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Place cell maps slowly develop via competitive
learning and conjunctive coding in the dentate
gyrus
Soyoun Kim1,2, Dajung Jung 1,3 & Sébastien Royer1,4✉

Place cells exhibit spatially selective firing fields that collectively map the continuum of

positions in environments; how such activity pattern develops with experience is largely

unknown. Here, we record putative granule cells (GCs) and mossy cells (MCs) from the

dentate gyrus (DG) over 27 days as mice repetitively run through a sequence of objects fixed

onto a treadmill belt. We observe a progressive transformation of GC spatial representations,

from a sparse encoding of object locations and spatial patterns to increasingly more

single, evenly dispersed place fields, while MCs show little transformation and preferentially

encode object locations. A competitive learning model of the DG reproduces GC transfor-

mations via the progressive integration of landmark-vector cells and spatial inputs

and requires MC-mediated feedforward inhibition to evenly distribute GC representations,

suggesting that GCs slowly encode conjunctions of objects and spatial information via

competitive learning, while MCs help homogenize GC spatial representations.
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Principal cells in the hippocampus exhibit spatially selective
firing fields called “place fields” that collectively map the
continuum of positions in environments1. How such

activity patterns emerge during learning is a fundamental ques-
tion. The granule cell (GC) population of the dentate gyrus (DG)
is the first processing stage of the hippocampal trisynaptic loop;
accounts for nearly half of the neurons in the mammalian hip-
pocampus2; locally interacts with GABAergic interneurons and
mossy cells (MCs), a small population of excitatory neurons
located in the hilus (104 MCs versus 106 GCs in rodents)3–5;
and is largely believed to perform pattern separation6–10 on
inputs from the entorhinal cortex (EC) via the generation of
sparse-orthogonal output patterns11–15 and to assist memory
formation in the CA3 via powerful GC-to-CA3 synapses4,5,7,8,16.
Recently, several methods were developed to segregate and assess
the spatial representations of specific DG cell types, leading to
reports of clear differences between GCs and MCs in terms of the
scale, sparseness, stability and remapping of spatial representa-
tions11–15,17. An emerging picture is that the GCs generate spatial
representations that are relatively stable over time and consist
predominantly of a small and unique place field, whereas the MCs
generate several large place fields that are strongly altered by
small changes in the environments; moreover, the GCs efficiently
differentiate the environments via the recruitment of small
context-specific cell ensembles, whereas the MCs engage large cell
ensembles that largely overlap across contexts11–15,17. However,
the fundamental question on how these diverse spatial repre-
sentations develop during the learning of an environment remain
largely untested.

A theory postulates that the place fields of GCs are generated
through competitive learning18,19, that is, through the combina-
tion of competition between GCs, mediated by feedback inhibi-
tion, and Hebbian synaptic plasticity at the level of EC-to-GC
inputs. In support of this theory, single place field representations
emerge automatically in network models featuring GC competi-
tion when EC synaptic weights are recursively updated by Heb-
bian synaptic plasticity mechanisms18,19. Furthermore, object and
spatial information is hypothesized to be integrated at the level of
the GCs8,20. Inputs from both the medial (MEC) and lateral
(LEC) divisions of the EC converge onto GCs5, and are largely
believed to supply diverse types of spatial and non-spatial
information. Given that landmark-vector cells (or object-vector
cells) in the MEC21 and LEC22 encode animal spatial relation-
ships with objects, that most cells in the MEC show spatial
activity23, and that grid cells in MEC exhibit periodic firing fields
that convey spatial information related to path integration24,25,
GCs might be able to bind object and spatial information via the
integration of inputs from landmark-vector cells, grid cells and
non-grid spatial cells in the EC. Finally, MCs receive direct inputs
from the CA3, semilunar GCs and possibly the EC26,27 and are
particularly well positioned to shape GC activity via both direct
and indirect connections. In particular, MC-to-GC feedforward
inhibition27–33 is expected to affect GC competition and thus
competitive learning in the GC network.

To investigate the development of DG spatial representations
during the learning of an environment, we recorded putative GCs
and MCs over 27 days as mice ran head-fixed on a long treadmill
enriched with visual-tactile landmarks34. Such an apparatus
is particularly suited for differentiating spatial mechanisms35,36

and assessing learning effects since the animal trajectory is con-
sistent across trials and the spatial information is reduced to a
sequence of individual landmarks fixed on the belt and path
integration. We analyzed how spatial representations evolved
over days as mice learned the belt layout and, subsequently, how
cells encoded other belt layouts. To test the contributions of
competitive learning, EC inputs and MCs, we implemented a

competitive learning model of the DG that received inputs from
EC object-vector cells, grid cells and non-grid spatial cells, and
explored the mechanisms and parameters critical to reproduce
the experimental data. Our findings suggest that a slow integra-
tion of spatial cell and landmark-vector cell inputs, achieved via
competitive learning, is the mechanism underlying both the
emergence of single place field representations and the con-
tinuous mapping of the space by GCs, while an increase in MC
feedforward inhibition in the cue locations is required to ensure a
uniform distribution of GC representations.

Results
Identification of putative GCs and MCs. We recorded neuronal
activity during treadmill running every day for 27 days using a 6-
shank silicon probe (64 channels) implanted in the DG of the
right brain hemisphere (Fig. 1a, b; Supplementary Fig. 1). A total
of 4003 cells were isolated (from 4 mice, 16 sessions per mouse)
following standard criteria for unit detection and clustering37,38.
In addition, to help identify putative GCs and MCs, we used a
previous data set in which a subset of GCs and MCs expressed the
Chronos opsin (via AAV/hSyn-Flex-Chronos-GFP injections in
POMC-Cre and DRD2-Cre mice, respectively) and showed
excitatory responses to light stimuli (18 POMC light-excited cells
from 3 mice and 33 DRD2 light-excited cells from 2 mice)17.

To identify putative GCs and MCs, we assessed differences in
cells’ spike autocorrelogram (ACG) and spike relationship with
hilar local field potential gamma (30–80 Hz) oscillations (Sup-
plementary Fig. 2a–d), as previously17. We measured an ‘ACG
refractory gap’ (defined as the duration for the ACG to reach 75%
of its peak value; Supplementary Fig. 2a), a gamma coupling
index (defined as the difference in gamma power between
window periods within [−10 to +10 ms] and outside [+40 to
+100 ms] epochs of maximal firing activity; Supplementary
Fig. 2d) and the mean spike gamma phase for each cell and
examined the cell clustering and overlap with POMC/DRD2
light-excited cells and putative excitatory neurons (detected from
short-latency peaks in cell-pair cross-correlograms)39. First, some
cells were categorized as putative interneurons (n= 248) based on
their high firing rate, short ACG refractory gap and lack of
overlap with putative excitatory neurons (Supplementary Fig. 3a)
and were excluded from the next analysis. Then, putative GCs
(n= 2323) were characterized by short ACG refractory gaps, high
gamma coupling indexes, a preference to discharge before the
troughs of gamma oscillations and overlap with POMC light-
excited cells (Fig. 1c, d; Supplementary Fig. 3b–e). In contrast,
putative MCs (n= 408) were characterized by large ACG
refractory gaps (consistent with in vivo intracellular recording
data)40, low gamma coupling indexes, a preference to discharge
before the peaks of gamma oscillations, and overlap with DRD2
light-excited cells. Consistent with anatomical figures, putative
GCs were located closer to the reversal point of LFP type-2
dentate spikes (DS2) above the granule cell layer, while putative
MCs were relatively deeper in the positive phase of DS2, i.e., in
the hilus41 (Fig. 1e); accordingly, on shanks where both putative
GCs and MCs were detected, MCs were located on average 31.5 ±
1.5 µm below GCs (t824= 20.6, p= 2e−76, two-tailed paired t test,
n= 47 shanks, average over all GC-MC combinations; Fig. 1f,
top). Furthermore, a group of unclassified cells showing short
ACG refractory gaps similar to those of GCs and similar gamma
relationships to those of MCs (n= 168; Supplementary Fig. 3b)
were found on average 43.8 ± 2.7 µm below GCs (t300= 16.2, p=
5e−43, two-tailed paired t test, n= 13 shanks; Fig. 1f, bottom),
suggesting these cells might be pyramidal cells from CA3. Finally,
a number of cells (n= 164) were not included in this
classification because the number of spikes discharged was too
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low (<50 spikes) to reliably measure ACG refractory gaps and
gamma phases.

Progressive transformation of GC firing fields over days. To
investigate place cell activity during familiarization with the belt
layout, mice were trained to run head-fixed for a water reward on
an empty 150-cm-long belt for a week and then were introduced
to a 201-cm-long belt displaying visual-tactile landmarks (Fig. 2a;
Supplementary Fig. 4). The landmarks consisted of 5-cm-long
arrays of small erect objects that lined both edges of the belt and
provided visual-tactile stimulation to both sides of the mice. We
used three types of landmarks: an array of shrink tubes, an array
of Velcro pieces, and an array of glue spines. To detect cell
activity associated with a given landmark, each landmark was
fixed to two locations of the belt. A water reward was delivered

through a lick port on every trial (belt cycle) at the same belt
position (position 0 cm).

We distinguished four types of place field activity among GCs
(Fig. 2b, c): (1) single place field cells; (2) unspecific cells, which
exhibited several firing fields with no apparent periodicity or
relationship with landmarks; (3) landmark-vector (LV) cells,
which, similar to LV cells in the EC and CA1 (refs. 21,35), encoded
spatial relationships with landmarks; and (4) periodic cells, which
exhibited three periodic firing fields with similar periodicity but
various offsets.

GC representations gradually transformed across days
(Fig. 3a–c). On day 1, a few GCs exhibited place fields (1.6 ±
0.5% single and 5.8 ± 2.2% multiple-field cells (n= 14 GCs)) and
were mostly LV cells and periodic cells (Fig. 3b, c; among
multiple-field cells, 43.3 ± 19.0% LV, 44.4 ± 22.2% periodic and
12.2 ± 6.2% unspecific cells). Then, the fraction of GCs with place
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Fig. 1 Recording of putative GCs and MCs. a Left, 3D representation of the mouse brain (Allen Mouse Brain Institute; www.alleninstitute.org) showing
recording electrode configuration in the dentate gyrus (light green). Dark green, cornus ammonis (CA). Right, the electrode positions (ellipsoid) relative to
the lateral/medial edges of the granule cell layer (dashed lines) for all mice. b Left, scheme showing the location of the hilus and granule cell layer on a
coronal section of the hippocampus. Right, layout of recording sites for a shank of the silicon probe and profile of local field potential dentate spike 2 (LFP
DS2). Red arrow, position of DS2 reversal. c 3D scatter plot for cells’ spike gamma phase, ACG refractory gap and gamma coupling index. Putative MCs
(orange dots) and GCs (light blue dots) are identified by overlap with DRD2 (red filled circle) and POMC (blue circle) light-excited cells. d Spike ACGs
(upper, color-coded representation of individual cell; lower, population average) for putative GCs (blue), MCs (red) and inhibitory cells (green). e Layout of
LFP DS2 (upper) and putative GCs and MCs (lower) along the silicon probe shanks for one session. f Top, distribution of depth differences for all possible
pairs of putative GCs and MCs recorded concurrently on the same shanks (n= 825 pairs). Bottom, same analysis between GCs and the population of
unclassified cells in panel (c) (n= 301 pairs). Arrows, the means. P-values, two-tailed paired t test.
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fields progressively increased via an increase in unspecific
and single-field GCs, reaching a plateau after 5 and 10 days,
respectively, while the fraction of LV cells and periodic
cells decreased (Fig. 3b, c; for days 13–20, 20.2 ± 3.3% single
and 11.8 ± 1.6 multiple-field cells (n= 41 GCs); among multiple-
field cells, 21.0 ± 5.3% LV, 1.7 ± 1.7% periodic and 77.4 ± 5.6%
unspecific cells). Moreover, the peak firing rates of the two fields
of LV cells became increasingly uneven (Fig. 3d; n= 53, r=−0.5,
p= 1e−4, Pearson’s correlation; peak rate ratio on day 1 versus
days 13–20, 81.8 ± 5.8% (n= 6 LV cells) versus 36.8 ± 5.3% (n=
10 LV cells), t14= 5.5, p= 8e−5, two-tailed unpaired t test).

Emergence and extinction of firing fields within sessions. The
increase of single-field representations and the reduced propor-
tion of LV and periodic cells implies that new place fields
emerged and that existing place fields became extinct. Both place
field emergence and extinction events could be observed within
sessions (see Methods, Fig. 4a) and produced preferentially
incremental changes in the number of firing fields in each cell
(Fig. 4b, F1,48= 4.5, p= 0.04, two-way ANOVA). Place field
emergences were characterized by a steep rise of the in-field rate

to a plateau value (Fig. 4c) and occurred preferentially at the
beginning of the sessions (Fig. 4d; percent of events before versus
after trial 30, 75.6 ± 10.2% versus 24.4 ± 10.2%, t15= 2.5, p= 0.02,
two-tailed paired t test), while place field extinctions were pre-
ceded by gradual decreases in the in-field firing rate (Fig. 4c;
change in firing rate from trial −50 to −1 before extinction, r=
−0.75, p= 5e−10, Pearson’s correlation) and mostly occurred late
in the sessions (Fig. 4d; percent of events before versus after trial
30, 20.8 ± 8.9% versus 79.2 ± 8.9%, t15=−3.3, p= 5e−3, two-
tailed paired t test).

Importantly, emergence and extinction rates changed across
days, which was consistent with the gradual transformation of GC
representations. While both emergence and extinction rates
decreased across days (Fig. 4e; F8,42= 3.7, p= 2e−3, two-way
ANOVA, emergence rate across days 1–7 versus days 10–20,
43.1 ± 6.6% versus 19.9 ± 5.1%, t24= 2.8, p= 0.01, two-tailed
unpaired t test; extinction rate, 34.6 ± 5.6% versus 21.5 ± 3.5%,
t24= 2.0, p= 0.06, two-tailed unpaired t test), the emergence rate
was initially higher than the extinction rate and reached an
equivalent level after 7 days (emergence versus extinction, days
1–7, t4= 5.0, p= 7e−3; days 10–20, t3=−0.26, p= 0.81, two-
tailed paired t test), matching the increase in and stabilization of
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place cells observed in Fig. 3c. This effect was also observable in
the matrix concatenation of in-field firing rates for all GC place
fields, sorted by time of field emergence or extinction (Fig. 4f) and
was also revealed by distinct profiles of average in-field rate for
days 1–7 and 10–20 (Fig. 4g).

Changing the belt. The gradual transformation of GC repre-
sentations might be associated with the development of an
engram specific to the particular features of the belt. To test the
dependence of place cell activity on belt features, after day 21, we
recorded the same neurons across three consecutive sessions
using three distinct belt layouts: the original belt layout; a reor-
dered belt, presenting the same landmarks as the original belt but
in a rearranged order; and a novel belt, which was a different
length (211 cm) and presented a new set of landmarks (Fig. 5a).

Consistent with the idea that an engram specific to the layout
of the original belt was created, GCs exhibiting single place fields
were less frequent in sessions using the reordered and novel
belts than in sessions using the original belt (Fig. 5b; original belt,
15.4 ± 2.3%, 15.8 ± 1.6%; reordered belt, 10.6 ± 2.3%, 12.7 ± 3.3%;
novel belt, 8.1 ± 2.5%, 6.7 ± 2.2% for days 22–24 and 25–27
respectively; F2,68= 6.0, p= 4e−3, two-way ANOVA; original
vs. reordered, t23= 1.7, p= 0.10; original vs. novel, t23= 5.0, p=
4e−5, ad hoc two-tailed paired t test; across days 22–27); for LV
cells, the magnitude of the two firing fields was more similar in
sessions using the reordered and novel belts than in sessions
using the original belt (Fig. 5c; peak rate ratio, original belt,
0.50 ± 0.11 (n= 8, days 22–24), 0.53 ± 0.13 (n= 3, days 25–27);
reordered belt, 0.74 ± 0.08 (n= 6, days 22–24), 0.75 ± 0.07 (n= 8,

days 25–27); novel belt, 0.69 ± 0.07 (n= 6, days 22–24), 0.74 ±
0.11 (n= 3, days 25–27); F2,30= 3.5, p= 0.04, two-way ANOVA;
original vs. reordered, t23= 2.5, p= 0.02, original vs. novel, t18=
1.8, p= 0.08, ad hoc two-tailed unpaired t test; average across
days 22–27). However, the fraction of single-field cells was higher
in sessions using the reordered belt than in those using the new
belt (t23= 2.1, p= 0.04, ad hoc two-tailed paired t test),
suggesting that the engram may have helped place field
generation for other belts according to the degree of belt
similarity.

Furthermore, a relationship was apparent between the number
of place fields and the number of belts represented by each cell
(Fig. 5d). Cells exhibiting multiple place fields tended to show
place fields for several belts, while cells exhibiting single place
fields tended to be active in only one belt (average number of belts
represented by multiple-field cells, 2.06 ± 0.11 (n= 50, days
22–24), 2.02 ± 0.12 (n= 41, days 25–27), and by single-field cells,
1.38 ± 0.09 (n= 48, day 22–24), 1.30 ± 0.10 (n= 44, day 25–27);
t96= 4.7, p= 9e−6, t83= 4.8, p= 6e−6, for days 22–24 and 25–27
respectively, two-tailed unpaired t test).

Representations of MCs and CA3 cells. We distinguished three
types of firing activity patterns among MCs: (1) cells with a single
place field, (2) cells with multiple place fields, and (3) cells with
relatively high firing rates (i.e., a mean firing rate >3 Hz) but low
spatial modulation (Fig. 6a, see Methods). In contrast to GCs, the
fraction of MCs showing firing activity on the belt was initially
high (70.6 ± 10.7% of MCs compared to 7.3 ± 2.7% of GCs on day
1; t3= 6.4, p= 7e−3, two-tailed paired t test) and did not change
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significantly across days (Fig. 6b; days 1–3 versus days 13–20,
67.3 ± 4.3% (n= 12) versus 64.5 ± 7.5% (n= 12); t22= 0.3, p=
0.8, two-tailed unpaired t test); and for all sessions, spatially
modulated MCs showed mostly multiple firing fields (Fig. 6b–d),
even though the number of fields per cell decreased across
days (Fig. 6c; days 1–7 versus days 10–20, 4.44 ± 0.22 versus
3.51 ± 0.25 fields per cell; n= 52 and 39, respectively, t89= 2.8,
p= 7e−3, two-tailed unpaired t test).

Unexpectedly, MC firing fields were strongly modulated by the
landmarks, as they were repeated at multiple landmark positions
with little spatial offset from the landmarks (Fig. 6d). Accord-
ingly, both the distribution of field-to-landmark distances and the
averaged cell firing rate maps showed clear peaks in landmark
positions for MCs, but not for GCs, an effect that was reduced
but still prominent during later sessions (Fig. 6e, f; fraction

of fields with peak <5 cm from landmarks, days 1–7, MCs,
70.2 ± 5.0% (n= 19), GCs, 50.0 ± 5.4% (n= 19), t36= 2.8,
p= 9e−3; days 10–20, MCs, 49.6 ± 5.8% (n= 12), GCs, 43.4 ±
4.3% (n= 16), t26= 0.9, p= 0.39; days 1–7 versus days 10–20,
MCs, t29= 2.6, p= 0.01, GCs, t33= 0.9, p= 0.40, two-tailed
unpaired t test). Given such difference between MC and GC
spatial activities, MC spatial activity was likely not predomi-
nantly generated by GC inputs (consistent with ref. 14).

Firing fields in the small subset of putative CA3 cells resembled
the ones of the GC population (n= 34 single fields, n= 43
multiple unspecific fields, and n= 7 LV fields) except that we
could not detect cells with periodic fields (Supplementary Fig. 5a).
The proportion of cells exhibiting firing fields and the ratio
of multiple versus single fields were higher than for the
GC population (cells with place fields, CA3, 58.1 ± 5.6%, GCs,
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31.9 ± 4.9%, t4= 4.9, p= 0.01; multiple over single ratio, CA3,
1.68 ± 0.34, GCs, 0.55 ± 0.04, t4= 3.3, p= 0.03, two-tailed
unpaired t test, sessions from days 13–20), consistent with
previous reports13–15, and unlike the GCs, the spatial representa-
tion did not increase drastically across days (151.5 ± 14.4%
increase between days 1–3 and days 13–20, versus 370.1 ± 82.4%
for GCs, t6= 2.6, p= 0.06, two-tailed unpaired t test), and the LV
firing fields almost vanished after a few days, consistent with the
relative paucity of CA3 LV cells in familiar environments35

(Supplementary Fig. 5b, c). The average firing rate map showed
only slight increases near landmark locations in early sessions
(Supplementary Fig. 5d), suggesting that MC modulation by the
landmarks was likely not caused by CA3 input but by other
inputs such as semilunar granule cells26 or the EC27,29.

Modeling the increase in GC single place fields. The DG has
been modeled as a competitive network in which discrete place

field representations are generated via competitive learning18,19.
To test whether competitive learning could produce the gradual
increase in single-field GCs and the decrease in LV and periodic
GCs, we first implemented a model of DG in which 3000 GCs
received excitatory inputs from 300 EC grid cells (with spatial
periodicity similar to that of the periodic cells) and 300 EC LV
cells and, in addition, were subjected to feedback inhibition
(Fig. 7a (gray and black); Supplementary Fig. 6a). For a given
belt position, the excitation (E) received by a GC was the
weighted sum of EC cell activity, the feedback inhibition (I) was
proportional to the sum of GC activity, and the firing rate of a
GC was equal to E–I (if E > I) or 0 (if E < I). EC-to-GC synaptic
weights were initially allocated randomly according to a gamma
distribution and then modified on each iteration by two
operations: Hebbian synaptic potentiation, proportional to the
degree of GC–EC coactivation, and normalization of the total
synaptic weight for each GC42–44 (Fig. 7b (black); Supple-
mentary Fig. 6b).
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We found that two parameters critical to reproduce the gradual
increase in single-field GCs were the initial repartition of EC-to-
GC synaptic weights and the strength of the feedback inhibition.
For a specific range of feedback inhibition strength and sparsity
of initial inputs, the model could reproduce the initial
preponderance of periodic and LV GCs and the asymptotic
increase in single-field GCs (Fig. 7c, d; Supplementary Fig. 6c, d).
When the sparsity of initial inputs was set too low (i.e., each GC
receives substantial excitation from several EC cells), an
asymptotic decrease in single-field GCs was observed over time,
whereas when it was set too high (i.e., each GC is mostly excited
by one EC neuron), the fraction of GCs that developed single
place fields was too high. When the feedback inhibition was set
too low, the fraction of GCs with place fields (single, periodic or
LV) was too high.

Importantly, the transformation of GC representations was
accompanied by a specific reconfiguration of EC-to-GC synaptic
weights. First, the overall change in synaptic weights (estimated as
the vector Euclidean distance ½PðWijðiþ 1Þ �WijðiÞÞ2�1=2
between consecutive iterations) exhibited an exponential
decrease, suggesting that the plateauing of single-field GCs
corresponded to a stabilization of the synaptic weights (Supple-
mentary Fig. 6e, black). Importantly, the overall synaptic change
measured just after the synaptic potentiation operation did not
show such a drastic decrease (Supplementary Fig. 6e, red),
indicating that the synaptic weights were stabilized because the
effects of synaptic potentiation were progressively matched and
reversed by the effects of synaptic normalization. Other
parameters such as the inhibition threshold and E/I ratio
(excitation divided by inhibition) did not show trends that could
explain the asymptotic increase in single-field GCs (Supplemen-
tary Fig. 6f, g). Second, while most excitatory input to a GC was
initially contributed by one EC neuron as a result of the initial
sparse input setting, excitatory input to a GC was progressively
shared by multiple EC neurons, and each GC progressively
received, in comparable amount, inputs from grid cells and LV
cells (Fig. 7e). Hence, this simple competitive learning model
could reproduce the transformation of GC representations, from
periodic and LV place fields to single place fields, through the
progressive integration of grid cell and LV cell inputs.

Modeling the contribution of MCs to GC representations.
Given that MC average activity was increased in landmark loca-
tions and that an important contribution of MCs is believed to be
feedforward inhibition27–32 (but see ref. 33), we tested how an
increase of inhibition in landmark locations affects GC repre-
sentations. Since MCs presumably receive EC information both
directly and indirectly27, we assumed that average MC activity
reflects average EC activity and modulates the threshold para-
meter I of the model (Fig. 7a, b (red); Supplementary Fig. 7).

In contrast to the experimental findings, average GC activity
progressively increased in landmark positions when the inhibition
was not modulated by MCs (Fig. 7f; Supplementary Fig. 7c).
However, this effect decreased as MC modulation of inhibition
was strengthened, such that GCs could evenly represent all belt
locations (Fig. 7f; Supplementary Fig. 7d–f). Hence, increasing
inhibition in locations associated with larger excitation is
necessary to achieve uniform mapping of the space via
competitive learning, and a role of MC feedforward inhibition
might be to enable the uniform mapping of the space by GCs.

Modeling the increase in multiple unspecific GC place fields.
The model did not, however, replicate the progressive emergence
of multiple unspecific place fields. Reducing feedback inhibition
increased the number of multiple-field cells, but these cells were

mostly periodic or LV cells, and the overall fraction of cells
generating place fields was excessive (Supplementary Fig. 6).
Therefore, we reasoned that unspecific place fields should be
generated by a small subset of GCs under low inhibition that
receive excitatory inputs from cells showing no periodic and LV
activity patterns. Such a subset of excitable GCs could correspond
to the small population of young adult-born GCs, which are
generally more excitable and active than mature GCs45–48. On the
other hand, non-periodic/LV spatial inputs could be supplied by
the large population of EC non-grid spatially modulated cells
reported in familiar environments23. To test this hypothesis, we
added a population of 300 GCs under weak feedback inhibition
and a population of 450 non-grid/LV spatially modulated EC cells
to the model (the numbers of grid cells and LV cells were each
reduced to 150 such that grid cells represented 20% of the EC
cells23, and the EC grid:LV ratio remained 1:1, a factor critical to
reproduce the initial 1:1 ratio of periodic and LV GCs; Fig. 8a).
However, to reproduce the initial predominance of periodic and
LV activity patterns of GCs, the number of active non-grid/LV
cells was set to zero initially and was then progressively increased
over iterations (a plausible phenomenon considering learning
within EC and the increasingly strong spatial input feedbacked
from the hippocampus; Fig. 8b top). As anticipated, the subset of
excitable GCs developed multiple unspecific place fields over time
(Fig. 8b), and the model could largely reproduce the experimental
trends for single, LV, periodic and unspecific cells (Fig. 8c).

We next examined the predicted cell activity for the reordered
and new belts. To simulate the reordered belt, the firing fields of
EC LV cells were moved to the new location of the landmarks,
and 40% of the non-grid/LV cells were randomly assigned new
activity patterns, whereas to simulate the new belt, EC LV were
randomly assigned to new object pairs, and 100% of the non-grid/
LV cells were randomly assigned new activity patterns (Fig. 8d).
For both the reordered and new belts, the activity of grid cells was
not altered to reflect the relative preservation of grid cell patterns
across environments as opposed to the strong remapping of EC
non-grid spatial cells23. Similar to the experimental data (Fig. 5b,
d), the number of single-field representations was decreased for
the reordered belt compared to the original belt and was further
decreased for the new belt (Fig. 8e), and the number of place
fields per cell was correlated with the number of belts represented
(Fig. 8f). Hence, this version of the model could reproduce both
the transformation of GC representations across days for the
original belt and the subsequent encoding of the reordered and
new belt layouts.

Importantly, an alternative model in which the subset of
excitable GCs received excitatory inputs from the other GCs
could also reproduce the diverse aspects of the experimental data
(Supplementary Fig. 8). In this version of the model, EC non-
grid/LV cells were not incorporated, and GC activity evolved
solely from the synaptic plasticity processes. The excitable
GCs generated initially periodic and LV firing fields from the
sparse inputs of the other GCs and then, over time, developed
multiple unspecific place fields reflecting combinations of the
single place fields of the GCs. Such network configuration is
plausible considering the report that mature GCs transiently
provide synaptic inputs to young adult-born GC49 and thus
might contribute to the emergence of GC multiple unspecific
place fields.

Discussion
Using silicon probe recording in a treadmill apparatus and neural
network modeling, we identified putative GCs and MCs, mon-
itored the development of spatial representations during learning
of a particular layout of landmarks, investigated subsequent
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encodings of other layouts, and interpreted the data in terms of
learning mechanisms, information encoded and cell-specific
functions. Recent studies have outlined cell-type specific differ-
ences in the scale, sparseness, stability, and remapping of DG
spatial representations. Our study provides data and mechanistic
insights on how the spatial representations develop during
learning, uniformly map the space and encode other similar
environments.

Like our previous study17, we used the combination of spike
autocorrelograms and spike relationships with gamma oscilla-
tions and a subset of opto-tagged DRD2 and POMC cells to
segregate and identify putative GCs and MCs. Opto-tagged
POMC cells may have been biased toward a relatively young

subpopulation of GCs, as POMC expression is limited to the 1-
month period following cell mitosis and opto-tagging experi-
ments were carried out 4 weeks after virus injections17. However,
in addition to the overlap with opto-tagged POMC cells, the
cluster of putative GCs was suggested by the non-overlap with
opto-tagged DRD2 cells and the fact that putative GCs were
located above putative MCs along the electrode shanks. Our data
showed both consistencies and discrepancies with previous
reports. First, MCs were characterized by low burst activity,
consistent with in vivo intracellular recording data40, but at odd
with recent studies using distinct classification and opto-tagging
strategies13,14, which could reflect differences in cell classification,
animal behavioral states, and/or methods to assess burst activity.
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Second, GCs and MCs showed distinct gamma phase preferences
and GCs were more modulated by gamma oscillations than MCs.
While these effects were also observed in a recent study14, it is
notable that the difference in spike gamma phase was larger in
our study, which could reflect differences in cell classification,
animal behavioral states, and/or electrode locations for gamma
oscillation measurements. Third, as previously reported12–14, the
fraction of active cells was lower for GCs than for MCs, and each
GC preferentially exhibited a single place field once the belt layout
was familiar (days 10–20) whereas MCs preferentially exhibited
multiple place fields. Approximately two-thirds (64%) of the
spatially modulated GCs exhibited a single place field on the
familiar belt, a fraction similar to recent reports13,14 but larger
than in a study where DG recordings were carried out in a
progressively morphed arena11. While the lower fraction in that
study might result from the lack of proper criteria to segregate
GCs and MCs, another explanation could be the novelty com-
ponent introduced by the progressive morphing of the arena,
considering our observation that the proportion of single-field
GCs was decreased in the new belt layouts. Last, like previous
reports, the GCs that exhibited single and multiple place fields
tended to represent single and multiple environments,
respectively13,47.

We reported diverse types of firing fields in the DG and a
strong effect of experience on the incidence of each type. In
particular, LV and periodic cells were not reported previously,
and our findings suggest that their incidence largely increases in
novel environments. It should be mentioned, however, that these
two types of representation might also be enhanced by the
oversimplification of sensory information in the treadmill35 and
that their occurrence in typical maze environments might be rare.
Importantly, we observed a progressive transformation of GC
spatial representations over the course of several days, char-
acterized by an asymptotic increase in the number of place cells, a
conversion in place field types, and decreases in place field
emergence and extinction rates. Another study that carried out
long-term recordings of hippocampal spatial activity has
emphasized a relatively high stability of GC spatial representa-
tions15; however, recordings were started after >10 days of
habituation in their first environment tested (by that time, the
development of GC spatial representations almost reached a
plateau in our study), and a progressive development of GC
spatial correlations was visible in the second (novel) environment
tested, consistent with the slow dynamics we observed. Further-
more, the number of GCs exhibiting place fields was pro-
portionally reduced in the reordered and novel belts according to
the level of similarity with the original belt. A similar reduction in
GC place cells was previously observed15, but the impact of
context similarity was not tested. It is notable that the extent of
GC remapping largely differs among studies11–15,17,47, a dis-
crepancy that is probably explained by the diverse types of
environments and cue alterations involved (open arena11,13,14,
virtual linear track15 or treadmill12,17,47 environments; changing
the room13, the layout of cues12,15,47, the arena boundaries11 or
some local cues14,17). In the treadmill, the landmarks fixed on the
belt provided the only environmental information useful for
mapping positions on the belt, and altering the layout of land-
marks is expected to have a larger impact than, for instance,
altering local cues in an open arena14 where unchanged spatial
information is supplied by distal cues. Last, we observed that
MCs, but not GCs, overrepresented the landmarks of the belt.
This observation supports the idea of a weak coupling between
MC and GC activity, consistent with the weak GC-to-MC spike
transmission14 and the distinct MC and GC responses to local cue
manipulations14,17, but raises questions regarding the potential
origin of the increase of MC activity in landmark locations. Apart

from the GCs, MCs receive external inputs from CA3, semilunar
GCs and EC cells26,27. The few putative CA3 cells we monitored
did not show much increased activity in the landmarks, making
CA3 inputs an unlikely mechanism. On the other hand, semi-
lunar GCs are especially responsive to performant path stimula-
tions and generate large barrages of excitatory postsynaptic
potentials in MCs26. Together with direct EC-to-MC inputs, they
could relay to MCs a strong landmark-modulated signal.

Our findings suggest that competitive learning underlies the
increase in spatial representations in DG. The model reproduced
the transformation and the asymptotic increase in GC repre-
sentations across days, as well as the subsequent encoding of
other belt layouts. How place fields initially emerge through
competitive learning is not straightforward, as cells that are silent
paradoxically develop place fields as a result of Hebbian synaptic
plasticity, which requires postsynaptic firing. In the model, the
initial activation of silent GCs could only be elicited through
disinhibition, which had to result from a local decrease in the
mean GC activity following the synaptic normalization operation.
Hence, disinhibition induced by synaptic normalization might be
the initial trigger for the generation of GC place fields via com-
petitive learning. Hebbian synaptic plasticity might then be
involved to strengthen EC inputs to GCs in the place field loca-
tions. The involvement of a Hebbian form of synaptic potentia-
tion is suggested by the observation that GCs receiving electrical
stimulations tend to develop place fields in the stimulus loca-
tions50. Note that a form of synaptic plasticity depending less
on pre and postsynaptic coincident activity and more on non-
linear dendritic response dynamics is believed to take place in
CA1 (refs. 51–53). Over the days, the number of GC place cells
progressively plateaued and the rates of place field emergences
and extinctions were progressively decreased, a phenomenon
reminiscent of the reduced likelihood for electrical stimuli50 and
head scanning movement54 to generate place fields as environ-
ments become familiar. In the model, this phenomenon was
correlated with a progressive reduction of synaptic changes, as the
synaptic weight matrix converged to a state where the effect of
synaptic potentiation was matched and reversed by the effect of
synaptic normalization. Likewise, the observed plateauing of the
GC development might correspond to such equilibrium in
synaptic plasticity mechanisms. Finally, increasing inhibition in
landmark locations was critical to reproduce the uniform map-
ping of the space by GCs. In general, a close match between
feedforward inhibition and average input activity was an effective
mechanism to achieve uniform mapping via competitive learning,
suggesting that it might be a recurrent feature of brain networks.
MCs are well suited to support such an operation, as they showed
firing rate increases in landmark locations and generate feedfor-
ward inhibition in GCs27–33. Hence, we suggest that one function
of MCs is to sense variation in EC input via semilunar GCs and/
or direct EC afferents26,27,29 and proportionally increase inhibi-
tion to ensure a uniform mapping of the space by GCs.

Interestingly, the development of GC spatial representations
was relatively slow, plateauing after a week. Periods of rest
between treadmill running sessions were likely essential to
regenerate the network potency for plasticity, as the place field
emergence rate progressively decreased across trials within each
session (Fig. 4d). Synaptic normalization, in particular, might
require sleep and sharp-wave-ripple oscillations55,56, considering
the relatively slow rate of synaptic downscaling observed
in vitro44. Such slow learning is in theory critical for minimizing
the alteration of prior memories by new learning (the stability-
plasticity dilemma57), is consistent with the high stability of DG
spatial representations over time15, and should make DG infor-
mation storage more specific to stable features of the environment
and therefore particularly suitable for a reliable encoding of
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spatial contexts. However, it seems at odds with the fast encoding
processes typically associated with episodic memory that allow for
instance to recall object locations after a quick exploration of a
novel environment. This has several possible interpretations.
First, spatial learning might be slower in the treadmill because of
the relative sparsity of cues and the restriction of head move-
ments54. In this respect, it is likely that learning dynamics also
vary in natural environments depending on the abundance of
cues and arousal states. Second, it is possible that fast encoding
mostly takes place in the CA regions15, whereas the DG con-
tributes to episodic memory mainly by supplying a reliable spatial
context information and helping differentiate CA3 encodings via
pattern separation6–10. Last, it should be pointed out that the
plateauing of the GC development corresponded only to an
optimum in information storage, in which a long time delay to
reach the plateau might not be incompatible with the long time
delay required to perfectly know an environment (for instance, it
might take weeks to become familiar with the sequence of stores
and restaurants along a street), and does not prevent that infor-
mation storage occurring during single trials or days before the
plateauing might already be enough to support some approx-
imative memory of the belt (street) layout.

The conversion in place field types across days suggests the
integration of diverse information. As we implemented in the
model, LV and periodic GCs might be generated by strong
excitatory inputs from LV cells and grid cells in the EC, respec-
tively. While grid cells are typically characterized by a two-
dimensional triangular grid arrangement of firing fields, they
noticeably exhibited linear periodic patterns in the one-
dimensional alleys of a hair-pin maze58. Such periodic activity
pattern, so far unseen in the hippocampus, may have emerged in
the treadmill because of the novelty of the environment (con-
sidering that periodic cells almost completely disappeared after
day 1), the oversimplification of the spatial information, and/or
the fact that some of the landmarks on the belt were periodically
interspaced (Note the periodic arrangement of every second
landmarks). A possible scenario is that the periodic GCs origi-
nated from the combination of landmark-vector mechanisms and
grid cell spatial distance information, the latter accounting for the
selection of encoded landmarks based on landmark spatial peri-
odicity rather than identity. The model largely implied an inte-
gration of LV cell and spatial cell inputs, such that GC activity
was contingent upon the particular alignment of object and
spatial information on the belt. Such integration might underlie
the elaboration of memory engrams for spatial context15,59 that
incorporate object location information. Through such engrams,
GCs would produce an output very specific to the spatial context
and would remap when the object layout is changed17, consistent
with the importance of an intact DG to discriminate contexts and
detect changes in object layouts8,20,60. DG function might also be
considered in terms of pattern separation, with the combination
of context engram, sparse GC activity and inter-GC competition
contributing to strong remapping responses by GCs17. In this
respect, our findings imply that pattern separation should
improve with experience as context engrams progressively
develop, whereas pattern separation in a new context should be
enhanced by prior experience in other similar contexts, given the
generalization of learning across similar belt layouts.

Reducing the model inhibition threshold for a small group of
GCs was critical to reproduce the emergence of unspecific GCs,
suggesting that multiple unspecific firing fields were generated by
more excitable GCs, possibly the young adult-born GCs that are
known to exhibit multiple firing fields, low context specificity and
high levels of excitability45–48. Another requirement to reproduce
the emergence of unspecific GCs was a progressive increase of
excitatory inputs from cells exhibiting non-grid/LV activity

patterns. This could be achieved either by adding a population of
EC cells that progressively developed spatially modulated non-
grid/LV firing fields23 or by using the main GC population as
input to the subpopulation of excitable GCs. Both mechanisms
are plausible considering potential learning processes within the
EC, the increasingly strong spatial input feedbacked from the
hippocampus, and reports that young adult-born GCs initially
receive inputs mostly from MCs, the CA3 and mature GCs48,49.
While the coexistence of less-excitable and more-excitable GCs
could enable a differential encoding of the familiar and unique
features of contexts (Fig. 5b), another possible advantage is that it
allows parallel operations requiring low and high cell excitability,
such as pattern separation and temporal binding of episodic
information61, respectively. In this respect, it is noteworthy that
the network configuration shown in Supplementary Fig. 7 could
allow a temporal binding operation by young adult-born GCs that
does not compromise DG pattern separation, as young adult-
born GCs relay the strongly differentiated information from
mature GCs.

In conclusion, our findings suggest that a slow integration of
spatial cell and landmark-vector cell inputs, achieved via com-
petitive learning, is the mechanism underlying both the emer-
gence of spatial representations and the continuous mapping of
the space by GCs, while a function of MCs is to ensure a uniform
distribution of GC representations. As a result, the DG may
generate stable maps of the environments that embed object
information, allowing the discrimination of slightly different
contexts and the detection of slight changes in object layouts.
Further work may test whether competitive learning mechanisms
operate on the whole DG network or on the level of DG sub-
networks associated with distinct information, time scales and cell
morphology62.

Methods
Animals. All experiments were conducted in accordance with institutional reg-
ulations (Institutional Animal Care and Use Committee of the Korea Institute of
Science and Technology) and conformed to the Guide for the Care and Use of
Laboratory Animals (NRC 2011). Four male C57BL6 mice between 6 and 7 weeks
old were used. The mice were housed 2 per cage in a vivarium under a 12 h light/
dark cycle.

Virus injection and preparation for head fixation. During a first surgery, under
isoflurane anesthesia (supplemented by subcutaneous injections of buprenorphine
0.1 mg/kg, followed by daily subcutaneous injection of ketaprofen 5 mg/kg for
2 days), two small watch screws were driven into the bone above the cerebellum to
serve as reference and ground electrodes for the recordings. A 3D printed plastic
head-plate with a window opening in the center was cemented to the skull with
dental acrylic. The head-plate was designed to be conveniently fixed/unfixed to a
holding plate using two screws.

Treadmill apparatus and behavioral training. After a post-surgery recovery
period of 7 days, the mice were water restricted to 1 ml of water per day and were
trained for 2 weeks (one 1-h session per day) to run on the treadmill with their
heads fixed. The treadmill was not motorized but consisted of a light velvet belt
laying on two 3D printed wheels, which mice moved themselves at will. Water
rewards were delivered on every trial at the same position on the belt (position
0 cm) via a lick port. After behavioral learning reached an asymptote, the animals
completed 100 to 150 trials in the first 45 min of each session. The quantity of
water consumed on the treadmill was measured after each session, and additional
water was provided such that the mice drank a total amount of 1 ml of water
per day.

For recording sessions, landmarks were fixed and interspersed on a 201-cm long
belt. The landmarks consisted of arrays of vertical poles and textures fixed on the
edges of the belt, which provided visual-tactile stimulation to both sides of the mice
(Supplementary Fig. 4).

The treadmill presents several advantages. First, the animal behavior and
trajectory across landmarks are very consistent over trials and sessions. This aspect
is important to reliably measure changes associated with learning. Second, the
spatial information is simpler and well controlled. Indeed, the landmarks fixed on
the belt provide the only useful environmental information for mapping the
positions of the belt and are experienced one at a time. As a result, we could isolate
distinct spatial mechanisms (LV, periodic, unspecific, single) and observe a
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transformation of spatial representations. Also, modeling the experiment was
straightforward. A downside of the treadmill is that some exploratory behaviors
(like head scanning movements) are prevented by the head fixation. Because distal
cues are missing, the treadmill belt environment might be similar to channels in
high grass or underground where mice should rely mostly on local cues and path
integration.

Chronic implantation of the electrode. A 64-channel silicon probe (Neuronexus,
Buzsaki64sp) was used for chronic recordings. A craniotomy (1.5 mm long and 0.5
mm wide) was performed above the hippocampus under isoflurane anesthesia35,36.
The silicon probe was mounted on a custom microdrive63, coated with red-
fluorescent dye (DiI, Life technologies), and lowered into the granule cell layer of
the DG, which was detected by the emergence of unit activity following a ~500-µm
zone of unit activity silence below the CA1 pyramidal layer. The microdrive was
then cemented to the skull and head-plate. A bone wax and mineral oil mixture
was used to cover the craniotomy. A plastic cap was used to protect the microdrive/
silicon probe assembly63.

Anatomy. On the last day of recording, the animals were anesthetized at the end of
the recording and perfused transcardially with 4% paraformaldehyde in phosphate
buffer. The brain was removed and kept overnight in 4% paraformaldehyde
solution. Coronal sections (100 µm thick) were sliced using a vibratome and were
mounted on slides using Vectashield mounting medium with DAPI. Images of
DAPI and DiI fluorescence were acquired separately with a Nikon FN1 microscope
equipped for fluorescence imaging. The DG and the electrode signals were isolated
and visualized in 3D using custom MATLAB routines.

Behavioral control and data acquisition. The forward and backward movement
increments of the treadmill were monitored using two pairs of LEDs and photo-
sensors that read patterns on a disc coupled to the treadmill wheel, while the zero
position was implemented by an LED and photosensor coupling that detected a
small hole on the belt. From these signals, the mouse position was implemented in
real time by an Arduino board (Arduino Uno, arduino.cc), which also controlled
the valves for the reward delivery. Position, time and reward information from the
Arduino board was sent via USB serial communication to a computer and recorded
with custom LabView (National Instruments) programs.

Neurophysiological signals were continuously acquired at 30 kHz on a 250-
channel recording system (Intan Technologies, RHD2132 amplifier board with
RHD2000 USB Interface Board and a custom LabView interface). The
wideband signals were digitally high-pass filtered (0.8–5 kHz) offline for spike
detection and low-pass filtered (0–500 Hz) and downsampled to 1000 Hz to
extract local field potentials. Spikes from each session and each shank of the
silicon probe were clustered separately with automatic algorithms37 followed
by manual adjustments in custom MATLAB routines implementing spike
autocorrelation, cross-correlation and cluster isolation statistics. Only clusters
with well-defined cluster boundaries and clear refractory periods were included
in the analyses38.

Estimation of cell position relative to the shank. To estimate the position of a
cell relative to the recording sites on a shank, we assumed that the amplitude of the
spike signals are attenuated as 1/d2 (see note below), where d is the distance of the
site to the cell soma, such that the amplitude measured at a given site is:

ai ¼ A=d2i

with A being the spike amplitude at the cell position.
For the many recording sites on one shank, this means that:

A ¼ a1*d
2
1 ¼ a2*d

2
2 ¼ a3*d

2
3 ¼ a4*d

2
4 ¼ a5*d

2
5 :

Therefore, to estimate the position of a cell, we simply searched for the position
at which these conditions were fulfilled. To do this, the volume around each shank
was divided into 1 µm3 pixels, and for each pixel, we computed the Euclidean
distances to each recording site. Then, we defined a value S such that

S ¼
X

ij

jai*d2i � aj*d
2
j j;

where i and j varied to generate all possible combinations of sites.
The pixel with the smallest value of S was defined as the cell position.
Note: Electric potential of dipoles are attenuated as 1/d2 but as 1/d for

monopoles. We tested this method using either form and found that the resulting
cell positions was very similar.

Spike gamma phase. The LFP from a channel in the hilus was bandpass filtered
between 30 and 80 Hz. A vector of instantaneous phase was derived using the
Hilbert transform. The gamma phase of each spike was interpolated from the
vector of the instantaneous phase.

Gamma coupling index. The ‘gamma coupling index’ captures the coupling of LFP
gamma power to cell activity during animal immobility. For each cell, the average

gamma power of a hilar LFP was computed for windows within (−10 to +10 ms)
and outside (+40 to +100 ms) epochs of maximal firing activity, and the gamma
coupling index was defined as the difference between the two windows divided by
the sum of the two windows. The 100 largest peaks of the smoothed (using a 20 ms
half-width Gaussian kernel) instantaneous firing rate vector were used as epochs of
maximal firing.

Implementation of single neuron firing rate vector. The length of the belt was
divided into 100 pixels. To generate a vector of firing rates, the number of spikes
discharged in each pixel was divided by the time the animal spent in the pixel. The
firing rate vector was smoothed by convolving a Gaussian function (15 cm half-
height width).

Place field emergence and extinction. For a given place field, the mean firing
rate in a 10-cm window enclosing the field was calculated for each trial, pro-
ducing a vector of firing rates. The vector was smoothed using a 3-trial half-
width Gaussian kernel. The emergence of a place field corresponded to the time
point when the firing rates increased and exceeded 20% of the vector peak value,
while the extinction of a field corresponded to a decrease below 20% of the
vector peak value.

Statistics and reproducibility. All statistical analyses were performed in
MATLAB (MathWorks). The number of animals and the number of recorded cells
were similar to those generally employed in the field. The analysis of variance
(ANOVA) was used to test mean differences between groups larger than two.
Student’s t tests were used to test the sample mean. Correlations were computed
using Pearson’s correlation coefficient.

Reporting summary. Further information on research design is available in the Nature
Research Life Sciences Reporting Summary linked to this article.

Data availability
Due to their large size, the data collected for this study are available upon reasonable
request to S.K. or S.R. Source data are provided with this paper.

Code availability
All the codes for data analysis and modeling are available upon reasonable request.
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