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ABSTRACT: Sensors for monitoring biomolecular dynamics in
biological systems and biotechnological processes in real time, need
to accurately and precisely reconstruct concentration−time profiles.
This requirement becomes challenging when transport processes
and biochemical kinetics are important, as is typically the case for
biomarkers at low concentrations. Here, we present a comprehensive
methodology to study the concentration−time profiles generated by
affinity-based sensors that continuously interact with a biological
system of interest. Simulations are performed for sensors with
diffusion-based sampling (e.g., a sensor patch on the skin) and
advection-based sampling (e.g., a sensor connected to a catheter).
The simulations clarify how transport processes and molecular
binding kinetics result in concentration gradients and time delays in
the sensor system. Using these simulations, measured and true concentration−time profiles of insulin were compared as a function of
sensor design parameters. The results lead to guidelines on how biomolecular monitoring sensors can be designed for optimal
bioanalytical performance in terms of concentration and time properties.
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Biological systems and biotechnological processes exhibit
time dependencies that are imposed by dynamic changes

of constituting biomolecules, such as nutrients, hormones,
proteins, and nucleic acids. To study dynamic processes in real
time, monitoring sensors that can reveal biomolecular
concentration−time profiles are needed, to support funda-
mental research,1−7 patient monitoring,8−14 and closed-loop
control applications.15−22 Such monitoring sensors should be
able to reconstruct concentration−time profiles accurately and
precisely, in both concentration and time, and the sensors
should be suitable for measuring a wide variety of molecular
markers.
The developments in biomolecular monitoring have mainly

focused on measuring high-concentration metabolites, such as
glucose and lactate.8,12,13 Due to their small size and high
concentrations, the transport and detection of these bio-
molecules is fast. However, in the case of biomolecular markers
at lower concentrations, fewer molecules are available and
transport limitations become important.22 Furthermore,
biochemical reactions are slow at low concentrations,23

generating time delays in the sensors and time-related errors
in the concentration results.
To understand and predict how real-time monitoring of

biomolecules is limited by dynamic processes, we present a
comprehensive methodology for studying affinity-based
sensors that continuously interact with a time-dependent
system of interest. Here, concentration changes, which are

present in a system of interest, propagate into a monitoring
sensor by diffusion-based sampling or advection-based
sampling. We focus on sensing by biochemical affinity between
binder molecules and analyte molecules since this is a very
generic molecular mechanism for achieving specific and
sensitive measurements. Frequency-dependent simulations
are presented to clarify how concentration gradients and
time delays are caused by mass transport processes and
molecular binding kinetics. The results lead to relationships
between sensor design parameters and measurable concen-
tration change rates, time delays, and concentration errors.
This will help researchers to design biomolecular sensors for
optimal bioanalytical performance in terms of concentration
and time properties.

■ BIOMOLECULAR MONITORING WITH
CONTINUOUS ANALYTE EXCHANGE

The conceptual layout of the monitoring arrangement is
sketched in Figure 1. Figure 1a shows continuous analyte
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exchange between a biological or biotechnological system of
interest and a measurement chamber. The system of interest
exhibits dynamic changes of analyte concentration where the
sensing aim is to achieve minimal differences between the true
concentration−time profile Ca,0(t) and the measured concen-
tration−time profile Ca,0

m (t). The basic modeling approach is to
study analyte concentrations that vary with a sinusoidal time
dependence around a mean concentration value

π ϕ= + Δ +C t C
C

ft( )
2

sin(2 )
(1)

with C(t) being the oscillating concentration−time profile, C
the mean concentration, ΔC the top-to-top amplitude of
concentration change, f the oscillation frequency, and ϕ the
phase. In the analysis, the concentration change ΔC is a small
perturbation on the mean value C (a few percent). The
advantage of studying sinusoidal functions is that concen-

tration−time profiles of arbitrary shape can be reconstructed
by frequency decomposition, as will be discussed later in this
paper. Concentration symbols with subscript “a” refer to
analyte concentrations: the analyte concentration−time profile
in the system of interest is denoted by Ca,0(t), at the sensor
surface by Ca(t), and the measured analyte concentration−time
profile by Ca,0

m (t). From the simulations in this paper, it will
become apparent that the response of the monitoring system
resembles a low-pass filter: at low frequencies, the measured
and true concentration−time profiles are close to each other;
however, at frequencies higher than a cutoff frequency fc , the
measured concentration−time profile deviates from the true
concentration−time profile, visible in the concentration change
ΔC and in the lag time Δt that corresponds to the phase lag ϕ.
The measurement chamber is assumed to be rectangular

with height H, width W, and length L (see Figure 1b). The
bottom surface of the measurement chamber is a sensor

Figure 1. Conceptual layout of a biomolecular monitoring system with continuous analyte exchange. (a) Biomolecular monitoring system with
continuous analyte exchange between a system of interest and a measurement chamber, where the system of interest exhibits a dynamic
concentration−time profile Ca,0(t) (gray line), which results in a measured concentration−time profile Ca,0

m (t) (orange line). Ideally, the measured
concentration−time profile closely resembles the true concentration−time profile (dashed line vs solid line). The monitoring system can be
mimicked by a low-pass filter with a cutoff frequency fc. The system of interest supplies an oscillating concentration−time profile Ca,0(t) with
concentration change ΔCa,0, which leads to a measured concentration Ca,0

m (t) with concentration change ΔCa,0
m . A comparison of the true and

measured concentration−time profiles (dashed line vs solid line) gives the system response in terms of the concentration change ratios and lag time
Δt. (b) Geometry of the measurement chamber with height H, width W, and length L. The signal of the sensor is generated by an affinity reaction
at the sensor surface, where analyte molecules (orange) associate with and dissociate from binder molecules (brown), of which the reaction rates
are described by the association rate constant kon, the dissociation rate constant koff, the binder density Γb, the concentration−time profile Ca(t) at
the sensor surface, and the analyte−binder complex density γab. Two modes of continuous analyte exchange are studied: analyte exchange by
diffusion (top) and by advection (bottom). In the measurement chamber, mass transport by diffusion occurs in both x- and y-direction, caused by a
concentration gradient (orange gradient) that results in a net molecular flux Ja, which scales with the diffusion coefficient D. Mass transport by
advection occurs in the x-direction only, caused by a flow with mean flow velocity vm and flow rate Q. (c) Examples of how the sensor performance
can differ for different sensor design parameter sets.
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surface with affinity binder molecules (brown), where
association and dissociation occur of the analyte molecules
(orange). The association and dissociation rates depend on the
association rate constant kon, the dissociation rate constant koff,
the binder surface density Γb, the analyte concentration−time
profile Ca(t) at the sensor surface, and the surface density of
analyte−binder complexes γab. The binding of analyte
molecules to binder molecules on the sensor surface causes
γab to change as a function of time, resulting in a time-
dependent signal, which relates to the oscillating analyte
concentration Ca,0(t) in the system of interest (see
Supplementary Note 1).
We study two modes of continuous analyte exchange,

namely, analyte exchange by diffusion only (top sketch) and
analyte exchange by advection as well as diffusion (bottom
sketch). Diffusion-based sampling applies to a sensor that is
worn on the skin or that is fully embedded in a bioreactor, for
example.8−10 Advection-based sampling applies to a sensor that
is connected to a patient via a catheter or that is connected to a
bioreactor via a sampling line.19−21 In the case of diffusion-
based sampling, a net molecular flux Ja is caused by a
concentration difference (orange gradient), facilitating mass
transport between the system of interest and the measurement
chamber. In the case of advection-based sampling, a laminar
flow with flow rate Q facilitates mass transport between the
system of interest and the measurement chamber. In the
simulations, it is assumed that diffusion occurs in both the
longitudinal (x-direction) and lateral directions (y-direction)
and scales with the diffusion coefficient D. In the case of
advective exchange, the diffusive transport is superposed onto
the advective transport caused by a flow, of which the transport
scales with the mean flow velocity vm and thus the flow rate Q.
In this paper, different design parameters will be studied, which
lead to different sensor performances, as exemplified in Figure
1c.
Biomolecular monitoring applications differ widely in the

analyte molecules that need to be measured, their concen-
trations, and their concentration change rates. Figure 2
sketches an overview of analyte concentrations in blood (in
M) and typical concentration change rates (CCRs, in M h−1)
for biomedical monitoring applications such as diabetes
(glucose and insulin),12,13 organ failure (e.g., creatinine),24,25

and inflammation (e.g., CRP, PCT, cytokines).1−3,26,27 The
CCRs were calculated by estimating characteristic concen-
tration changes ΔCa,0 and typical fluctuation times tfluc (see
Supplementary Note 2). For example, blood glucose
concentrations vary between 4 and 8 mM in healthy persons,
while for diabetic patients, the glucose level can increase to
10−15 mM and higher within a period of tfluc ∼ 30 min. This
results in a typical maximum CCR of about 20 mM h−1. At the
low end of the concentration scale, cytokine biomarker
interleukin-6 (IL-6) is indicated. Physiological IL-6 concen-
trations are below 0.5 pM, while for patients with acute
inflammatory stress, e.g., due to sepsis or due to cytokine
release syndrome, the IL-6 concentration can increase to 10−
100 pM and higher within a period of a few hours (tfluc ∼ 2 h).
This results in a typical maximum CCR of about 30 pM h−1.
In this paper, the dynamic response of sensors with different

designs is characterized by two parameters: first, the lag time
Δt of the sensor signal with respect to the input concentration
(see Figure 1), and second, the rate sensitivity, i.e., the
minimum CCR that can be measured with an error of 10%
(see Supplementary Note 5). We refer to this minimum CCR

as the limit of quantification of CCR (LoCCR). In the next
sections, we study how design parameters influence the lag
time and rate sensitivity using standard parameter values as
listed in Table 1. The sensor signal and its time characteristics
are quantified by finite-element simulations to investigate the
consequences of mass transport and reactions at the sensor
surface. The rate sensitivity is quantified by calculating the
stochastic variabilities in the number of analyte−binder
complexes, for concentration−time profiles with varying
concentration levels and CCRs.

■ EXPERIMENTAL SECTION
Finite-Element Analysis. Finite-element simulations were

performed by solving diffusion, advection and reaction equations
simultaneously using COMSOL (COMSOL Multiphysics 5.5) and
MATLAB (MATLAB R2019a, COMSOL Multiphysics LiveLink for
MATLAB) (see Supplementary Note 1). The LoCCR was reported at
a distance L/2 in the measurement chamber (Figure 1b), where the
signal was collected over a signal collection area As = 1 mm2 with a
binder molecule density Γb = 10−9 mol m−2 (see Supplementary Note
5).

Frequency Analysis. The amplitude and the phase lag of the
concentration at the sensor surface (Figures 3a and 4a,b), analyte−
binder complex density (Figure 3b), and the measured concentration
(Figures 3c and 4c) were calculated using the Fourier transform of its
concentration/density profile. The calculated values were compared
to the amplitude and the phase (i.e., ϕ = 0) of the input profile. The
cutoff frequency was determined at the frequency where the observed
amplitude was 50% of the input amplitude. The LoCCR was
determined according to Supplementary Notes 2 and 5.

■ RESULTS AND DISCUSSION
Response of a Monitoring System with Diffusion-

Based Sampling. First, we consider the case where the
transport of analyte molecules between a system of interest and
a sensor measurement chamber is governed by diffusion only.
Figure 3 shows how the analyte concentration at the sensor
surface and the analyte−binder complex density respond to an

Figure 2. Typical concentration change rates (CCRs) and mean
analyte concentrations Ca,0 for various analyte molecules in blood
plasma. CCRs were calculated by estimating a characteristic
concentration change ΔCa,0 and a corresponding characteristic
fluctuation time tfluc (see Supplementary Note 2) based on reported
concentration−time profiles in blood plasma. Abbreviations: IL-6
(interleukin-6), PCT (procalcitonin), and CRP (C-reactive protein).
The black arrow indicates the standard parameter value for the mean
analyte concentration Ca,0 as listed in Table 1.
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oscillating concentration Ca,0(t) in the system of interest, with
concentration change ΔCa,0 for various oscillation frequencies
(see Supplementary Note 2). Figure 3a shows how diffusive
mass transport influences the concentration profile Ca(t) at the
sensor surface, by quantifying the concentration change ΔCa at
the sensor surface (top, orange line, normalized to ΔCa,0), and
the lag time Δt (bottom, orange line, normalized to the
diffusion time τD), given as a function of f (normalized to the
diffusion time τD). In the top graph, for small f, the
concentration change ratio ΔCa/ΔCa,0 is close to unity,
indicating that the concentration change at the sensor surface
is approximately equal to the concentration change in the
system of interest. Since the oscillation time 1/f is larger than
τD, the analyte molecules are evenly distributed throughout the
measurement chamber, i.e., there is no concentration gradient.
For large f, ΔCa/ΔCa,0 decreases for increasing f, which means
that the concentration change at the sensor surface is smaller
than the concentration change in the system of interest. Since
1/f is now smaller than τD, a concentration gradient is present
in the measurement chamber in the direction of H (see top
sketch). This gradient results in dispersion of analyte
molecules, which effectively reduces ΔCa. A characteristic
parameter to describe this decrease in ΔCa/ΔCa,0 is the cutoff
frequency fc , which is the frequency at which ΔCa/ΔCa,0 = 0.5
(horizontal dotted black line). In this case, the diffusion-
induced cutoff frequency f c

D is equal to f c
DτD ≅ 0.65 (vertical

dotted black line). The bottom graph shows that for f smaller
than f c

D, the observed lag time Δt is independent of f, since
within a period of 1/f, analyte molecules can be transported
throughout the measurement chamber by diffusion. This
results in a homogeneous analyte concentration in the
measurement chamber where Δt is only determined by
diffusion (Δt ∼ τD). For f larger than f c

D, a concentration
gradient is present in the measurement chamber in the
direction of H (see top sketch). Now Δt decreases according
to Δt ∝ 1/√f (dashed black line, see Supplementary Note 3),
concomitant with a reduction in ΔCa (top graph). The inset
shows the phase lag Δϕ as a function of f. For increasing f, the
absolute phase lag increases (Δϕ becomes more negative) due

to the time needed for the transport of analyte molecules from
the top of the measurement chamber to the sensor surface. For
a large f, the concentration at the sensor surface can lag
multiple cycles (Δϕ > 2π) with respect to the concentration in
the system of interest (not shown here).
Figure 3b shows how the association and dissociation of

analyte molecules to binder molecules influence the measured
signal. Mass transport effects are neglected and the
concentration profile Ca(t) at the sensor surface oscillates
with a frequency f. The top graph shows the change in
analyte−binder complex density Δγab, normalized to the
expected analyte−binder complex density change Δγabexp based
on the concentration profile Ca(t) at the sensor surface (see
Supplementary Note 4). The bottom graph shows the lag time
Δt as a function of the frequency f (normalized to the reaction
time τR). For small f, Δγab/Δγabexp is close to unity, indicating
that the affinity reaction reaches equilibrium since the
oscillation time 1/f is larger than the reaction time τR (see
Table 1). For a large f, Δγab/Δγabexp decreases, indicating that
fewer analyte molecules bind to binder molecules on the
sensor surface than expected based on Ca(t) under equilibrium
conditions. This results in a reaction-induced cutoff frequency
f c
R, at f c

RτR ≅ 0.27 (vertical dotted black line). For f smaller
than f c

R, Δt is largely independent of f. Now equilibrium is
reached, causing the lag time to be determined by the time to
equilibrium, i.e., Δt is reaction-limited (Δt ∼ τR). For f larger
than f c

R, Δt depends on f as Δt ∝ 1/f (dashed black line, see
Supplementary Note 3). The inset shows the phase lag Δϕ as a
function of f. For increasing f, the absolute phase lag increases
(Δϕ becomes more negative) since fewer analyte−binder
complexes are formed within a time 1/f. For large f, the phase
lag reaches a minimum value of Δϕ = −π/2 (horizontal black
dotted line) with respect to γab

exp since the reaction rates are
directly related to the analyte concentration Ca at the sensor
surface and therefore the phase lag cannot be more negative
(see Supplementary Note 3).
Figure 3c shows the cutoff frequency fc as a function of the

measurement chamber height H (top) and the mean analyte
concentration Ca,0 in the system of interest (bottom,

Table 1. Standard Parameter Values Used in the Finite-Element Simulationsa

parameter value description

input H 100 μm measurement chamber height
L 1 cm measurement chamber length
W 2 mm measurement chamber width
D 10−10 m2 s−1 diffusion coefficient of the analyte molecule
Q 120 μL min−1 flow rate
koff 10−2 s−1 dissociation rate constant
kon 106 M−1 s−1 association rate constant
Ca,0 10 nM mean analyte concentration in the system of interest

derived λ = L/H 100 aspect ratio of measurement chamber
τD = H2/D 100 s characteristic diffusion time
τA = HLW/Q 1 s characteristic advection time
τR = (konCa,0 + koff)

−1 50 s characteristic reaction time
Kd = koff/kon 10 nM equilibrium dissociation constant
ΔCa,0/Ca,0 0.05 (5%) relative concentration change

= =τ
τ

+
Da

k C k H

D

( )D

R

on a,0 off
2

2 Damköhler number

= =τ
τ λ

PeL
Q
DW

D

A
100 longitudinal Pećlet number

aDetails about the simulations are described in Supplementary Note 1.

ACS Sensors pubs.acs.org/acssensors Article

https://doi.org/10.1021/acssensors.1c02307
ACS Sens. 2022, 7, 286−295

289

https://pubs.acs.org/doi/suppl/10.1021/acssensors.1c02307/suppl_file/se1c02307_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssensors.1c02307/suppl_file/se1c02307_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssensors.1c02307/suppl_file/se1c02307_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssensors.1c02307/suppl_file/se1c02307_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssensors.1c02307/suppl_file/se1c02307_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssensors.1c02307/suppl_file/se1c02307_si_001.pdf
pubs.acs.org/acssensors?ref=pdf
https://doi.org/10.1021/acssensors.1c02307?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


normalized to the equilibrium dissociation constant Kd) when
both diffusion and reaction processes are considered. Standard
values for the chamber height H and mean concentration Ca,0
are indicated by the black arrows (see Table 1). For small H,
the diffusion time τD is short since analyte molecules only need
to travel a short distance from the top of the measurement
chamber to the sensor surface. This causes the observed cutoff
frequency fc to be reaction-limited where fc = f c

R ∼ 1/τR. For
large H, analyte molecules need to travel a long distance, which
causes fc to be diffusion-limited where fc = f c

D ∼ 1/τD. For small
Ca,0, the reaction is slow since the reaction time τR is
determined by the dissociation rate (see Table 1), causing fc to
be reaction-limited. For large Ca,0, τR is short since the reaction
time τR is determined by the association rate, causing fc to be
diffusion-limited. The insets show fc (normalized to the
reaction time τR) as a function of the Damköhler number
Da (see Table 1). Da is a dimensionless parameter describing
the relative contribution of reaction and diffusion to the
observed time scale (for Da ≫ 1, diffusion is slow relative to
reaction; for Da≪ 1, reaction is slow relative to diffusion). For

a high Da, the cutoff frequency is diffusion-limited, while for a
low Da, the cutoff frequency is reaction-limited.

Response of a Monitoring System with Advection-
Based Sampling. Figure 4 shows how dynamic concentration
changes generate signals in a monitoring sensor based on
advective sampling, i.e., sampling dominated by flow. Figure 4a
visualizes how diffusion and advection jointly influence the
concentration profile Ca(t) at the sensor surface. The
concentration change ΔCa at the sensor surface (top, orange
line, normalized to concentration change ΔCa,0 in the system
of interest) and the lag time Δt (bottom, orange line,
normalized to the advection time τA) are given as a function
of the oscillation frequency f (normalized to τA) of the analyte
concentration Ca,0 in the system of interest. Here, a
longitudinal Pećlet number PeL = τD/τA = 100 was assumed
(see Table 1), where PeL describes the relative contribution of
diffusion and advection to the transport process (for PeL ≫ 1,
diffusion is slow relative to advection; for PeL ≪ 1, advection is
slow relative to diffusion). In the top graph, for small f, ΔCa/
ΔCa,0 equals unity, indicating that the concentration is evenly

Figure 3. Response of a biomolecular monitoring system with continuous analyte exchange by diffusion-based sampling. (a) Frequency response
when only diffusion is considered. Top graph: concentration change ΔCa at the sensor surface (normalized to the concentration change ΔCa,0 in
the system of interest) as a function of the frequency f (normalized to the diffusion time τD). The diffusion-induced cutoff frequency f c

D (horizontal
dotted black line) is f c

DτD ≅ 0.65 (vertical dotted black line). Bottom graph: lag time Δt (normalized to the diffusion time τD) as a function of f
(normalized to the diffusion time τD). For large f, Δt scales as Δt ∝ 1/√f (dashed black line, see Supplementary Note 3). The inset shows the
phase lag Δϕ as a function of f. The sketch above the graphs visualizes a measurement chamber with a concentration flux Ja caused by a
concentration gradient (orange gradient). (b) Frequency response when only the surface reaction is considered. Top graph: analyte−binder
complex density change Δγab (normalized to the expected analyte−binder complex density change Δγabexp, see Supplementary Note 4) as a function
of f (normalized to the reaction time τR). The reaction-induced cutoff frequency f c

R is f c
RτD ≅ 0.27 (vertical dotted black line). Bottom graph: lag

time Δt (normalized to the reaction time τR) as a function of f (normalized to the reaction time τR). For large f, Δt scales according to Δt ∝ 1/f
(dashed black line, see Supplementary Note 3). The inset shows the phase lag Δϕ as a function of f, where Δϕ reaches a maximum negative value
(see Supplementary Note 3). The sketch above the graphs visualizes a measurement chamber with an oscillating concentration Ca(t) at the sensor
surface and a resulting oscillating analyte−binder complex density γab. (c) Cutoff frequency fc as a function of measurement chamber height H
(top) and mean analyte concentration Ca,0 in the system of interest (bottom). Top graph: for small H, fc is reaction-limited, where fc = f c

R ∼ 1/τR,
while for large H, fc is diffusion-limited with fc = f c

D ∼ 1/τD. The inset shows fc, normalized to the reaction time τR, as a function of the Damköhler
number Da, with fc = f c

D = α1/τD and α1 ≅ 0.65 (dashed black line, cf. panel a). Bottom graph: for low Ca,0, fc is reaction-limited and fc = f c
R ∼ 1/τR,

while for high Ca,0, fc is diffusion-limited with fc = f c
D ∼ 1/τD. The inset shows fc, normalized to the diffusion time τD, as a function of Da with fc = f c

R

= α2/τD and α2 ≅ 0.27 (dashed black line, cf. panel b). Note that using standard parameter values as listed in Table 1, the full range of Da cannot be
reached by only changing Ca,0 because τR becomes dissociation rate-limited when Ca,0 ≪ Kd (see Table 1); therefore, koff was varied instead. The
black arrows indicate standard parameter values as listed in Table 1.
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distributed throughout the measurement chamber. For a large
f, ΔCa/ΔCa,0 decreases, which indicates a concentration
gradient in the measurement chamber perpendicular to the
velocity profile. This results in an advection-induced cutoff
frequency f c

A (horizontal dotted black line), which can be
found at f c

AτA ≅ 0.39 (vertical dotted black line). Note that the
advection-induced cutoff frequency roughly equals f c

A = 100·f c
D

since PeL = 100, where f c
D is the cutoff frequency for a

monitoring system with diffusion-based sampling (cf. Figure
3). In the bottom graph, for a small f, the observed lag time Δt
of the concentration at the sensor surface compared to the
concentration in the system of interest is largely independent
of f since the analyte concentration is homogeneous in the
measurement chamber, causing the lag time to be advection-
limited (Δt ∼ τA). For f larger than f c

A, a concentration
gradient is present in the measurement chamber, causing a loss
in ΔCa due to dispersion of the analyte molecules. Here, Δt

depends less on the frequency f (Δ ∝t f1/ 3 , dashed black
line) compared to Figure 3a,b since the observed time lag is
caused by both advection and diffusion, where the contribution
of advection is independent of f (see Supplementary Note 3).
Furthermore, diffusion occurs on a length scale smaller than H,
reducing its contribution to the frequency dependency. The
inset shows the same data visualized as the phase lag Δϕ as a
function of f. For increasing f, the absolute phase lag increases
(Δϕ becomes more negative) due to the time needed to
transport analyte molecules from the bulk of the measurement
chamber to the sensor surface. For large f, Ca(t) can lag for
multiple cycles with respect to Ca,0(t) (not shown here),
though ΔCa decreases sharply due to dispersion for f > f c

A (see
top graph).
Figure 4b visualizes cutoff frequency fc as a function of flow

rate Q measured at two positions, namely, in the bulk of the
measurement chamber (position 1, dark brown line) and at the

Figure 4. Response of a biomolecular monitoring system with continuous analyte exchange by advection-based sampling. (a) Frequency response
when only diffusion and advection are considered, for an advection-dominated sensor geometry with PeL = 100 (see Table 1). Top graph:
concentration change ΔCa at the sensor surface, normalized to the concentration change ΔCa,0 in the system of interest, as a function of the
frequency f (normalized to the advection time τA), measured at the sensor surface at distance L/2 from the inlet (see also the sketch in panel b).
The diffusion-induced cutoff frequency f c

D is taken from Figure 3a, and the advection-induced cutoff frequency f c
A is found to be f c

AτA ≅ 0.39
(vertical dotted black line) and roughly equals f c

A = 100·f c
D. Bottom graph: lag time Δt, normalized to τA, as a function of the frequency f,

normalized to τA. For large f, Δt scales according to Δ ∝t f1/ 3 (black dashed line). (b) Cutoff frequency as a function of flow rate Q when only
diffusion and advection are taken into account, measuring in the middle in the bulk of the measurement chamber at height H/2 (dark brown line)
and at the sensor surface of the measurement chamber (orange line) both at distance L/2 from the inlet. For increasing Q, measuring in the bulk
results in an advection-limited cutoff frequency (dashed black lines). The inset shows the same data with the observed cutoff frequency fc ,
normalized to the advection time τA, as a function of the longitudinal Pećlet number PeL. For small PeL, fc for both bulk and surface measurements
are comparable with fc = f c

D. For increasing PeL, fc increases due to a higher flow rate, until the system becomes advection-limited. Measuring at the
sensor surface results in a weaker dependency on τA than 1/τA. (c) Cutoff frequency fc as a function of chamber height H with a fixed chamber
length L (top) and mean analyte concentration Ca,0 in the system of interest (bottom) for a sensor when diffusion, advection, and reaction are taken
into account. Top graph: for small H, fc is reaction-limited where fc = f c

R ∼ 1/τR, while for large H, fc is diffusion-limited with fc = f c
D ∼ 1/τD. The

inset shows the same data with the cutoff frequency fc, normalized to the reaction time τR, as a function of the Damköhler number. Bottom graph:
for H = 100 μm (see Table 1), the cutoff frequency is reaction-limited (top graph). Therefore, for low Ca,0, fc is dissociation rate-limited and fc = f c

R

∼ koff, while for high Ca,0, fc is association rate-limited with fc = f c
R ∼ konCa,0. The inset shows the same data with the cutoff frequency fc, normalized

to the diffusion time τD, as a function of the Damköhler number. fc becomes diffusion-limited at Da≫ 1 and reaches a plateau level larger than fcτD
= 1 (cf. Figure 3c) since τD = H2/D, while the actual distance over which molecules decreases for increasing Q. Note that using the standard
parameter values in Table 1, the full range of Da cannot be reached by only changing Ca,0 because τR becomes dissociation rate-limited when Ca,0 ≪
Kd (see Table 1); therefore, koff was varied instead. The black arrows indicate standard parameter values as listed in Table 1.
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surface of the measurement chamber (position 2, orange line).
The black arrow indicates the standard parameter value for Q
as listed in Table 1. The inset shows the same data with fc
(normalized to τA) as a function of PeL. For a small Q, there is
a concentration gradient in the longitudinal direction since the
distance over which molecules need to diffuse to the sensor
surface is smaller compared to the situation in Figure 3. This
results in an advection-limiting process at PeL < 1 with a
constant fc. For increasing Q, the observed fc becomes different
when measuring in the bulk or at the sensor surface. For
measuring in the bulk, an increased Q results in a change of the

shape of the concentration gradient, namely, perpendicular to
the velocity profile (top sketch, dashed black profile) instead of
in the longitudinal direction. The flow rate where fc becomes
advection-limited depends on the measurement chamber
geometry: for a small L, fc is advection-limited at small flow
rates since the distance over which molecules need to be
transported is small. For measuring at the sensor surface, the
stationary layer becomes smaller for increasing Q effectively
decreasing the distance over which the molecules need to
diffuse to the sensor surface. This effect results in fc scaling
with the advection time less than 1/τA (see the main graph,

Figure 5.Measuring concentration-time profiles using two modes of continuous analyte exchange. (a) Limit of quantification of CCR (LoCCR) as
a function of frequency f in a monitoring system with continuous analyte exchange by diffusion-based sampling (top) and by advection-based
sampling (bottom). The insets show the same data with the concentration change ΔCa,0 as a function of f. For a low f, the precision of the CCR is
limited by Poisson noise (dashed black line). For increasing f, the lines start to deviate since the frequencies become higher than the corresponding
cutoff frequencies. (b) Concentration-time profiles for a measurement chamber height H = 200 μm (brown line) and H = 800 μm (orange line),
and the true analyte concentration (black dotted line), for diffusion-based analyte exchange. The bottom graphs show the frequency spectrum with
the CCR component as a function of frequency. For a small H, the concentration-time profile closely resembles the true concentration-time
profiles. However, for a large H, the similarity is only visible at low frequencies; at high frequencies, the measured CCR is close to 0, indicating that
sinusoidal components with these frequencies are not present in the measured signal. (c) Concentration-time profiles for a measurement chamber
with flow rate Q = 10 μL/min (brown line) and Q = 0.1 μL/min (orange line), and the true analyte concentration (black dotted line, behind the
brown line), for advection-based analyte exchange. The bottom shows the frequency spectrum. For both flow rates, the concentration-time profile
closely resembles the true concentration-time profile. (d, e) LoCCR as a function of f and the corresponding concentration-time profiles for
diffusion-based analyte exchange (d) and advection-based analyte exchange (e), where koff = 10−3 s−1 (compared to koff = 10−2 s−1 in panels (a) and
(b), see Table 1). Due to higher cutoff frequencies, the similarity of the measured concentration-time profiles is less compared to panels (b) and
(c).
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dashed black lines) and that the normalized cutoff frequency fc
decreases (see inset).
Figure 4c visualizes the cutoff frequency fc as a function of

the flow rate Q (top) and the mean analyte concentration Ca,0
in the system of interest (bottom), where diffusion, advection,
and reaction are included. Standard values for the flow rate Q
and mean concentration Ca,0 are indicated by the black arrows
(see Table 1). In the top graph, for a low Q, the cutoff
frequency is advection-limited, where fc = f c

A ∼ 1/τA. For a
large Q, the cutoff frequency is limited by a combination of
diffusion and reaction. The inset shows the same data with fc
(normalized to the advection time τA) as a function of PeL. In
the bottom graph, for a low Ca,0, the reaction is slow, which
causes the observed cutoff frequency fc to be dissociation rate-
limited, where fc = f c

R ∼ koff. For a large Ca,0, the reaction is
association rate-limited, where fc = f c

R ∼ konCa,0. The inset
shows the same data with fc (normalized to the diffusion time
τD) as a function of the Damköhler number Da. For a small
Da, the cutoff frequency is reaction-limited (dashed black line).
For a large Da, the cutoff frequency becomes diffusion-limited.
Continuous Biomolecular Monitoring for Arbitrary

Concentration Profiles. The measured concentration profile
of a monitoring sensor should resemble as closely as possible
the true concentration profile of the analyte. While Figures 3
and 4 discussed the effects of diffusion, advection, and reaction
on the cutoff frequency and lag time, the question remains how
these processes influence an actual concentration profile and
the differences between the measured and the true
concentration profiles. Here, we study an insulin concentration
profile with standard parameter values listed in Table 1 as an
example (see Supplementary Note 6). In this paper, the rate
sensitivity is quantified as the limit of quantification of CCR
(LoCCR), i.e., the smallest CCR that can be measured with an
error of 10% (see Supplementary Note 5). The LoCCR is
calculated assuming a sensor with noise that is dominated by
Poisson statistics, with a signal collection area As = 1 mm2, and
a binder density Γb = 10−9 mol m−2. Poisson noise represents
the fundamental limit of the precision that can be achieved in a
biosensor due to stochastic fluctuations in the number of
detected analyte molecules.28,29

Figure 5 shows the collective influence of diffusion,
advection, and reaction on LoCCR and the measured
concentration profile, for different measurement chamber
heights H (in the case of diffusion-based analyte exchange)
and for different flow rates Q (in the case of advection-based
analyte exchange). Figure 5a shows LoCCR as a function of
frequency f, for diffusion-based sampling (top) and advection-
based sampling (bottom). The top graph shows results for
measurement chamber heights H = 200 μm (dark brown) and
H = 800 μm (orange). For a low f, LoCCR equals the value
found for Poisson noise only (dashed black line, see also
Supplementary Note 5), which is due to the fact that the
sensor reaches equilibrium and no dispersion occurs (cf. Figure
3). For increasing f, the results depend on the measurement
chamber height because a small H gives a larger cutoff
frequency (see Figure 3c). Here, both lines deviate from the
Poisson limit since equilibrium is not reached within a time
equal to 1/f, resulting in fewer analyte−binder complexes. The
inset shows the same data with the minimum concentration
change ΔCa,0 that can be quantified with an error of less than
10% as a function of frequency f. The bottom graph shows
advection-based sampling with flow rates Q = 10 μL/min (dark
brown) and Q = 0.1 μL/min (orange).30−32 Here, the lines

deviate from the Poisson limit at higher frequencies compared
to diffusion-based sampling since the cutoff frequency is higher
in advection-based sampling compared to diffusion-based
sampling (see Figures 3c and 4c). The inset shows the same
data with the minimum concentration change ΔCa,0 that can
be quantified with an error of less than 10% as a function of
frequency f.
Figure 5b shows a typical insulin profile (dotted black line)

and corresponding measured insulin profiles, using diffusion-
based analyte exchange and the standard parameter values
listed in Table 1. The bottom graphs show the frequency
spectrum of the true and measured insulin profiles plotted as
CCR components (see Supplementary Note 2). For H = 200
μm (brown line), the measured concentration profile is almost
identical to the true concentration profile since the cutoff
frequency fc = 9 × 10−4 Hz (see Figure 3c) is higher than the
frequencies present in the true insulin profile (see bottom
graphs, left). For H = 800 μm (orange line), the true
concentration profile cannot be accurately reconstructed, only
the general up-and-down trend at a 6-hour interval, since the
cutoff frequency fc = 1 × 10−4 Hz (see Figure 3c) is close to
the frequencies in the insulin profile (see bottom graphs,
right). Also, the average lag time Δt of the measured signal is
smaller for H = 200 μm than for H = 800 μm since a smaller
distance requires less time for diffusion.
Figure 5c shows the results for advection-based analyte

exchange, for flow rates Q = 10 μL/min (dark brown) and Q =
0.1 μL/min (orange). In both cases, the measured insulin
profile is similar to the true insulin profile since the cutoff
frequencies are fc = 7 × 10−3 Hz and fc = 8 × 10−4 Hz,
respectively (see Figure 4c, top). The strong similarities are
also visible in the frequency spectrum (bottom panel).
Figure 5d,e investigates the limits of dynamic monitoring

when affinity binders with very high affinity are used, i.e.,
binders with a very low dissociation rate constant (koff = 10−3

s−1), which is relevant to study when low-concentration
analytes need to be measured. Figure 5d shows simulation
results for diffusion-based sampling. The data show that the
lower dissociation rate constant causes a lower cutoff
frequency, a longer lag time, and a higher LoCCR (see
Supplementary Note 5). The reversibility of the sensor is
worse, particularly for a large measurement chamber height (H
= 800 μm) because the large volume of the measurement
chamber contains many analyte molecules. Figure 5e shows
results for advection-based sampling. The flow rate increases
the rate of exchange of the large volume above the sensor
surface. A flow rate as low as 0.1 μL/min already significantly
improves the dynamic performance of the sensor. A flow rate
of 10 μL/min gives small differences between the measured
and real concentrations with a lag time that is very close to 1/
koff = 1/(10−3 s−1) = 17 min.

■ CONCLUSIONS
To measure in real time the dynamic changes of biomolecular
concentrations in biological systems or biotechnological
processes, monitoring sensors are required that reveal reliable
concentration−time profiles. We have studied the influence of
sensor design parameters on the differences between the true
and the measured concentration−time profile, focusing on the
lag time of the sensor signal with respect to the input
concentration and on the rate sensitivity. To quantify a rate
sensitivity, we introduced the concept of concentration change
rate (CCR), which is expressed in the units molar per second.
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The CCR that needs to be resolved differs strongly between
different biomolecular monitoring applications, due to their
respective concentration changes and fluctuation times. The
limit of the measurable concentration change rate was
evaluated as the limit of CCR (LoCCR), i.e., the lowest
CCR that can be quantified with a precision of 10%.
In this work, we have presented a comprehensive method-

ology to study the properties and limitations of dynamic
measurements using affinity-based sensors, as these represent a
very generic and broad class of bioanalytical measurement
techniques. Analyte exchange was considered between the
system of interest and the sensor by diffusive as well as
advective sampling. Finite-element simulations were used to
describe the spatial and temporal dependency of analyte
concentration within the measurement chamber. Sinusoidal
concentration−time profiles were studied as well as arbitrary
concentration−time profiles by frequency decomposition.
Using this approach, the effects of mass transport and
biochemical kinetics on the speed of concentration change,
time delays, and concentration errors in the sensing system
were studied.
The study of sensor performance was exemplified for insulin

monitoring. The results show that diffusion-based sampling
performs equal to advection-based sampling in reconstructing
the concentration−time profile for small heights of the
measurement chamber (<200 μm). However, for larger
heights, diffusion-based sampling causes an increased lag
time and decreased CCR sensitivity. A monitoring system with
advection-based sampling performs similarly with respect to
the CCR sensitivity for flow rates down to ∼0.1 μL min−1,
while the lag time is larger for low flow rates.
For low concentrations of biomolecules, fewer molecules are

available for the detection and therefore continuous monitor-
ing sensors with single-molecule resolution are suitable because
these sensors can have Poisson-limited noise levels and
therefore a high detection sensitivity. In the case of binder
molecules with a high affinity (koff = 10−3 s−1), the analytical
performance deteriorates for diffusion-based sampling, but not
for advection-based sampling with flow rates of 10 μL min−1

and higher, allowing the measurement of all CCR components
present in an insulin concentration−time profile.
The results and learnings presented in this paper can assist

researchers to identify the most important processes
influencing the performance of continuous monitoring sensors.
As a next step, it will be interesting to compare the simulation
results to experimental data, for example, on how concen-
tration−time profiles with different frequency components
affect the observed signals. Insights into the individual and
combined influence of analyte diffusivity, analyte concen-
tration, binder affinity, sampling method, measurement
chamber geometry, and flow speed on the observed lag time
and rate sensitivity of the measured concentration−time profile
will help researchers to develop monitoring systems with
desirable sensor characteristics for a diverse range of
biomarkers and applications.
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