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Background: Management of anterior shoulder instability (ASI) aims to reduce risk of future recurrence and prevent complications
via nonoperative and surgical management. Machine learning may be able to reliably provide predictions to improve decision
making for this condition.

Purpose: To develop and internally validate a machine-learning model to predict the following outcomes after ASI: (1) recurrent
instability, (2) progression to surgery, and (3) the development of symptomatic osteoarthritis (OA) over long-term follow-up.

Study Design: Cohort study (prognosis); Level of evidence, 2.

Methods: An established geographic database of >500,000 patients was used to identify 654 patients aged <40 years with an
initial diagnosis of ASI between 1994 and 2016; the mean follow-up was 11.1 years. Medical records were reviewed to obtain
patient information, and models were generated to predict the outcomes of interest. Five candidate algorithms were trained in the
development of each of the models, as well as an additional ensemble of the algorithms. Performance of the algorithms was
assessed using discrimination, calibration, and decision curve analysis.

Results: Of the 654 included patients, 443 (67.7 %) experienced multiple instability events, 228 (34.9%) underwent surgery, and 39
(5.9%) developed symptomatic OA. The ensemble gradient-boosted machines achieved the best performances based on dis-
crimination (via area under the receiver operating characteristic curve [AUC]: AUC ecurrence = 0.86), AUCgurgery = 0.76,
AUCoa = 0.78), calibration, decision curve analysis, and Brier score (Brief ecurrence = 0-138, Briersyrgery = 0.185, Brieroa = 0.05). For
demonstration purposes, models were integrated into a single web-based open-access application able to provide predictions
and explanations for practitioners and researchers.

Conclusion: After identification of key features, including time from initial instability, age at initial instability, sports involvement,
and radiographic findings, machine-learning models were developed that effectively and reliably predicted recurrent instability,
progression to surgery, and the development of OA in patients with ASI. After careful external validation, these models can be
incorporated into open-access digital applications to inform patients, clinicians, and researchers regarding quantifiable risks of
relevant outcomes in the clinic.

Keywords: glenohumeral osteoarthritis; machine learning; recurrent instability; shoulder dislocation; shoulder instability; shoulder
subluxation

Anterior shoulder instability (ASI) is a common cause of
functional limitation in the young and athletic population,
with a reported annual incidence as high as 169 per 100,000
person-years.?? In addition, recurrent instability is com-
mon and can lead to long-term functional limitation and
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osteoarthritis. Some studies have reported recurrence rates
as high as 74% in patients treated nonoperatively,®* and
others have demonstrated recurrent instability in up to
25% of younger patients after surgical stabilization.'®

It has been noted that multiple dislocations increase the
risk of bone loss (of both the glenoid and humeral head),
whereas the relationship between what is termed “critical”
bone loss and a substantial increase in the risk of instability
is almost a foregone conclusion. This, and subsequent
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instability arthropathy, is also a risk factor for the develop-
ment of symptomatic osteoarthritis over the long term.'®
Multiple studies have evaluated risk factors for recurrent
anterior instability after initial nonoperative management,
with younger age, male sex, participation in contact sports,
and presence of bone loss as some of the most significant
risk factors.?>*3® Despite all of the important work that has
been done on this topic, many studies evaluating risk fac-
tors for recurrence are hindered by relatively small num-
bers of patients, shorter follow-up, or inadequate analysis
of risk factors in a collective fashion.®'®

Machine learning is increasingly being used in medicine
and orthopaedic surgery. It allows for creation of predictive
models that, when properly developed and applied, can
improve accuracy and better inform decision making for
patients, physicians, and researchers.®!® Whereas tradi-
tional statistics are limited by certain predefined assump-
tions and may be susceptible to collinearity, machine
learning has the versatility to model these relationships
more accurately given sufficiently abundant samples.!4*7

There are 3 common questions patients and clinicians
want to answer after an initial instability event: what is
the risk for (1) recurrent instability episodes, (2) progres-
sion to surgery, and (3) developing arthritis in the future? A
predictive model for these commonly asked clinical ques-
tions can be beneficial to both the surgeon and the patient
by allowing patient-specific information to guide decision
making while evaluating multiple factors that have previ-
ously been correlated with these outcomes. In addition, it
will allow for delineation of high-risk patients who may
benefit from earlier surgical intervention.

The purpose of this study was to develop and internally
validate a machine-learning model to predict the following
outcomes after ASI: (1) recurrent instability, (2) progres-
sion to surgery, and (3) the development of symptomatic
osteoarthritis over long-term follow-up. We hypothesized
that machine learning would allow for creation of custom-
ized risk-predictive tools for each of the 3 outcomes of inter-
est with >70% discrimination.

METHODS
Guidelines

The present analysis was performed adherent to the TRI-
POD (Transparent Reporting of a multivariable prediction
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model for Individual Prognosis or Diagnosis) guidelines and
the recommendations from "Guidelines for Developing and
Reporting Machine Learning Models in Biomedical
Research.”%!7

Data Source

After receiving institutional review board approval, we
identified patients who experienced ASI between January
1, 1994, and July 31, 2016, utilizing the Rochester Epide-
miology Project (REP). The REP is an established geo-
graphic database of >500,000 patients with complete
medical records of all residents in Olmsted County, Minne-
sota, and neighboring counties in southeast Minnesota and
western Wisconsin in the United States. The REP has been
described previously in detail, including resident health
care between 1966 and the present day, independent of the
treating institution, if residents interacted with a health
care provider in the system. Patients were identified using
the International Classification of Diseases, Revision 9,
diagnosis codes for shoulder instability. Patient charts
were reviewed individually in detail to confirm the diagno-
sis of ASI, defined as a documented clinical diagnosis of
either dislocation or subluxation by a consulting physician.
Inclusion criteria consisted of (1) patients with at least 1
ASI event, (2) patients aged <40 years at the time of initial
instability (to avoid potential confounding by preexisting
osteoarthritis or concurrent rotator cuff pathology), (3)
patients with a minimum 2 years of follow-up, and (4)
patients who gave consent for research. Patients with (1)
multidirectional instability based on chart-reviewed diag-
nosis in the medical record or (2) posterior-only shoulder
instability were excluded from the analysis.

Variables

Patient medical records were reviewed to obtain patient
variables used for feature selection. These variables
included age, sex, body mass index, type of sports partici-
pation (weights/contact, extreme, throwing, and overhead),
clinically documented ligamentous laxity, clinical history of
instability, radiographic findings, management, recurrent
instability, and development of clinically symptomatic oste-
oarthritis. Recurrent instability was defined as at least 1
episode of repeat instability (dislocation or subluxation)
documented by the treating physician after the initial con-
sultation for shoulder instability. Recurrent instability was
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assessed for all patients regardless of choice of manage-
ment. Patients were considered to have undergone an ini-
tial trial of nonoperative management if surgical
intervention did not occur within 3 months of initial physi-
cian consultation and diagnosis of ASI. These patients were
then considered to have progressed to surgery if they had
an instability surgery after that initial 3-month trial of
nonoperative treatment. Patients undergoing acute sur-
gery without nonoperative treatment were also included.
Baseline characteristics of patients undergoing acute sur-
gery were compared with those of patients undergoing sur-
gery after initial nonoperative management. Clinically
symptomatic osteoarthritis was defined as the presence of
progressive degenerative changes within the glenohumeral
joint on radiograph, accompanied by pain that the treating
physician attributed to the osteoarthritis.

Missing Data

Features with missing data were imputed to reduce bias
and improve statistical robustness.'? If a variable was con-
sidered important and missing in >30% of the study popu-
lation, a complete case analysis was performed after
exclusion of incomplete cases. The missForest multiple
imputation method was used to impute remaining vari-
ables with <30% missing data,'®?®2® variables in the data-
set were assumed to be missing-at-random (MAR) based on
epidemiological convention,'®22 although multiple imputa-
tion is equipped to handle data either missing completely at
random (MCAR) or missing not at random (MNAR).2® A list
of features with number of missing cases is provided in
Table 1. Specifically, modeling for recurrence was per-
formed using complete case analysis.

Outcome and Analysis

The primary outcomes of interest were recurrence, progres-
sion to surgical treatment after an initial trial of nonoper-
ative management, and development of symptomatic
osteoarthritis. Each outcome was dichotomized into a
binary variable and entered as the output into a supervised
classification problem. After imputation for missing data,
variables that were highly collinear within the feature set
(defined as Spearman correlation coefficient >0.5) were
identified, and the variable that contributed least to the
model predictive performance was excluded. In addition,
performance of a soft tissue Bankart procedure was
excluded from the model for surgery, as it was completely
predictive of the outcome of interest. The models to predict
recurrent instability were generated at time of initial con-
sult, when it is not known definitively if the patient will
have recurrent instability. Notably, we did not explicitly
exclude outcome variables of 1 model as input features in
other models; therefore, recurrence was considered as an
input feature in the model for progression to surgery, and
whether patients underwent surgical treatment was con-
sidered an input feature in the model for development of
symptomatic osteoarthritis.
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TABLE 1
Baseline Characteristics of Study Population (N = 654)¢

Median [IQR] Missing,

Variable or n (%) n (%)

Characteristics and clinical history

Age at consult diagnosis, y 21.7 [17.0-29.0] 3(0.46)

Female sex 154 (23.5) -

Time from initial instability, mo 2.5 [0.2-26.0] 47 (7.19)

Age at initial instability, y 19 [16-26] -

Total No. of events before 2 [1-5] -

diagnosis

Laterality 12 (1.83)
Bilateral 17 (2.6) -

Left 310 (47.4) -
Right 315 (48.2) -
Presenting instability secondary 571 (87.3) 23 (3.52)

to acute trauma
Sports involvement 19 (2.91)
Contact/weights® 265 (40.5) -
Extreme® 41 (6.3) -
None 214 (32.7) -
Overhead 55 (8.4) -
Throwing 60 (9.2) -
Habitual/voluntary subluxations 85 (13.0) 17 (2.6)
Baseline radiographic findings
Arthritis 10 (1.5) 59 (9.02)
Hill-Sachs lesion 181 (27.7) 59 (9.02)
Bony Bankart lesion 39 (6.0) 59 (9.02)
Outcomes and management
Formal physical therapy 500 (76.5) -
Recurrent pain event after diagnosis® 274 (41.9) 217 (33.18)

Soft tissue Bankart repair 176 (26.9) -
Recurrence 443 (67.7) -
Surgery 228 (34.9) -
Acute stabilization 131 (57.5) -
After failed nonoperative 97 (42.5) -
treatment
Symptomatic osteoarthritis 39 (5.96) -

“IQR, interquartile range. -, no missing data.

bPowerlifting, Olympic weightlifting, CrossFit, bodybuilding.

‘Skateboarding, snowboarding, skiing, motocross, mountain
biking.

9Recurrent pain was defined as pain without recurrent insta-
bility prior to surgical intervention.

Feature selection using recursive feature elimination
with random forest and naive Bayes algorithms was used
to select the collection of input features that most optimally
discriminated between achievement of each outcome on
cross-validation. After feature selection, modeling was per-
formed using the selected features with each of the follow-
ing candidate machine-learning algorithms: extreme
gradient boosted machine (XGBoost), support vector
machines (SVM) with radial kernel, random forest, elastic
net penalized regression, and a gradient-boosted ensemble
of the candidate algorithms. A generalized linear model
(GLM), otherwise known as logistic regression, was per-
formed as a benchmark for predictive performance.
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Modeling

Models were trained and validated via 0.632 bootstrapping
with 1000 resampled datasets. In brief, model evaluation
consists of reiterative partitions of the complete dataset
into training and test sets. For each combination of training
and test set, the model was trained on the training set using
10-fold cross-validation repeated 3 times. The performance
of this model was then evaluated on the respective test set,
and no data points from the training set were included in
the test set. This sequence of steps was then repeated for
999 more data partitions. The model was thus trained and
tested on all datapoints available, and evaluation metrics
were summarized with standard distributions of values.?*
Bootstrapping has been found to optimize both model bias
and variance and to improve overall performance compared
with internal validation via splitting the data into training
and holdout sets.>° The optimal model was chosen based on
area under the receiver operating characteristic curve
(AUC). Models were compared by discrimination, calibra-
tion, and Brier score values.

Discriminative power was assessed via the AUC. Based
on the work of Hosmer and Lemeshow!?, an AUC of 0.70 to
0.80 was considered acceptable, and an AUC of 0.80 to 0.90
was considered excellent. Calibration of the model’s pre-
dicted probabilities as a function of observed frequencies
within the test population was summarized in a calibration
plot, in which an ideal model is a straight line with inter-
cept 0 and slope of 1 (ie, perfect concordance of model pre-
dictions to observed frequencies within the retrospective
data). Finally, the mean squared difference between pre-
dicted probabilities of models and observed outcomes,
known as the Brier score, was calculated for each candidate
model. The Brier score of candidate algorithms was then
assessed using comparison with the Brier score of the null
model, which is a model that assigns a class probability
equal to the sample prevalence of the outcome for every
prediction.

Decision curve analysis was used to determine the ben-
efit of implementing the predictive algorithm in practice.
The curve plots net benefit against the predicted probabil-
ities of each outcome and provides a cost-benefit ratio for
every value of the predicted probability. These ratios pro-
vide useful guidance for individualized decision making
and account for variability in clinician and patient thresh-
olds for what is considered high risk. In addition, decision
curves for the default strategies of changing management
for no patients or all patients were plotted for comparison
purposes. A decision-curve analysis comparing a learned
multivariate logistic regression model using the same para-
meters and inputs was also performed. Logistic regressions
are used frequently to produce statistical models in ortho-
paedic research for classification problems and are a good
benchmark for assessing the usefulness of the models pro-
duced here.

Both global and local model interpretability and explana-
tions are provided. The global model variable importance
plot demonstrates variable importance normalized against
the input considered most contributory to the model predic-
tive power. Local explanations for model behavior are
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provided for transparency into each individual output
using local-interpretable model-agnostic explanations
(LIME). The explanation algorithm generates optimized
fits based on an established distance measure for the pre-
dicted probabilities of each outcome label based on the
values of both categorical and continuous input, which can
be visualized.>?®

Digital Application

The candidate algorithm with the best performance was
integrated into an interactive, open-access, educational
application to demonstrate model outputs. Clinician input
can be used to generate outcome predictions with accompa-
nying explanations. All data analysis was performed via R
4.0.2 using RStudio version 1.2.5001 (RStudio).

RESULTS
Variable Breakdown

A total of 654 patients were included in the study after
application of exclusion criteria. The median age of the
cohort was 21.7 years (interquartile range [IQR], 17.0-29
years), and 154 (23.5%) patients were female. The full
breakdown of variables available for feature selection is
provided in Table 1. Mean follow-up was 11.1 years (range,
2.0-25.2 years), and the median age at final follow-up was
34 years (IQR, 26-41 years). The median age at final follow-
up for patients with symptomatic osteoarthritis was 44.2
years (IQR, 35-51 years).

Among the cohort, 443 patients (67.7%) experienced
recurrent instability after diagnosis, 228 (34.9%) under-
went surgical management, and 39 (5.96%) developed
symptomatic osteoarthritis. Of the 228 surgically treated
patients, 43 underwent surgery after a single instability
event, while the remaining surgically treated patients had
recurrent instability events. When comparing patients who
underwent acute surgery (n = 131) with those who under-
went surgery after initial nonoperative management
(n = 97), we found that recurrent pain events, defined as
pain without recurrent instability, were more prevalent in
the group in which nonoperative management failed (82.5%
vs 41.3%; P < .001), and bony Bankart lesions were more
prevalent in the acute surgical group (9.2% vs 1%, P = .02)
(Appendix Table Al). A total of 17 (12.98%) patients who
elected for acute stabilization had a recurrent instability
event before surgery, while 8 (8.2%) in the initial nonoper-
ative group experienced a recurrent instability event
within the first 3 months; these differences were not signif-
icant (P = .26). For missing variables, multiple imputation
was used to produce models for osteoarthritis and surgery,
while complete case analysis was performed to model for
recurrence.

After recursive feature elimination using the random
forest algorithm, 2 variables were identified to contribute
significantly to the performance of all models: increased
time from initial instability to diagnosis and younger age
at initial instability. In addition, models important in
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Figure 1. Relative variable importance for (A) recurrent instability, (B) progression to surgery, and (C) development of osteoarthritis.
The plot demonstrates the statistical significance of each variable in the data with respect to its effect on the generated model, as
measured on a unitless scale of 0 to 100. A variable with an importance of 0 contributes nothing to the predictions of the model and
can be discarded from the set of predictors. PT, physical therapy; XR, radiograph.

predicting recurrent instability included pain after diagno-
sis and participation in contact sports; those important in
predicting progression to surgical treatment included youn-
ger age at time of diagnosis and recurrent instability. Mod-
els for predicting development of glenohumeral
osteoarthritis included younger age at diagnosis and total
number of instability events. Full plots of global importance
of the input variables used for training are provided in
Figure 1.

Model Performance

After model optimization, the candidate model perfor-
mances on internal validation were compared. Training
discrimination as measured via the apparent AUC ranged
from 0.748 to 0.997 (recurrence: 0.853-0.994; surgery 0.748-
0.990; osteoarthritis: 0.852-0.997). Testing discrimination
as measured using internal validation via bootstrapping
ranged from 0.689 to 0.861 (recurrence: 0.823-0.861;
surgery 0.689-0.760; osteoarthritis: 0.692-0.768). The cali-
bration plot slope ranged from 0.884 to 1.047 (recurrence:
0.96-0.99; surgery 0.978-0.997; osteoarthritis: 0.884-0.997).
The calibration plot intercept ranged from -0.003 to 0.024
(recurrence: 0.002 to 0.024; surgery 0.002 to 0.011; osteoar-
thritis: -0.003 to 0.007). The null model Brier scores for
recurrence, surgery, and osteoarthritis were 0.352, 0.327,
and 0.312, respectively. Trained models had Brier scores
that ranged from 0.05 to 0.21 (recurrence: 0.14-0.201; sur-
gery 0.185-0.21; osteoarthritis: 0.05-0.16).

Overall, the gradient-boosted ensemble machine demon-
strated the best performance on generating predictions for
recurrence (AUC, 0.86), progressing to surgery (AUC, 0.76),

and development of osteoarthritis (AUC, 0.78) (Figure 2) as
well as the lowest Brier scores (recurrence, 0.138; surgery,
0.185; osteoarthritis, 0.05) (Tables 2-4). All models were
appropriately calibrated (Tables 2-4 and Figure 3).
Patient-level examples of input variable values and output
probabilities to illustrate how model predictions respond to
changes in modifiable and nonmodifiable risk factors from
the final selected models are provided in Table 5.

Decision Curve Analysis

Decision curve analysis was used to compare the net benefit
derived from the trained ensemble algorithms against the
default practices of changing management for all patients
or no patients. For comparison purposes, a decision curve
was also plotted for a learned multivariate logistic regres-
sion model trained using the same parameters and inputs.
The ensemble trained on the complete feature set demon-
strated greater net benefit compared with all 3 alternatives
(Figure 4).

Interpretation

An example of a patient-level explanation accompanying
predicted probability of the outcome of interest generated
by the digital application is provided in Figure 5. This
patient was assigned a probability of 0.96 for having recur-
rence after a first instability event. Features that sup-
ported this prediction included increased amount of time
since initial instability, younger age at first instability, and
a Hill-Sachs lesion on baseline radiograph; features that
did not support this prediction included lack of recurrent
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Figure 2. Discrimination of candidate algorithms for (A) recurrent instability, (B) progression to surgery, and (C) development of
osteoarthritis. AUC, area under the curve.

TABLE 2
Assessment of Model for Recurrence on Internal Validation Using 0.632 Bootstrapping
With 1000 Resampled Datasets (n = 437)*

Metric

AUC

Apparent

Internal Validation

Calibration Slope

Calibration Intercept

Brier Score

GLM

SVM

Random forest
XGBoost
Neural network
Elastic net
Ensemble

0.839 (0.772 to 0.932)
0.863 (0.861 to 0.865)
0.994 (0.991 to 0.996)
0.929 (0.927 to 0.931)
0.862 (0.860 to 0.865)
0.853 (0.773 to 0.932)
0.897 (0.896 to 0.898)

0.827 (0.825 to 0.829)
0.829 (0.828 to 0.831)
0.830 (0.829 to 0.832)
0.840 (0.838 to 0.842)
0.823 (0.821 to 0.824)
0.827 (0.826 to 0.829)
0.861 (0.858 to 0.860)

0.99 (0.97 to 1.01)
0.99 (0.99 to 1.00)
0.99 (0.978 to 0.99)
0.98 (0.976 to 0.988)
0.99 (0.986 to 0.998)
0.96 (0.96 to 0.97)
0.984 (0.981 to 0.987)

0.001 (0.0009 to 0.01)
0.002 (-0.002 to 0.007)
0.01 (0.006 to 0.015)
0.012 (0.008 to 0.017)
0.005 (0.0006 to 0.009)
0.024 (0.022 to 0.027)
0.01 (0.009 to 0.013)

0.155 (0.139 to 0.172)
0.154 (0.138 to 0.17)
0.154 (0.138 to 0.17)
0.15 (0.133 to 0.168)
0.154 (0.136 to 0.172)
0.201 (0.187 to 0.216)
0.138 (0.121 to 0.155)

“Data in parentheses indicate 95% confidence interval. Null model Brier score = 0.352. AUC, area under the receiver operating charac-
teristic curve; GLM, generalized linear model; SVM, support vector machines; XGBoost, extreme gradient boosted machine.

TABLE 3
Assessment of Model for Surgery on Internal Validation Using 0.632 Bootstrapping With 1000 Resampled Datasets (n = 654)“

Metric

AUC

Apparent

Internal Validation

Calibration Slope

Calibration Intercept

Brier Score

GLM

SVM

Random forest
XGBoost
Neural network
Elastic net
Ensemble

0.782 (0.772 to 0.787)
0.784 (0.781 to 0.787)
0.990 (0.988 to 0.993)
0.972 (0.970 to 0.975)
0.750 (0.747 to 0.753)
0.748 (0.678 to 0.818)
0.814 (0.896 to 0.898)

0.701 (0.699 to 0.704)
0.711 (0.709 to 0.713)
0.710 (0.708 to 0.712)
0.710 (0.708 to 0.712)
0.689 (0.687 to 0.692)
0.703 (0.701 to 0.705)
0.760 (0.758 to 0.761)

0.73 (0.72 to 0.74)
0.997 (0.007 to 1.003)
0.984 (0.015 to 0.99)
0.978 (0.012 to 0.99)
0.993 (0.009 to 0.999)
0.994 (0.008 to 1)
0.987 (0.007 to 0.992)

0.091 (0.088 to 0.095)
0.002 (-0.002 to 0.991)
0.011 (0.006 to 0.978)
0.008 (0.003 to 0.967)
0.005 (0.001 to 0.986)
0.004 (-0.001 to 0.988)
0.005 (0.002 to 0.982)

0.206 (0.189 to 0.223)
0.2 (0.183 to 0.216)
0.202 (0.188 to 0.217)
0.21 (0.191 to 0.228)
0.206 (0.189 to 0.222)
0.203 (0.188 to 0.219)
0.185 (0.169 to 0.201)

“Data in parentheses indicate 95% confidence interval. Null model Brier score = 0.327. AUC, area under the receiver operating charac-
teristic curve; GLM, generalized linear model; SVM, support vector machines; XGBoost, extreme gradient boosted machine.

pain event after diagnosis, presenting instability due to
acute trauma, and lack of involvement in contact sports.
Additional samples of patient inputs and corresponding
output probabilities for each respective outcome are pro-
vided in Table 5. For each example patient, baseline

parameters collected during the initial clinical encounter
were used to generate predictions regarding risk of recur-
rence. Once these predictions have been utilized to inform
counseling, additional inputs required to predict progres-
sion to surgery and development of symptomatic
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TABLE 4
Assessment of Model for Osteoarthritis on Internal Validation Using 0.632 Bootstrapping
With 1000 Resampled Datasets (n = 654)¢

Shoulder Instability Machine Learning 7

Calibration Slope

Calibration Intercept

Brier Score

AUC
Metric Apparent Internal Validation
GLM 0.782 (0.773 t0 0.932)  0.723 (0.718 to 0.728)
SVM 0.994 (0.988 to 0.999) 0.701 (0.696 to 0.705)

Random forest

XGBoost
Neural network
Elastic net
Ensemble

0.997 (0.995 to 0.998)
0.99 (0.996 to 1.00)
0.997 (0.992 to 1.00)
0.852 (0.772 to 0.931)
0.921 (0.918 to 0.924)

0.746 (0.742 to 0.750)
0.728 (0.724 to 0.732)
0.692 (0.687 to 0.697)
0.742 (0.738 to 0.747)
0.768 (0.769 to 0.773)

0.514 (0.507 to 0.521)
0.997 (0.991 to 1.003)
0.901 (0.886 to 0.916)
0.884 (0.868 to 0.9)
0.977 (0.961 to 0.994)
0.994 (0.988 to 1)
1.047 (1.04 to 1.054)

0.028 (0.027 to 0.029)
0.002 (-0.002 to 0.007)
0.006 (0.005 to 0.007)
0.007 (0.006 to 0.008)
0.005 (0.001 to 0.009)
0.004 (-0.001 to 0.008)
-0.003 (-0.003 to 0.002)

0.065 (0.04 to 0.07)
0.083 (0.065 to 0.101)
0.066 (0.055 to 0.077)
0.059 (0.044 to 0.073)
0.09 (0.073 to 0.108)
0.16 (0.144 to 0.176)
0.05 (0.036 to 0.063)

“Data in parentheses indicate 95% confidence interval. Null model Brier score = 0.312. AUC, area under the receiver operating charac-

teristic curve; GLM: generalized linear model; SVM: support vector machines; XGBoost, extreme gradient boosted machine.
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Figure 3. Calibration of the ensemble models for (A) recurrent instability, (B) progression to surgery, and (C) development

of osteoarthritis.

osteoarthritis can be provided based on the management
and clinical course of the patient after shared decision mak-
ing. The final model is incorporated into a web-based digital
application that generates predictions of all 3 outcomes
from a single set of inputs. The application is accessible
on desktops, tablets, and smartphones and can be found
at http://rtools.mayo.edu/asi. Default values are provided
as placeholders in the interface, and the model requires
complete cases to generate predictions and explanations.

DISCUSSION

The principal findings of the current study included the
following: the gradient-boosted ensemble algorithm devel-
oped and internally validated in a cohort of patients with
ASI predicted recurrence after initial event with good con-
cordance and excellent reliability and predicted need for
surgery and risk of developing glenohumeral arthritis with
acceptable concordance and good reliability. The 2 most
common important features determined to influence the 3
outcomes were time from initial instability and age at

initial instability, while sports involvement and radio-
graphic findings also played a role. The clinical applications
of machine learning were highlighted via deployment of an
open-source demonstration application to evaluate clinical
outlooks of patients with ASIin real time, and prospectively
collected inputs and predictions can be utilized for external
validation of the model.

Several of the predictive factors in our models have sup-
port in the literature, including sex, age at initial stability,
sports involvement, and various radiographic find-
ings. 127152032 1y 3 Jandmark 2007 study, Balg and
Boileau? developed the Instability Severity Index Score,
10-point preoperative criteria that sought to determine risk
of recurrence after surgery. Those authors identified the
following risk factors to significantly predict failure of
arthroscopic Bankart repair: age <20 years at the time of
surgery, involvement in competitive or contact sports or
forced overhead activity, shoulder hyperlaxity, a Hill-
Sachs lesion, and/or loss of the inferior glenoid contour on
radiograph. In a series of surgically treated patients, Lee
et al'® found time from first dislocation to surgery signifi-
cantly predicted recurrence after labral stabilization,


http://rtools.mayo.edu/asi
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TABLE 5
Example Patient Input and Output Probabilities®
Model and Variables Patient 1 Patient 2 Patient 3 Patient 4 Patient 5
Recurrence
Sex Male Male Male Female Female
Age at initial instability, y 18 25 35 18 35
Age at diagnosis, y 21 26 39 19 35
Time from initial instability to diagnosis, mo 36 12 2 1 1
Traumatic dislocation Yes Yes No Yes No
Total No. of instability events 4 4 1 2 1
Sports Contact/weights Throwing None Overhead None
Radiographic findings Hill-Sachs, Bankart Hill-Sachs None Hill-Sachs None
Recurrent pain after diagnosis Yes Yes No No No
Outcome probability 0.96 0.85 0.10 0.71 0.12
Progression to surgery
Recurrent instability Yes Yes No Yes No
Habitual or voluntary instability No No No No No
Total No. of dislocations 1 1 1 1 0
No. of events prior to diagnosis 4 4 1 2 1
Formal physical therapy No Yes Yes Yes Yes
Outcome probability 0.75 0.60 0.11 0.59 0.09
Symptomatic osteoarthritis
Underwent surgery Yes Yes No Yes No
Soft tissue Bankart repair Yes No No No No
Outcome probability 0.44 0.32 0.48 0.34 0.29

“Baseline inputs from patient’s initial clinic encounter can be used to predict recurrence; additional inputs required for prediction of
progression to surgery and symptomatic osteoarthritis can be provided based on the evolution of management.

A Decision Curve Analysis: B Decision Curve Analysis: C Decision Curve Analysis:
Recurrence Surgery Osteoarthritis
o _ o _ o _
— ~ - = Ensemble
- s - — Logistic Regression
- T 2 T 2 A Al
5 5 5 — None
2 o | L o | b 2 o
%’ o %’ o % o
3 3 3
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2 o 2 o | 2 o |
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w L] w
o | o | o
o o o ey
I T T T T 1 I T T T T T 1 I T T T T T 1
00 02 04 06 08 10 00 01 02 03 04 05 06 00 01 02 03 04 05 06
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| I ) I T 1 | I T I ) 1 I T T 1 I 1
1100 114 23 32 41 1001 1:100 13 35 910 32 1:100 13 35 910 32
Cost:Benefit Ratio Cost:Benefit Ratio Cost:Benefit Ratio

Figure 4. Decision curve analysis of the ensemble algorithm for (A) recurrent instability, (B) progression to surgery, and (C)
development of osteoarthritis. The downsloping line for “All” represents the net benefit from the default strategy of changing
management for all patients, while the horizontal line marked “None” represents the strategy of changing management for none of
the patients (net benefit is zero at all thresholds). The “All” line slopes down because, at a threshold of zero, false positives are given
no weight relative to true positives; as the threshold increases, false positives gain increased weight relative to true positives, and
the net benefit for the default strategy of changing management for all patients decreases. A decision curve for a logistic regression
model using the same predictors and patient sample is plotted for comparison.

supporting our finding that time to diagnosis and, in turn, significant increase in the number of preoperative disloca-
intervention may be among the multifactorial contributors tions among patients whose ASI recurred, while total num-
to recurrence. In addition, the authors highlighted a ber of instability events was identified as a significant input
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Case:4

Label Yes
Probability: 0.96
Explanation Fit: 0.31

Feature

00 01
Weight

. Supports . Contradicts.

Figure 5. Example of individual patient-level explanation for
random forest algorithm predictions. This patient had a pre-
dicted probability of recurrent instability of 96%. Feature
values that support recurrence were length of time from ini-
tial instability to diagnosis, young age at initial instability,
Hill-Sachs lesion on baseline XR, and male sex. Feature
values that contradict recurrence are lack of recurrent pain
involvement, absence of a bony Bankart lesion on baseline
XR, and instability from acute trauma leading to presenta-
tion. XR, radiograph.

for both the surgery and osteoarthritis models in the pre-
sent study. A review by Olds et al2° evaluated recurrence in
patients with traumatic anterior instability and high-
lighted an extensive amount of literature supporting a pre-
disposition to recurrence in males; these authors also
concluded age at initial dislocation and time from initial
dislocation were important predictors.

In addition to the aforementioned Instability Severity
Index Score, multiple tools have been developed to either
diagnose or describe the clinical outlook of patients after
ASI, from single predictors or scoring criteria such as the
Hill-Sachs interval to glenoid track ratio and the Western
Ontario Shoulder Instability Index (WOSI)*® and to more
complex models utilizing multivariate regressions or Mar-
kov decision trees,?! and these have demonstrated varying
degrees of effectiveness. The Instability Severity Index
Score has been validated extensively in the literature!®?7;
however, few investigations have assessed discrimination
or calibration, and its predictive power at the individual
patient level remains unclear. Similarly, Yian et al®® pro-
duced a model to predict recurrent instability after primary
arthroscopic repair, with a reported AUC of 0.82 when the
scoring criterion was applied to the training cohort. How-
ever, no internal or external validation of the model was
reported. While these respective studies provide salient
insights, they also highlight several limitations of predic-
tive modeling in the existing literature, namely the lack of
standardized performance metrics or the reporting of an
internal validation process.

The present study sought to mitigate these concerns via
strict adherence to published guidelines. Concurrently, the
models demonstrated moderate-to-good performance in all
metrics. Finally, the open-source application has the
unique advantage of providing comprehensive predictions
and explanations regarding the 3 primary outcomes of

Shoulder Instability Machine Learning 9

interest after ASI to interested physicians and researchers.
Pending external validation, this tool may be utilized to
augment patient counseling with quantifiable risk at the
surgeon’s discretion.

The strengths of this study should be interpreted in con-
cert with its limitations. To preserve the utility of this
model as a preoperative prediction tool at the first patient
encounter, when he or she has not yet undergone surgery,
we did not incorporate type of surgery as a variable into the
model for development of osteoarthritis or recurrence.
However, this information warrants consideration in a
future model specifically targeting recurrence after sur-
gery. Furthermore, while follow-up was a minimum of 2
years, patients who relocated out of the geographical region
could have had recurrences or development of osteoarthri-
tis that was not documented. We did not weigh surgical
complications in the development of osteoarthritis and
recurrence. Likewise, ability to return to sports, which can
be an important contributor to these outcomes, was also not
documented. Finally, analysis regarding the outcome of
symptomatic osteoarthritis may have been limited in 2
regards: first, while patients with symptomatic osteoarthri-
tis all had shoulder pain with confirmed radiographic oste-
oarthritis, follow-up radiographs for the entire cohort was
45% (n = 292), which could have led to an underestimation
of the percentage of patients with true osteoarthritis who
may go on to develop symptoms; second, although 80% of
these radiographs were collected using standardized views
and protocol at the same academic tertiary referral center,
the rest were performed locally at other centers, and there
may be interhospital variations in image quality. The cur-
rent algorithm was developed from patients in a single geo-
graphical location. The sampling was limited, the data were
retrospective, and the model would benefit from external
validation in other cohorts as well as prospective validation
using real-time data.?% Likewise, the application developed
is for educational purposes and represents only potential
future utility until validated in a clinical setting. Although
the current study demonstrated good predictive perfor-
mance and reliability, the predictive ability may improve
with additional data. Another potential limitation may
be attributed to the differences in presenting character-
istics seen between the acute surgical group of patients
and patients undergoing surgery after initial nonopera-
tive management. Although present, the variables with
differences were entered into the algorithm, thereby
accounting for any confounding. In addition, although
our follow-up was long enough to capture a significant
number of recurrent instability events, it may not have
been long enough to capture progression to osteoarthri-
tis. In the case of athletes with ASI, the decision to finish
the season may have prolonged the time to surgical
intervention and thus been considered as a trial of non-
operative management. Finally, complete case analysis
was performed to develop the recurrence model because
of missingness of >30% in a variable; however, we com-
pared this model with the model developed using multiple
imputation and found no differences in any performance
metrics.
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CONCLUSION

After identification of key features, including time from
initial instability, age at initial instability, sports involve-
ment, and radiographic findings, machine-learning models
were developed that effectively and reliably predicted
recurrent instability, progression to surgery, and the devel-
opment of osteoarthritis in patients with ASI. After careful
external validation, these models can be incorporated into
open-access digital applications to inform patients, clini-
cians, and researchers regarding quantifiable risks of rele-
vant outcomes in the clinic.
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APPENDIX

TABLE Al
Comparison of Characteristics Between Patients With Single-Instability and Multi-Instability
Who Underwent Surgical Stabilization®

Median (IQR)/n (%)

Variable Acute Surgery, n=131 Failed Nonop, n=97 P
Characteristics and clinical history
Age at consult diagnosis 22 (18-29) 19 (17-27) .679
Female sex 10 (23.3) 34 (18.4) 741
Time from initial instability, mo 2.5 (0.2-26) 17 (3-55) <.001
Age at initial instability 19 (16-26) 18 (16-22) .06
Total No. of events before diagnosis 2(1-5) 4 (1-5) .02
Laterality .449

Bilateral 3(2.3) 5(5.2)

Left 61 (46.6) 47 (48.5)

Right 67 (51.1) 45 (46.4)
Presenting instability secondary to acute trauma 120 (91.6) 89 (91.8) >.99
Sports involvement 791

Contact/Weights 61 (46.6) 48 (49.5)

Extreme 7(5.3) 4(4.1)

None 34 (26.0) 29 (29.9)

Overhead 16 (12.2) 10 (10.3)

Throwing 13 (9.9) 6(6.2)
Habitual/voluntary subluxations 20 (15.3) 6 (6.2) .055
Radiographic findings

Arthritis on baseline XR 4(3.1) 0(0.0) 22

Hill Sachs lesion on baseline XR 36 (27.5) 28 (28.9) 935

Bony Bankart on baseline XR 12 (9.2) 1(1.0) .02
Outcomes and management

Formal physical therapy 89 (67.9) 78 (80.4) .051

Recurrent pain event after diagnosis 54 (41.3) 80 (82.5) <.001

Soft tissue Bankart repair 96 (73.3) 80 (82.5) .14

“Bolded P values indicate statistically significant between-group differences (P < .05). Nonop, nonoperative.
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