further discussion.

Introduction to data and marginal causal effects

BRD is an important economic disease that causes morbidity and mortality in feedlot cattle; it

is also a major contributor to antibiotic use in cattle production. In feedlot cattle, BRD usually

occurs soon after cattle have arrived at the feedlot due to increased stress associated with trans-

portation, mixing of the cattle, a new feed ration, and exposure to multiple pathogens. The

disease is multifactorial in origin with many factors contributing to increased risk. Previous

studies have shown that serologically negative animals exposed to Bovine Viral Diarrhea

Virus (BVDV) at the feedlot are at increased risk of developing BRD [3, 6]. Exposure to BVDV

before arrival at the feedlot, either by vaccination or natural exposure, could offer cattle protec-

tion against BRD [4, 7]. However, there are some individual-level risk factors and unmeasured

feedlot-level risk factors that have direct effects on both prior BVDV exposure and BRD inci-

dence, which makes the evaluation of the direct effect of prior BVDV exposure on BRD diffi-

cult. Commonly, we refer to this situation as confounding. Hernan and Robins defined the

confounding in chapter 7 of Causal Inference as the bias that results from the presence of

causes shared by treatment (exposure) and outcome [15]. However, the direct effect of BVDV

exposure prior to arrival at the feedlot on BRD incidence is difficult to evaluate because the

relationship is confounded by individual-level risk factors and unmeasured feedlot-level risk

factors. Knowing the effect of prior BVDV exposure is of particular interest because BVDV

exposure can be manipulated, especially with vaccination, and therefore this represents a

potential intervention point for preventing and reducing BRD. Other BRD risk factors, such as

age, weight, and breed, are less amenable or impossible to manipulate.

Given that both outcome (BRD) and exposure (prior BVDV exposure) are binary, the aver-

age causal effect of the exposure can be evaluated through the odds ratio. In a cohort study,

because the disease event is incident, the odds ratio is more appropriately defined as the

disease odds ratio. There are two types of odds ratios estimates, conditional or marginal

(unconditional), depending on whether we are conditioning on, or marginalizing over the

confounding covariates. A conditional odds ratio can help to decide whether an exposure is

beneficial for an animal with particular characteristics, while a marginal odds ratio can be used

to assess the effect of the exposure in the population as a whole. Veterinary epidemiologists

often fit an logistic regression and obtain the estimates of the coefficient (β) of the exposure

and use the estimates of exp(β) as the odds ratio, and for a model with covariates, this repre-

sents a conditional rather than a marginal estimator. Collapsing over the other covariates,

the marginal odds ratio can be different from the conditional odds ratio. This is called the

non-collapsibility of the odds ratio. For more explanation and examples of the non-collapsibil-

ity, please see Greenland and Robins 2009 [8] and Hernan 2011 [9]. The causal inference

approaches enable estimation of the marginal causal effects, which correspond with the tradi-

tional parameters of interest in randomized trials [10–12]. The marginal risk can then be used

to estimate relative measures such as the risk ratio or the odds ratio.

Therefore, our goal is to illustrate approaches to estimating the marginal odds ratio with

and without the exposure to BVDV prior to arrival at the feedlot to BVDV on the outcome,

BRD. Exposure to BVDV prior to arrival at the feedlot was measured by the presence of anti-

bodies to BVDV in blood samples collected when the animals arrived at the feedlot. We used
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an independently developed, a priori causal diagram based on biologically plausible pathways

to inform the covariates to include in the estimation of the exposure effect [5]. We determined

the minimal sufficient set of fixed effects required to assess the total effect of prior exposure to

BVDV (as indicated by the presence of antibodies to BVDV at arrival) on BRD outcome [13,

14]. In addition, given the importance of cluster variables in veterinary settings, we explicitly

included feedlot in the model to enable assessment of the difference in the three methods

when clustering is present [15].

Materials and methods

Notations

Throughout this paper, we use bold letters such as A and β to denote vectors. We use non-bold

letters such as A and β to denote scalar quantities. Let Yij be the dichotomous observable out-

come for the jth individual (j = 1, 2, . . ., ni) in the ith cluster (i = 1, 2, . . ., I). ni is the number of

individuals in each cluster. I is the total number of clusters. Aij is a binary variable of the indi-

vidual-level exposure (Aij = 1 if exposed and Aij = 0 if unexposed). Let Xij = (Xij,1, Xij,2, . . ., Xij,

k) be a k-dimensional vector of individual-level covariates, which may confound the relation-

ship between exposure and outcome. Each individual has two potential outcomes: Y0
ij and Y1

ij .

If the individual was actually exposed, we can only observe Y1
ij but not Y0

ij . Otherwise if the

individual was not exposed, we can only observe Y0
ij but not Y1

ij . The connection between the

observable outcome and the potential outcomes is Yij ¼ AijY1
ij þ ð1 � AijÞY0

ij . The concept of

potential outcomes was introduced in the context of both randomized and non-randomized

studies by Rubin [16].

Given the individuals are nested in clusters, we can use a vector to represent the outcome in

the ith cluster, Y i ¼ ðYi1;Yi2; :::Yini
Þ
0
, in which each element is the observable outcome for each

individual within cluster i. Similarly, the exposure and covariates in the ith cluster are denoted

as vectors Ai ¼ ðAi1;Ai2; :::Aini
Þ
0
and Xi ¼ ðXi1;Xi2; :::;Xini

Þ
0
. The cluster-level potential out-

comes vectors are Y0

i ¼ ðY
0
i1;Y

0
i2; :::;Y

0
ini
Þ
0
and Y1

i ¼ ðY
1
i1;Y

1
i2; :::;Y

1
ini
Þ
0
. In later sections, we will

fit an exposure model with Ai as the response and an outcome model with Yi as the response.

UiA and UiY represent the random cluster effects in the exposure model and the outcome

model respectively.

Approaches overview

In total, we use six approaches for estimation of the odds ratio. The approaches are summa-

rized here and described in more detail below.

1. A univariate outcome model (UOM) approach where only the exposure of interest is

regressed on the outcome, and feedlot is the random effect.

2. A multivariate outcome model (MOM) approach where the exposure of interest and all

potential individual-level confounding variables identified in the minimum sufficient set

are regressed on the outcome, and feedlot is the random effect. [13].

3. An inverse probability weighting (IPW) approach, with an exposure model that uses logistic

regression with feedlot as the random effect to estimate the probability of exposure (pro-

pensity score) for each individual. The inverse of the probability of exposure is then used to

weight each individual in the estimation of the marginal odds ratio.
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4. A modified version of the IPW approach that addresses concerns about unmeasured clus-

ter-level confounders called inverse conditional probability weighting (ICPW), which is

used to deal with cluster effect by stratification. For this approach, the exposure model uses

a conditional logistic regression to estimate the probability of exposure for each individual;

however, the odds ratio estimated from the outcome model is still the marginal odds ratio.

5. IPW with a doubly robust estimation approach. In section 2.7 we provide more detail about

the rationale incorporating the doubly robust estimation.

6. ICPW with a doubly robust estimation approach.

Outcome model

The outcome model has a binary response, and the exposure alone or together with the covari-

ates are the explanatory variables with either binary or continuous form. The set of covariates are

technically all the potential individual-level confounders required to provide an unbiased esti-

mate of the exposure-outcome relationship. We make this assumption about the covariates but

we will not repeat it later in the text. Further, for the BRD dataset used in our application has a

clustered structure due to multiple feedlots, the most common way of analysis is to fit a general-

ized linear mixed model with logit link and a random effect for the cluster variable as follows:

pðYij ¼ 1jAij;Xij;UiY ; βÞ ¼ pY;ij;

log
pY;ij

1 � pY;ij

 !

¼ baAij þ
Xk

p¼1

bpXij;p þ UiY ;
ð1Þ

where β = (βa, β1, β2, . . ., βk)0 are the effect of the explanatory variables on the outcome on logit

scale, and UiY � Nð0; s2
YÞ is the random cluster effect.

The estimator of the effect of exposure on the outcome is based on the risk in each exposure

group calculated as expitðba þ
Pk

p¼1
bpXij;pÞ for Aij = 1 and expitð

Pk
p¼1
bpXij;pÞ for Aij = 0,

where the “expit()” is defined as expitðzÞ ¼ expðzÞ
1þexpðzÞ for any variable z. The “expit()” is also called

the inverse logit function. Note that this estimate is different from the routine exp(β) estimator

employed very frequently, which is an estimate of the conditional effect of exposure on the

outcome.

Exposure model

The exposure model is fitted to estimate the probability of exposure given the covariates,

which is also called the propensity score [17]. It is for this reason we refer to this as the expo-

sure model. The estimated probability of exposure will be used to compute the inverse proba-

bility weights for each individual. Similar to the outcome model, we also fit a generalized

linear mixed model with logit link and a random cluster effect:

PðAij ¼ 1jXij;UiA;αÞ ¼ pA;ij;

log
pA;ij

1 � pA;ij

 !

¼
Xk

p¼1

apXij;p þ UiA;
ð2Þ

where α = (α1, α2, . . ., αk)0 are the effects of the covariates on the exposure of interest on logit

scale, and UiA � Nð0; s2
AÞ is the random cluster effect. From this model we obtain the esti-

mated probability of exposure as the second line of Eq 2, which will be used to weight each

individual before estimating the marginal odds ratio.
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Assumptions and estimates for IPW approach

Here we very briefly present the formula and assumptions for the IPW estimator. For a more

through description of the assumptions and formulas of IPW, readers are referred to Chapters

2 and 3 in Causal Inference by Hernan and Robins [1].

There are three assumptions required in order to obtain an unbiased IPW estimator [1]:

1. Consistency: Yij ¼ Ya
ij IðAij ¼ aÞ for all i and j, which means that an individual with observed

exposure A equal to a, has observed outcome Y equal to its potential outcome Ya.

2. Conditional exchangeability: fY0

ij;Y
1

ijg
‘

AijjXij;UiA for all i and j, which means that the risk

of the outcome under the potential exposure level a among the exposed is the same as the

risk under the potential exposure level a among the unexposed.

3. Positivity: For all i,
Pni

j¼1
aij 6¼ 0 or ni, and 0< P(Aij = aij|Xi, UiA)<1 for all i and j, where

aij = 0 or 1, which means that the conditional probability of being under every exposure

level is greater than 0 and less than 1.

Given the validity of these assumptions in the dataset, the IPW estimator gives the average

causal effect of exposure on the outcome by creating a pseudo-population by weighting each

individual according to the inverse of the probability of exposure. In the pseudo-population

the exposure and the measured confounders are independent. In lay terms, the IPW estimator

provides an estimate of the risk of the outcome in each exposure group. This is achieved

because the population is balanced with respect to confounders due to weighting by the inverse

probability of exposure [18]. More formally, this can be summarized as follows. The risk of the

outcome in the exposure group A = a is estimated by the inverse probability of the exposure

weighted mean of the outcome Y when exposure A = a is given. The risk of disease under

exposure is estimated by P̂1;IPW and the risk of disease under no exposure is given by P̂0;IPW ,

which can be expressed as the Eq 3.

P̂1;IPW ¼
1

N

XI

i¼1

Xni

j¼1

AijYij

PðAij ¼ 1jXij; Û iA; α̂Þ
;

P̂0;IPW ¼
1

N

XI

i¼1

Xni

j¼1

ð1 � AijÞYij

1 � PðAij ¼ 1jXij; Û iA; α̂Þ
;

ð3Þ

where the weights for the IP estimator on the denominator, PðAij ¼ 1jXij; Û iA; α̂Þ, are obtained

with the random cluster effect exposure model in Eq 2. In the case where the weights have

extreme value, IPW may lead to biased estimate of the causal effect. Instead, stabilized IPW

have been proposed to tackle these extreme values and provide unbiased estimation [19]. In

the BRD dataset used in our application, the range of the estimated conditional probabilities

of exposure to BVDV is from 0.19 to 0.98, thus using IPW is sufficient. As can be seen in the

equation above, the IP weights are in the denominator of the estimator formula, hence the

term inverse probability weighting. It is this process that creates the pseudo-population that

balances the confounder distribution across the level of the exposure variable A, makes the

confounders and the exposure independent and enables estimation of the average causal effect

[17]. The average causal effect of the binary exposure Aij on the binary outcome of interest Y

can be estimated using the odds ratio as
P̂1;IPW=ð1� P̂1;IPWÞ

P̂0;IPW=ð1� P̂0;IPWÞ
. If the estimated odds ratio covers 1 (i.e.

P̂1;IPW ¼ P̂0;IPW), it suggests that exposure A does not have an average causal effect on outcome

Y in the population [1]. One potential limitation of IPW approach is that there should be no
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unmeasured confounders, including the cluster-level confounding variables. However, the

inverse conditional probability weighing (ICPW) can provide a robust estimation for a case

with unmeasured cluster-level confounders.

Inverse conditional probability weighting (ICPW)

In veterinary populations, clustering is common and the ability to adjust for cluster-level

variables is limited; therefore this condition may not be guaranteed. For example, in the

cattle population such as we use for the BRD example, an unmeasured cluster-specific

factor such as surrounding environment of the farm, which likely impacts the occurrence

of BRD (the outcome Y), is also likely associated with the covariates such as animals’ health

status. Inclusion of the cluster-level variable as a random effect may not be sufficient to con-

trol for the confounding effect. In this circumstance, the inverse conditional probability

weighting (ICPW) approach proposed by He [20] can solve this issue by using the sufficient

statistic for the unmeasured cluster-level confounder (denoted as Vi). For extensive discus-

sions about either the concept of sufficient statistics or the ICPW, we refer the reader to

other literature [20, 21]. However, for completeness, we present the assumption and for-

mula and briefly discuss the difference from the IPW estimator in the supporting informa-

tion section.

In the ICPW approach, we fit a conditional logistic regression as the exposure model

(conditional on Vi, which is the cluster-specific variable). This approach treats the cluster as

a stratifying variable rather than a random effect, and we obtain an estimate of the exposure

probability conditional on the cluster. The exchangeability and positivity assumptions men-

tioned in Section 2.4 need to be modified due to the usage of the sufficient statistic of Vi, and

an assumption regarding existence of the sufficient statistic is also required. More details are

provided in the supporting information.

The major difference between the IPW and ICPW is that we construct the probability of

exposure (the propensity score) Aij conditional on individual-level covariates Xij and the suffi-

cient statistic of the cluster-level covariates Vi (denoted as Si = S(Ai)), which is a function of

Ai ¼ ðAi1;Ai2; :::;Aini
Þ. This is done using a conditional logistic regression for the exposure

model. Formally, this is as follows in Eq 4, let ai be the observed value of Ai, the exposure

model for ICPW estimator can be fitted with a conditional logistic regression for all individual

j in cluster i as follows:

PðAij ¼ aijjXij; Si;αÞ ¼
PðAij ¼ aij; Si ¼ SðaiÞjXij;Vi;αÞ

PðSi ¼ SðaiÞjXij;Vi;αÞ
ð4Þ

For the ICPW estimator, we use P̂a;ICPW in Eq 5 to estimate the risk of disease under expo-

sure level A = a. For a binary exposure, Aij the estimators are as follows:

P̂1;ICPW ¼
1

N

XI

i¼1

Xni

j¼1

AijYij

PðAij ¼ 1jXij; Si; α̂Þ
;

P̂0;ICPW ¼
1

N

XI

i¼1

Xni

j¼1

ð1 � AijÞYij

1 � PðAij ¼ 1jXij; Si; α̂Þ
:

ð5Þ

Let α̂ be the conditional maximum likelihood estimator that maximizes the joint condi-

tional likelihood.
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Doubly robust

The doubly robust approach has two modeling components and produces a consistent effect

estimator if at least one of the two component models is correctly specified and assuming that

there are no unmeasured confounders. In other words, it gives us a second chance to correctly

specify at least one of the models. The first component is the exposure model, which could

either be a random effect logistic regression model as Eq 2 or a conditional logistic regression

model as Eq 4. The second component is the outcome model in Eq 1. The formula for the dou-

bly robust estimator is provided by Cao et al. [22]. We use P̂a;DR to represent the doubly robust

estimators for the risk of disease under exposure A = a. For the binary exposure variable Aij,

the estimators are as follows:

P̂0;DR ¼
1

N

XI

i¼1

Xni

j¼1

1 � IðAij ¼ 1Þ

1 � PS
Yij þ

IðAij ¼ 1Þ � PS
1 � PS

m0ðXij; Û iY ; β̂Þ
� �

;

P̂1;DR ¼
1

N

XI

i¼1

Xni

j¼1

IðAij ¼ 1Þ

PS
Yij �

IðAij ¼ 1Þ � PS
PS

m1ðXij; Û iY ; β̂Þ
� �

;

ð6Þ

where “PS” is the probability of exposure (propensity score) obtained from the exposure model.

m0, m1 are the risks of the outcome in each exposure group obtained from the outcome model.

For the IPW with a doubly robust estimation approach, the “PS” part is PðAij ¼ 1jXij; Û iA; α̂Þ
for a random cluster effect exposure model shown as Eq 2. For the ICPW with a doubly

robust estimation approach, the “PS” part is the conditional logistic regression model

PðAij ¼ 1jXij; Si; α̂Þ shown as Eq 4. For the outcome model part,

m0ðXij; Û iY ; β̂Þ ¼ expitð
Xk

p¼1

b̂pXij;p þ Û iYÞ

m1ðXij; Û iY ; β̂Þ ¼ expitðb̂a þ
Xk

p¼1

b̂pXij;p þ Û iYÞ;

where m0ðXij; Û iY ; β̂Þ is the estimated risk of the disease outcome under no exposure, and

m1ðXij; Û iY ; β̂Þ is the estimated risk of the disease outcome under exposure, which was

shown as Eq 1.

Results

Infectious causes of bovine respiratory disease data application

In the Australian-based National Bovine Respiratory Disease Initiative (NBRDI) data, BRD is

the outcome and BVDV serology upon arrival at the feedlot is the exposure of interest (BVDV

induction). Age, weight, mix history, persistently infected (PI) group, and BVDV vaccination

are the five individual-level covariates, which may confound the relationship between BVDV

induction and BRD. Feedlot is the cluster identifier. Fig 1 presents the relationship among all

the variables through a directed acyclic graph (DAG). A detailed description for this dataset

and the proposed DAG can be found in Chapter 4 and Chapter 11 in Hay 2015 [5]. The origi-

nal NBRDI data has 35,131 animals with the BRD incidence rate as 0.176. After matching data

from vendor questionnaire with serology results using animal identifier, the sample size was

reduced to 2,272 with BRD incidence rate increased to 0.528. Observations with missing

values in variables age, mix history, and BVDV vaccination were deleted. We also deleted

observations from one feedlot with only two animals, which routinely backgrounded small
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groups of animals for extended periods. The final subset of data that we use has 1,552 animals

nested within 10 feedlots. The BRD incidence in our final dataset is 0.537 which is higher than

the prevalence from the original NBRDI. As mentioned, the association observed in the com-

plete NBRDI data has been described extensively previously [3–5]; therefore, our focus is not

an extensive reanalysis of the data or making any clinical inference but rather as a demonstra-

tion. To distinguish the subset we use from the NBRDI data, we refer to our dataset as the

Subset-BRD dataset. Table 1 includes the detailed information of the variables we used in the

application. Table 2 shows the descriptive statistics for the Subset-BRD dataset within each cat-

egory of prior BVDV exposed and non-exposed groups, where means and standard deviations

are reported for continuous variables and proportions are reported for categorical variables.

Table 3 shows the estimated parameters in the outcome model and the random effect exposure

model for our subset of 1,552 study subjects.

The risk of BRD with and without BVDV exposure from the Subset-BRD dataset, P0 and

P1, were estimated by six different approaches (Approaches overview) as shown in Table 4. For

each model, the estimated odds ratios were also obtained based on
P̂1=ð1� P̂1Þ

P̂0=ð1� P̂0Þ
. The standard error

corresponding to each point estimate was obtained based on 500 bootstrap replicates from

stratified sampling within each feedlot. Note that the most recognizable estimator of the condi-

tional odds ratio (exp(β)) is not reported. That approach to estimation of the conditional odds

ratio for the MOM would result in an odds ratio estimate of 0.5922 or exp(−0.5239). Using the

Fig 1. Directed acyclic graph (DAG) of the relationship among outcome, exposure and confounding variables.

https://doi.org/10.1371/journal.pone.0233960.g001
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expit to calculate the risk of the BRD under each exposure level in the MOM, and then estimat-

ing odds ratios based on P̂0 and P̂1 results in an OR of
0:4700=ð1� 0:4700Þ

0:6513=ð1� 0:6513Þ
¼ 0:4748, where p̂0 ¼

1

N

PI
i¼1

PJ
j¼1

expitðb̂a þ
Pk

p¼1
b̂pXij;p þ Û iYÞ and p̂1 ¼

1

N

PI
i¼1

PJ
j¼1

expitð
Pk

p¼1
b̂pXij;p þ Û iYÞ.

The outcome model approach includes “univariable outcome model (UOM)” and “multivar-

iable outcome model (MOM)”. The MOM is a commonly used approach to modelling risk

factor data such as these and is often employed in veterinary epidemiology. The weighting

approach includes “IPW” and “ICPW”, where the “IPW” fits a random feedlot effect exposure

model and weights each individual using the inverse probability of exposure. The “ICPW” fits a

conditional logistic regression with feedlot as the stratum, and the weight for each individual is

calculated using the inverse probability of exposure conditional on the covariates and sufficient

statistic for the feedlot effect. The doubly robust approaches include both “DR-IPW” and

Table 1. Table of variables from NBRDI data.

Variable Variable name Interpretation

Y Bovine Respiratory Disease (BRD)

no No BRD diagnosed between day 0 a and day 50

yes BRD diagnosed between day 0 and day 50

A Bovine Viral Diarrhea Virus

(BVDV) induction

no Seronegative to BVDV at induction, no BVDV exposure prior to

induction at the feedlotb

yes Seropositive to BVDV at induction, BVDV exposure prior to

arrival at the feedlot

X1 Age Age at induction at the feedlot

X2 Weight Weight at induction at the feedlot

X3 Mix History (collapsed version)

no, high No mixing before day -27 and�4 groupsc defined on day -28

forming cohort

no, low No mixing before day -27 and <4 groups defined on day -28

forming cohort

yes, high Mixing before day -27 and�4 groups defined on day -28

forming cohort

yes, low Mixing before day -27 and <4 groups defined on day -28

forming cohort

X4 Persistently Infected (PI) Group

no BVDV in cohortd No BVDV in the cohort

PI animal before cohort PI animals in the groups defined on day -28 and in cohort

PI animal in cohort PI animals in the cohort

TI but no PI in cohort Only transiently infected animals in the cohort

X5 BVDV vaccination

no No Pestigard™ vaccine administered prior to day -14

yes Pestigard™ vaccine administered prior to day -14

Ui Feedlot Feedlot Identifier

a Day 0 is the date of induction (processing) which was on or close to the day of arrival at the feedlot; day -27 is 27

days before day 0
b Feedlot is an intensive commercial unit in a single location involved in the finishing stages of beef production
c Group is an identifier used for animals within a cohort that were together on a given day prior to induction
d Cohort comprises all study animals grouped together in a pen following their animal-level induction, and cohorts

were nested within feedlots

https://doi.org/10.1371/journal.pone.0233960.t001

PLOS ONE Comparing the estimates of effect obtained from statistical causal inference methods

PLOS ONE | https://doi.org/10.1371/journal.pone.0233960 June 25, 2020 10 / 18

https://doi.org/10.1371/journal.pone.0233960.t001
https://doi.org/10.1371/journal.pone.0233960


“DR-ICPW”. The outcome models for both doubly robust approaches are the same as the multi-

variable outcome model, and the exposure model components are different (IPW and ICPW).

What is apparent from evaluation of the results in Table 4 is that the different estimation

approaches provided quite different estimates of the marginal odds ratio. The UOM and

Table 2. Descriptive table for Subset-BRD dataset.

Variable Variable name A = 1 (BVDV induction) A = 0 (no BVDV induction)

X1 Age 1.91 (0.441) a 1.92 (0.377)

X2 Weight 4.38 (0.369) 4.37 (0.353)

X3 Mix History (collapsed version)

no, high 0.387 b 0.594

no, low 0.032 0.083

yes, high 0.375 0.212

yes, low 0.206 0.111

X4 Persistently Infected (PI) Group

no BVDV in cohortd 0.236 0.259

PI animal before cohort 0.103 0.010

PI animal in cohort 0.394 0.370

TI but no PI in cohort 0.266 0.361

X5 BVDV vaccination

no 0.879 0.915

yes 0.121 0.085

a Mean (standard deviation)
b Proportion of each level

https://doi.org/10.1371/journal.pone.0233960.t002

Table 3. Parameter estimates from the outcome and random feedlot effect exposure models.

Model Parameters Estimates of β Std. Error z value Pr(>|Z|)

Outcome Model Intercept 1.2941 0.9672 1.3380 0.1809

BVDV Induction -0.5239 0.1345 -3.8957 0.0001

Age 0.0988 0.1643 0.6010 0.5479

Weight -0.3572 0.1884 -1.8957 0.0580

Mix History—no, low -0.3967 0.3133 -1.2663 0.2054

Mix History—yes, high -0.2874 0.1505 -1.9099 0.0562

Mix History—yes, low -1.6589 0.2948 -5.6271 0.0000

PI Group—PI animal before cohort 0.8575 0.3097 2.7687 0.0056

PI Group—PI animal in cohort 0.2594 0.2213 1.1720 0.2412

PI Group—TI but no PI in cohort 0.2243 0.2331 0.9624 0.3358

BVDV Vaccination 0.7712 0.2252 3.4243 0.0006

Exposure Model (Intercept) 1.3359 0.8449 1.5810 0.1139

Age -0.1830 0.1540 -1.1883 0.2347

Weight -0.3368 0.1733 -1.9430 0.0520

Mix History—no, low -0.9691 0.3291 -2.9449 0.0032

Mix History –yes, high 0.8741 0.1505 5.8099 0.0000

Mix History –yes, low 1.2922 0.2710 4.7687 0.0000

PI Group—PI animal before cohort 3.0084 0.4798 6.2699 0.0000

PI Group—PI animal in cohort 0.7692 0.1954 3.9375 0.0001

PI Group—TI but no PI in cohort 0.3016 0.2007 1.5029 0.1329

BVDV Vaccination 0.0155 0.2239 0.0693 0.9447

https://doi.org/10.1371/journal.pone.0233960.t003
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MOM are methods that use conditional exchangeability in subsets defined by the confounding

variables to estimate the effect of prior BVDV exposure on BRD in those subsets only, while

instead we are interested in the marginal causal effect which can be quantified as the marginal

odds ratio. If we limit our discussion to the estimate from the MOM model compared to the

estimates from the weighting for the doubly robust methods, we see different average causal

effects estimated from the models. The difference in estimates is apparent in P0 and P1. The

analysis of the Subset-BRD data provided evidence of differences. However, because the true

odds ratio is unknown, it is impossible to know which approach is the least biased. Therefore,

we used simulation where the true values of the parameters are known, to illustrate that both

the weighting and doubly robust approaches have advantage over the outcome models with

reduced bias.

Simulation study

Consistent with the objective of the manuscript, to document advantage of the weighting and

doubly robust methods, here we present the simulation study and the performance of the six

approaches used to analyze the Subset-BRD data. There are four different simulation scenar-

ios. Under each scenario, we simulated the potential outcome Ya
ij , exposure Aij, covariates Xij

and feedlot ID. The observed outcome, Yij, can be calculated from the potential outcome and

exposure as Yij ¼ AijYa¼1
ij þ ð1 � AijÞYa¼0

ij . Let Pa be the averaged potential outcome probabili-

ties when Aij = a for all samples. Pa ¼
1

N

PI
i¼1

Pni
j¼1

PðYa
ij ¼ 1Þ, for a = 0 or 1. For each simu-

lated dataset, we treated Pa as the true outcome probability under exposure Aij = a. The true

odds ratio (OR) was calculated as OR ¼ P1=ð1� P1Þ

P0=ð1� P0Þ
. For each approach, we calculated the average

bias and root mean square error (RMSE) for each point estimate over 100 simulated datasets.

The average true P0, P1 and odds ratio for 100 simulated datasets were also reported for com-

parison. In the following sections, we compare the performance among the outcome model

approach, the weighting and the doubly robust approaches, and as well as the approaches

within each approach-category.

Scenario 1. The goal for scenario 1 was to create a simulation setting that mimics the real-

istic data structure so the pattern of the realistic data estimates observed in Table 4 could be

explained and compared with the true outcome probability Pa. This dataset includes cluster

(feedlot) sizes that are the same as the Subset-BRD data, which is not balanced and range from

16 to 418 animals.

Table 4. The result of six approaches to estimate the effect of prior exposure to Bovine Viral Diarrhea Virus (BVDV) on Bovine Respiratory Disease (BRD) inci-

dence using a subset of the NBRDI data with 1,552 cattle nested in 10 feedlots.

P̂0 se(P̂0) P̂1 se(P̂1) ÔR se(ÔR)

UOM 0.6510 0.0199 0.4703 0.0143 0.4759 0.0520

MOM 0.6513 0.0199 0.4700 0.0143 0.4748 0.0521

IPW 0.6518 0.0532 0.5016 0.0148 0.5375 0.1207

ICPW 0.6490 0.0535 0.5083 0.0150 0.5591 0.1247

DR-IPW 0.6303 0.0339 0.5056 0.0144 0.6000 0.0931

DR-ICPW 0.6290 0.0339 0.5089 0.0145 0.6114 0.0946

a UOM: Univariable outcome model; MOM: Multivariable outcome model
b IPW: Inverse probability weighting; ICPW: Inverse conditional probability weighting
c DR-IPW: Doubly robust with IPW; DR-ICPW: Doubly robust with ICPW

https://doi.org/10.1371/journal.pone.0233960.t004
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In this simulation, the value of the covariates (age, weight, mix history, and PI group) Xij

were directly taken from the Subset-BRD dataset. Û iY and Û iA were the random effects esti-

mated from the outcome model and exposure model shown in Eqs 1 and 2 respectively. We

then assigned exposure to the study units, and the exposure assignment mechanism was

PðAij ¼ 1Þ ¼ expitð
Pk

p¼1
α̂pXij;p þ Û iAÞ, where α̂ ¼ ðâ1; â2; :::â5Þ were the parameters esti-

mated in the random effect exposure model shown in Table 3. For each animal, there were two

potential outcomes generated, Y0
ij and Y1

ij , where PðY0
ij ¼ 1Þ ¼ expitð

Pk
p¼1
b̂pXij;p þ Û iYÞ, and

PðY1
ij ¼ 1Þ ¼ expitðb̂a þ

Pk
p¼1
b̂pXij;p þ Û iYÞ, where b̂ ¼ ðb̂a; b̂1; b̂2; :::; b̂5Þ were the parame-

ters estimated from the outcome model shown in Table 3. The total sample size is 1552, the

same as the Subset-BRD dataset. The result of scenario 1 is shown in Table 5. What we see in

Table 5 is that the mean of the true risk of disease in the exposed animals over 100 simulated

datasets is 0.5007 and 0.5931 for the unexposed animals. The mean of the true odds ratio for

the 100 simulated datasets is 0.6890. We can also see that both the weighting and doubly robust

approaches have smaller bias than the outcome model approach, and overall doubly robust

approaches perform the best. This illustrates the advantage of the causal inference approaches

in estimation of a marginal causal effect.

Scenario 2. In Scenario 1, the cluster size was unbalanced. However, it might be of interest

to know if the outcome model approach performs better when clusters are balanced. The pur-

pose of the scenario 2 is then to evaluate all approaches under a balanced cluster (feedlot) size

setting, where each feedlot has the same number of animals. We ensure the simulated datasets

in this scenario to be close to the Subset-BRD dataset in size by sampling 155 animal ID’s from

each of the 10 feedlots with replacement. Then we matched the corresponding covariates Xij

and the estimated Û iA and Û iY from the Subset-BRD data. The exposure variable, Aij, and

potential outcomes, Y0
ij and Y1

ij , were also simulated following the same mechanism as scenario

1. The total sample size is 1550. The result of scenario 2 is shown in Table 6. Again, the

Table 5. Result of scenario 1, a simulation setting that mimics the realistic data, i.e. Subset-BRD dataset.

P0 RMSE(P̂0) bias(P̂0) P1 RMSE(P̂1) bias(P̂1) OR RMSE(ÔR) bias(ÔR)

True 0.5931 0.5007 0.6890

UOM 0.6462 0.0557 0.0530 0.4711 0.0308 -0.0296 0.4902 0.2039 -0.1988

MOM 0.6464 0.0559 0.0533 0.4708 0.0311 -0.0298 0.4893 0.2048 -0.1998

IPW 0.5904 0.0284 -0.0027 0.4998 0.0098 -0.0009 0.6980 0.0792 0.0089

ICPW 0.5901 0.0285 -0.0030 0.5030 0.0105 0.0023 0.7081 0.0825 0.0191

DR-IPW 0.5909 0.0228 -0.0022 0.5025 0.0094 0.0018 0.7030 0.0681 0.0140

DR-ICPW 0.5901 0.0230 -0.0030 0.5028 0.0097 0.0021 0.7064 0.0698 0.0174

https://doi.org/10.1371/journal.pone.0233960.t005

Table 6. Result of scenario 2, a balanced number of animals per feedlot setting.

P0 RMSE(P̂0) bias(P̂0) P1 RMSE(P̂1) bias(P̂1) OR RMSE(ÔR) bias(ÔR)

True 0.4717 0.3882 0.7118

UOM 0.5597 0.0892 0.0880 0.3419 0.0477 -0.0462 0.4106 0.3036 -0.3011

MOM 0.5600 0.0895 0.0883 0.3417 0.0479 -0.0465 0.4098 0.3044 -0.3019

IPW 0.4669 0.0280 -0.0048 0.3870 0.0117 -0.0012 0.7283 0.0902 0.0165

ICPW 0.4676 0.0279 -0.0041 0.3903 0.0120 0.0021 0.7365 0.0932 0.0247

DR-IPW 0.4677 0.0261 -0.0040 0.3898 0.0119 0.0016 0.7342 0.0881 0.0224

DR-ICPW 0.4676 0.0259 -0.0041 0.3899 0.0120 0.0018 0.7348 0.0872 0.0230

https://doi.org/10.1371/journal.pone.0233960.t006

PLOS ONE Comparing the estimates of effect obtained from statistical causal inference methods

PLOS ONE | https://doi.org/10.1371/journal.pone.0233960 June 25, 2020 13 / 18

https://doi.org/10.1371/journal.pone.0233960.t005
https://doi.org/10.1371/journal.pone.0233960.t006
https://doi.org/10.1371/journal.pone.0233960


advantage of weighting and doubly robust approaches is evident even when the cluster size is

balanced. The outcome model approach has an estimated OR of 0.4098, while the true OR is

0.711, and the closest other method is DR-ICPW with 0.7342.

Scenario 3. In scenario 3, the aim was to evaluate the performance of these approaches in

a more general setting to show that the patterns of estimation among the approaches were

not caused by the choice of covariates or random effects. Instead of taking Xij or estimating

UiA and UiY directly from the Subset-BRD data, we simulated these values according to the

distributions in the Subset-BRD data. Table 7 shows the detailed distribution information

about simulated Xij, where the parameter values were chosen based on the covariate distribu-

tions in the Subset-BRD data. The feedlot-level random effect in the exposure model is

UiA � Nð0; s2
AÞ. The feedlot-level random effect in the outcome model is UiY � Nð0; s2

YÞ. Both

σA and σY can be estimated by the standard deviation of the random effects in the exposure

model and outcome model fitted with the Subset-BRD data. Again, Aij, Y1
ij and Y0

ij followed the

same simulation assignment mechanism as in scenario 1. The total sample size is 1550. The

result of scenario 3 is shown in Table 8. We do not devote much text to the result of the simula-

tion, as it is consistent with the prior scenarios, the least bias estimates are associated with dou-

bly robust estimation methods, although the bias in the outcome regression models is less than

in the two prior simulation scenarios.

Scenario 4. Scenario 4 is very similar to scenario 3 changing only the distribution of the

PI group (X4) variable in order to have a stronger confounding variable. From the parameter

estimates and the corresponding p-values in Table 9, we can see that PI group variable is con-

tributing to both the outcome and random feedlot effect exposure model significantly. PI

group follows a multinomial distribution with 4 levels, and the estimates of the first two levels

are quite different from the remaining levels. In scenario 3, we used the original distribution of

Table 7. Distribution of covariates.

Variable distribution parameter values

X1 Age Normal μ1 = 1.914, σ1 = 0.4183

X2 Weight Normal μ2 = 4.375, σ2 = 0.3630

X3 Mix History Multinomial p1 = 0.4639, p2 = 0.0509

p3 = 0.3144, p4 = 0.1707

X4 PI Group Multinomial p1 = 0.2442, p2 = 0.0689

p3 = 0.3853, p4 = 0.3015

X5 BVDV Vaccination Binary p = 0.1076

UA Random effect in exposure model Normal μ = 0, σA = 0.7538

UY Random effect in outcome model Normal μ = 0, σY = 1.2022

https://doi.org/10.1371/journal.pone.0233960.t007

Table 8. Result of scenario 3, a general simulation setting.

P0 RMSE(P̂0) bias(P̂0) P1 RMSE(P̂1) bias(P̂1) OR RMSE(ÔR) bias(ÔR)

True 0.4632 0.3685 0.6735

UOM 0.4736 0.0293 0.0104 0.3624 0.0194 -0.0061 0.6373 0.1163 -0.0362

MOM 0.4739 0.0294 0.0107 0.3622 0.0195 -0.0063 0.6359 0.1167 -0.0376

IPW 0.4544 0.0321 -0.0088 0.3655 0.0139 -0.0030 0.6953 0.0997 0.0218

ICPW 0.4592 0.0321 -0.0040 0.3675 0.0139 -0.0010 0.6882 0.0992 0.0147

DR-IPW 0.4627 0.0259 -0.0004 0.3672 0.0122 -0.0013 0.6748 0.0792 0.0013

DR-ICPW 0.4627 0.0268 -0.0005 0.3672 0.0124 -0.0013 0.6751 0.0811 0.0016

https://doi.org/10.1371/journal.pone.0233960.t008
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the PI group in the Subset-BRD data, in which the proportions of having PI group level 1

and level 2 are quite small. Now in scenario 4 we simulated PI group from a multinomial with

p1 = 0.4, p2 = 0.4, p3 = 0.1, p4 = 0.1 by increasing the proportions of level 1 and level 2 to make

PI group to be a stronger confounder. The result of scenario 4 is shown in Table 10. Again, the

advantage of the weighting approach, and in particular with the doubly robust approach is evi-

dent, with the least bias associated with DR-IPW.

Doubly robust sensitivity analysis. One of the anticipated difficulties associated with

doubly robust approach is the need to assess the different impact from the misspecified model

of the exposure used to estimate the inverse probability weight or the misspecified outcome

model used to estimate the m0, m1. By “misspecified model” we mean changing the link func-

tion we used in the logistic regressions (e.g. logit). Therefore, to assess the performance of dou-

bly robust approaches and compare them with the other approaches under the one-model-

misspecification situation, we performed a sensitivity analysis following the setting in scenario

3 by deliberately misspecifying the model.

To create the outcome model misspecification setting, we used a logit link for the outcome

model, but Y0
ij and Y1

ij were actually simulated from binary distributions with cloglog link func-

tion. Similarly, to create the exposure model misspecification setting, we used a logit link for

the exposure model, but Aij was actually simulated from a binary distribution with cloglog

link function. Tables 11 and 12 show the results of all approaches under the outcome model

misspecification situation and the exposure model misspecification situation respectively.

Table 9. Distribution of PI Group.

Variable distribution parameter values

Old PI Group Multinomial p1 = 0.2442, p2 = 0.0689

p3 = 0.3853, p4 = 0.3015

New PI Group Multinomial p1 = 0.4, p2 = 0.4

p3 = 0.1, p4 = 0.1

https://doi.org/10.1371/journal.pone.0233960.t009

Table 10. Result of scenario 4, a general simulation setting with stronger confounders.

P0 RMSE(P̂0) bias(P̂0) P1 RMSE(P̂1) bias(P̂1) OR RMSE(ÔR) bias(ÔR)

True 0.4989 0.4035 0.6755

UOM 0.4734 0.0431 -0.0255 0.4158 0.0193 0.0123 0.8044 0.2051 0.1289

MOM 0.4735 0.0430 -0.0254 0.4157 0.0193 0.0122 0.8036 0.2047 0.1281

IPW 0.4861 0.0500 -0.0128 0.4015 0.0101 -0.0021 0.7225 0.1638 0.0470

ICPW 0.4936 0.0512 -0.0053 0.4035 0.0102 0.0000 0.7081 0.1637 0.0326

DR-IPW 0.4961 0.0382 -0.0028 0.4033 0.0092 -0.0002 0.6929 0.1209 0.0174

DR-ICPW 0.4962 0.0399 -0.0026 0.4034 0.0094 -0.0001 0.6932 0.1259 0.0177

https://doi.org/10.1371/journal.pone.0233960.t010

Table 11. Result of the doubly robust sensitivity analysis under outcome model misspecification.

P0 RMSE(P̂0) bias(P̂0) P1 RMSE(P̂1) bias(P̂1) OR RMSE(ÔR) bias(ÔR)

True 0.5678 0.4522 0.6226

UOM 0.5893 0.0377 0.0215 0.4396 0.0250 -0.0126 0.5488 0.1378 -0.0738

MOM 0.5897 0.0379 0.0219 0.4393 0.0251 -0.0128 0.5473 0.1384 -0.0753

IPW 0.5616 0.0281 -0.0062 0.4473 0.0124 -0.0049 0.6304 0.0818 0.0078

ICPW 0.5674 0.0292 -0.0004 0.4500 0.0119 -0.0021 0.6231 0.0851 0.0005

DR-IPW 0.5681 0.0221 0.0003 0.4501 0.0097 -0.0021 0.6192 0.0641 -0.0033

DR-ICPW 0.5680 0.0230 0.0002 0.4501 0.0098 -0.0021 0.6197 0.0663 -0.0029

https://doi.org/10.1371/journal.pone.0233960.t011
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Summary discussion of simulations results

All the scenarios indicate that the doubly robust approaches have the best performance for

consistency and stability overall, where the difference between DR-IPW and DR-ICPW are

very small. The sensitivity analysis result suggests that the doubly robust approaches also have

the best performance when either the outcome model or the exposure model are incorrectly

specified. When the outcome model is incorrectly specified, the performance of the weighting

approach should not be influenced. However, in Table 11 the RMSE’s for the doubly robust

approaches are still smaller than the weighting approach. Similarly in Table 12, the doubly

robust approaches outperform the weighting approaches when the exposure model is incor-

rectly specified.

Discussion and conclusions

In this paper, we aimed to document the advantages of using weighting and doubly robust

approaches to estimate the average causal effect of an exposure on the outcome. Our rationale

was that although the methods have been available for decades, these approaches, which are

less biased, appear to be infrequently used in veterinary epidemiology. If the goal of research is

to obtain the least biased estimation of causal effect, then it seems reasonable that epidemiolo-

gists will employ methods as suggested. The approaches we recommended here have been

documented previously [18, 23, 24], although perhaps not so explicitly with realistic veterinary

data.

In an observational study, IPW, ICPW and doubly robust estimation are useful in estimat-

ing the causal effect of the exposure when there are confounders involved. IPW adjusts for

confounders by creating a pseudo-population where the measured confounders and exposure

are independent. ICPW is robust for clustered data when the cluster-level confounders are not

measured. Doubly robust estimation is a combination of traditional outcome model and expo-

sure model (IPW or ICPW) idea, which provides stable and consistent estimates if at least

one of the outcome model or exposure model are correctly specified. As the true relationship

among exposure, outcome, and confounders are rarely known, the doubly robust estimation

has the advantage in both stability and consistency in estimation.

When compared to the traditional outcome model approach in the application to the

NBRDI data, the results from IPW, ICPW and doubly robust estimation showed considerable

amount of difference in the estimated effect of the exposure on outcome. Simulation studies

mimicking the Subset-BRD dataset revealed that the IPW, ICPW and doubly robust estima-

tion methods are superior to the traditional outcome model approach in both bias and preci-

sion of estimation. Further simulation studies showed that the doubly robust methods are

robust to model misspecification and is thus the recommended approach.

Table 12. Result of the doubly robust sensitivity analysis under exposure model misspecification.

P0 RMSE(P̂0) bias(P̂0) P1 RMSE(P̂1) bias(P̂1) OR RMSE(ÔR) bias(ÔR)

True 0.4633 0.3676 0.6690

UOM 0.4838 0.0515 0.0205 0.3608 0.0173 -0.0068 0.6188 0.1766 -0.0503

MOM 0.4842 0.0518 0.0209 0.3606 0.0174 -0.0070 0.6173 0.1770 -0.0517

IPW 0.3656 0.1063 -0.0977 0.3733 0.0153 0.0056 1.0549 0.4344 0.3858

ICPW 0.3719 0.1008 -0.0914 0.3754 0.0171 0.0078 1.0356 0.4151 0.3665

DR-IPW 0.4611 0.0269 -0.0022 0.3669 0.0118 -0.0007 0.6788 0.0841 0.0098

DR-ICPW 0.4612 0.0285 -0.0021 0.3669 0.0121 -0.0007 0.6789 0.0873 0.0099

https://doi.org/10.1371/journal.pone.0233960.t012
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