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Abstract
The shifted-Wald model is a popular analysis tool for one-choice reaction-time tasks. In its simplest version, the shifted-Wald
model assumes a constant trial-independent drift rate parameter. However, the presence of endogenous processes—
fluctuation in attention and motivation, fatigue and boredom—suggest that drift rate might vary across experimental trials.
Here we show how across-trial variability in drift rate can be accounted for by assuming a trial-specific drift rate parameter
that is governed by a positive-valued distribution. We consider two candidate distributions: the truncated normal distribution
and the gamma distribution. For the resulting distributions of first-arrival times, we derive analytical and sampling-based
solutions, and implement the models in a Bayesian framework. Recovery studies and an application to a data set comprised of
1469 participants suggest that (1) both mixture distributions yield similar results; (2) all model parameters can be recovered
accurately except for the drift variance parameter; (3) despite poor recovery, the presence of the drift variance parameter
facilitates accurate recovery of the remaining parameters; (4) shift, threshold, and drift mean parameters are correlated.

Keywords Cognitive modeling · Evidence accumulation · One-choice decision tasks · Reaction time modeling ·
Decision-making · Inverse Gaussian distribution

Human decision-making has been studied using a large
variety of experimental paradigms. One of the most elemen-
tary tasks requires that participants respond immediately
after detecting the onset of a stimulus. The key depen-
dent variable in these tasks is reaction time (RT), the time
from stimulus onset to participants’ execution of the motor
response (usually a key press). Examples of such tasks
include simple RT tasks (chapter 2 in Luce, 1986; Smith,
2000), go/no-go tasks (Heathcote, 2004; Schwarz, 2001),
temporal-cueing tasks (Jepma et al., 2012), the psychomotor
vigilance test (Ratcliff & Van Dongen, 2011), the brightness
detection task (Ratcliff & Van Dongen, 2011), the braking
task (Ratcliff & Strayer, 2014), and the driving-around task
(Ratcliff & Strayer, 2014).

Data from these RT tasks can be analyzed with the
shifted-Wald model (SW; Fig. 1). The SW model is based on
the Wald distribution (Wald, 1947; also known as the inverse
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Gaussian distribution) which represents the density of the
first-arrival times of a Wiener diffusion process toward
a single absorbing boundary. The basic model has three
parameters that correspond closely to the three parameters
of the Ratcliff diffusion model (Ratcliff, 1978; Forstmann
et al., 2016; Ratcliff et al., 2016): (1) the decision threshold
α, that is, the distance from the starting point (which we
arbitrarily set at 0) to the absorbing barrier; (2) the drift rate
ξ of the diffusion process; and (3) the shift parameter θ that
quantifies the time required for nondecision processes (see
below for a more detailed description of the model).

The vanilla SW model assumes a constant drift rate
across trials. However, the presence of endogenous pro-
cesses, such as fluctuation in attention and motivation,
fatigue and boredom, suggest that drift rate might vary
across trials (Ratcliff & Strayer, 2014; Ratcliff & Tuer-
linckx, 2002; Ratcliff & Van Dongen, 2011; Ratcliff & Van
Zandt, 1999): “Parameters may also change from day to
day or from one block of trials to the next. Evidence of
such drift can be found in the variability of block mean
reaction times” (p. 121; Burbeck & Luce, 1982). In order
to incorporate across-trial variability in the Wald drift rate
parameter ξ , the standard approach is to assume that its
value on any specific trial is governed by a certain positive-
valued distribution h with parameters γ , that is, ξ ∼ h(γ ).
Subsequently, in order to derive the distribution of the first-
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arrival times t assuming a trial-dependent drift parameter,
one has to integrate out drift rate, that is, f (t; α, θ, γ ) =∫ ∞

0 SW(t; α, θ, ξ) · h(ξ ; γ )dξ .
How to choose an appropriate distribution h(ξ ; γ ) for

the drift rate parameter? Ideally, such a distribution should
be (a) plausible (e.g., allowing only positive drift rates);
and (b) allow for a closed-form expression f (t; α, θ, γ ).
Here we explore two candidate distributions for h(ξ ; γ ): the
truncated normal distribution and the gamma distribution.
This general approach to incorporate across-trial variability
in the Wald drift rate parameter has been explored in earlier
work. Specifically, Desmond and Yang (2011) showed that
a closed-form expression for f (t; α, θ, γ ) exists when drift
rate follows a truncated normal distribution, and when
the SW model has decision threshold α fixed to one and
shift parameter θ fixed to zero (see Weiss, 2012, for an
application). This scenario deviates from ours since we
want threshold and shift parameters to be free, but the
general approach is the same (see Whitmore, 1986, for a
scenario that deviates even more from ours, but that employs
the same general approach). Logan et al. (2014) also use
this general approach, but their goal was to incorporate
across-trial variability in the threshold parameter.

In this article, we derive the distribution of the first-
arrival times for the SW model assuming a trial-dependent
drift rate parameter. We also explore an alternative,
sampling-based approach. We present Bayesian implemen-
tations of both approaches. The adequacy of these imple-
mentations is confirmed in a series of parameter recovery
studies. Finally, the practicality of our methodology is
demonstrated by fitting the extended SW models to a data
set comprised of 1469 participants (Woods et al., 2015).

The shifted-Waldmodel

The shifted-Wald model gives the density of the first-
arrival times of a Wiener diffusion process toward a
single absorbing boundary. Figure 1 shows how the
model conceptualizes the decision-making process as a
single-boundary diffusion process. In particular, the model
assumes that evidence is accumulated with a drift rate ξ until
an absorbing barrier α is reached. Additional delay time is
captured by θ—the time required for nondecision processes.

The density of the first-arrival times is known as the Wald
distribution or the inverse Gaussian distribution (Anders
et al., in press; Donkin et al., 2009; Wald, 1947), and it is
given by:

SW(t; α, θ, ξ) = α
√

2π(t − θ)3
exp

×
(

−[α − ξ(t − θ)]2

2(t − θ)

)

, t, α, ξ ≥ 0, t > θ, θ ≥ 0 (1)

with t the first-arrival time. The Wald distribution has
a positively skewed unimodal shape as shown in the
top of Fig. 1. The extension of the SW model that we
consider here assumes across-trial variability in the Wald
drift rate parameter either according to a truncated normal
distribution or a gamma distribution.

Across-trial variability in theWald drift rate
parameter

Across-trial variability in Wald drift rate parameter ξ

can be incorporated by assuming that drift rate follows
a positive-valued distribution, that is, ξ ∼ h(γ ). Two
candidate distributions for h(ξ ; γ ) are the truncated
normal distribution and the gamma distribution. In order
to implement the resulting distribution of the first-arrival
times, we use two different approaches. Firstly, we derive
the analytical solution for the distribution of the first-arrival
times by integrating out drift rate, that is, f (t; α, θ, γ ) =∫ ∞

0 SW(t; α, θ, ξ) · h(ξ ; γ )dξ . Secondly, we explain a
sampling-based implementation, that is, on each trial, we
assume that RT follows a SW distribution that depends in
part on a trial-dependent drift rate that is itself a draw from
a positive-valued distribution.

SW-TNmixture

The first candidate distribution for across-trial variability in
the Wald drift rate parameter ξ is the truncated normal (TN)
distribution. The TN distribution is a normal distribution
that can be bounded below and above (Robert, 1995). Since
we are interested in a positive-valued distribution on drift
rate, we consider here a TN distribution that is bounded
below by zero and unbounded above. The probability
density function of the drift rate ξ is then given by:

TN(ξ ; μξ , σξ , a = 0, b = ∞) =

⎧
⎪⎨

⎪⎩

1
σξ

φ
(

ξ−μξ
σξ

)

�
(

μξ
σξ

) for ξ ≥ 0

0 elsewhere,

(2)

with μξ ∈ R and σξ > 0. The free parameters are
the location parameter μξ ∈ R, and the scale parameter
σξ ∈ R

+. Parameters a and b are the lower and upper
bounds of the TN distribution, respectively, and φ(·) is
the probability density function of the standard normal

distribution. Thus, φ(x) = 1√
2π

exp
(
− 1

2x2
)

, and in

particular, φ
(

ξ−μξ

σξ

)
= 1√

2π
exp

(

− (ξ−μξ )2

2σ 2
ξ

)

. Finally,

�(·) is the cumulative distribution function of the standard
normal distribution.
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Fig. 1 An illustration of the shifted-Wald model. The model
parameters are the decision threshold α, the shift parameter θ , and
the drift rate ξ . In its simplest version, the shifted-Wald model uses
a constant drift parameter. However, in the implementations that we
describe below we use a trial-dependent drift parameter that follows
either a truncated normal distribution or a gamma distribution

The analytical solution for the distribution of the first-
arrival times can be derived by “completing the square” and
some algebraic manipulations. The result is what we will
term the SW-TN mixture:1

f (t; α, θ, μξ , σξ ) = ∫ ∞
0 SW(t; α, θ, ξ) · TN(ξ ; μξ , σξ , a = 0, b = ∞)dξ

= ∫ ∞
0

α√
2π(t−θ)3

· exp
( −[α−ξ(t−θ)]2

2(t−θ)

)
·

1
σξ

φ
(

ξ−μξ
σξ

)

�
(

μξ
σξ

) dξ

= α√

2π(t−θ)3
[
(t−θ)σ 2

ξ +1
] · 1

�
(

μξ
σξ

) ·

exp

(

− [μξ (t−θ)−α]2

2(t−θ)
[
(t−θ)σ 2

ξ +1
]

)

· �

⎛

⎝ ασ 2
ξ +μξ

√

σ 2
ξ

[
(t−θ)σ 2

ξ +1
]

⎞

⎠ .

(3)

To the best of our knowledge, the distribution given in
Eq. 3 has not been derived before; however, the method for
obtaining the result followed the approach by Desmond &
Yang (2011; see also Logan et al., 2014; and Whitmore,
1986). In contrast to Desmond and Yang, we let the decision
threshold and shift parameter free to vary.

SW-GAMmixture

A disadvantage of the TN distribution is that it restricts the
values of drift rate ξ to a specified interval [a, b] artificially
and abruptly. An alternative candidate distribution that
is naturally restricted to positive values is the gamma
distribution. For this reason, it has been argued that the
gamma distribution is conceptually more attractive (Terry
et al., 2015). The probability density function of the gamma

1A more complete derivation is available on the Open Science
Framework (OSF; http://osf.io/av4qn).

distribution parameterized by the shape parameter κ ∈ R
>0

and the rate parameter τ ∈ R
>0 is given by:

GAM(ξ ; shape = κ, rate = τ) =
⎧
⎨

⎩

τκ ξκ−1 exp(−τξ)

�(κ)
for ξ ≥ 0

0 elsewhere,
(4)

with κ > 0, θ > 0 and where �(κ) is the gamma function
evaluated at κ .

Analogous to the SW-TN mixture, we assume that RT
follows a SW distribution with a drift rate parameter that
varies across trials according to a gamma distribution.
The next step is to integrate out drift rate resulting
in the analytical solution of f (t; α, θ, κ, τ ) =∫ ∞

0 SW(t; α, θ, ξ) · GAM(ξ ; κ, τ )dξ . To obtain this
solution, we tried standard integration techniques, and
also used the computer software Maple and Mathematica
(Maple, 2015; Wolfram Research, 2010). The main
analytical solution is displayed in Fig. 12 of the appendix.2

It is evident that the analytical solution is extremely
complicated, that is, lengthy and containing the Laguerre
polynomial (chapter 3 in Bayin, 2006; Koepf, 1997; more
details can be found in the appendix).

For the practical implementation of the analytical
solution, we could use the lengthy equation shown in
Fig. 12. However, it appears more insightful and efficient
to use a for-loop implementation in a probabilistic
programming language. This means that on each trial, we
assume that RT is a draw from a SW distribution that
depends in part on a trial-dependent drift rate parameter—
a parameter that is itself a draw from a gamma distribution
with shape parameter κ and rate parameter τ . We refer to
this solution as the SW-GAM mixture.

Note that the mean of the gamma distribution is given
by μξ = κ/τ and the variance by σ 2

ξ = κ/τ 2. This is

equivalent to κ = μ2
ξ /σ

2
ξ and τ = μξ/σ

2
ξ . The advantage

of expressing the parameters of the gamma distribution in
terms of the mean and the variance is that this allows us
to easier compare results of the SW-TN and SW-GAM
mixture.

Bayesian implementation of the twomixtures

In order to be able to apply the models to data and draw
inferences about their parameters, we implemented the
SW-TN and SW-GAM mixtures in a Bayesian framework
using the software JAGS (Plummer, 2003; for related
Bayesian work see Banerjee & Bhattacharyya, 1979; Betro
& Rotondi, 1991). In the case of the SW-TN mixture, we
added the analytical solution (Eq. 3) to JAGS as described

2Note that the appendix presents several analytical solutions that differ
depending on which parameters of the SW and gamma distribution are
set to fixed values.
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in the tutorial by Wabersich and Vandekerckhove (2013).
For the implementation of the SW-GAM mixture, we added
the constant-drift SW distribution (Eq. 1) to JAGS—again
following the tutorial by Wabersich and Vandekerckhove
(2013)—and then used a for-loop construction (the model
file is presented in the Appendix). For both mixtures,
the prior distributions for the model parameters were
inspired by Jepma et al. (2012; second experiment). These
prior distributions are uninformative within a range that is
plausible for data from one-choice RT tasks. In particular,
we chose the following prior distributions:

• α ∼ N+(μ = 2, σ =
√

5
2 )

• θ ∼ N+(μ = .180, σ = 1
2 )

• μξ ∼ N+(μ = 8, σ = √
10 )

• σ 2
ξ ∼ U(0, 5).

For all model applications reported in this article, we
used random starting values, and simultaneously ran three
Markov chain Monte Carlo (MCMC) chains. To assess
whether the MCMC chains of all parameters had converged
successfully from their starting values to their stationary
distributions, we visually inspected the chains. In addition,
we used the R̂ statistic (Gelman & Rubin, 1992), a
formal diagnostic measure of convergence that compares the
between-chain variability to the within-chain variability. As
a rule of thumb, values of R̂ close to 1.0 indicate adequate
convergence of the chains from their starting values to
their stationary distributions, whereas values greater than
1.1 indicate inadequate convergence. All relevant code is
available on GitHub (https://github.com/HelenSteingroever/
jags-wald/releases).

Recovery studies

Methods

Before fitting the SW-TN and SW-GAM mixtures to real
data, it is important to confirm that the two models can
accurately recover parameters (Heathcote et al., 2015). An
informative parameter recovery study uses a representative
number of synthetic participants, a representative number
of trials, and representative parameter values. We obtained
these representative values by considering the performance
of 1469 participants who each contributed 120 trials (Woods
et al., 2015; see below for more details on the data set).
In our simulation study, we use two generated data sets,
one containing the—what we will call in the remainder—
SW-TN synthetic participants, and the other containing the
SW-GAM synthetic participants. We generated 30 synthetic
SW-TN participants and 30 synthetic SW-GAM participants
each contributing 120 trials (as in Woods et al., 2015). These

synthetic participants were generated with representative
parameter values that were obtained as follows: First, we
selected 30 participants from Woods’ data set who spanned
a wide range of task performance. Specifically, we chose
the 30 participants who corresponded to the 30 quantiles of
the mean RT of all participants in the data set. Second, we
fit the SW-TN and SW-GAM mixtures to the data of the 30
selected participants. To fit the data, we used the Bayesian
framework outlined in the last section. For each participant,
we collected 4000 samples of each chain after discarding
the first 1000 samples as burn-in. Whenever this resulted
in inadequate convergence of the chains (i.e., R̂ values
larger than 1.05), we fit the data again with 1000 additional
samples. We continued this process until all R̂ values for a
given subject were below 1.05. Third, for each participant
we determined the mode of the posterior distribution of each
model parameter. The modes that were obtained from fitting
the SW-TN mixture were used to generate 30 synthetic
participants with the SW-TN mixture (i.e., the synthetic
SW-TN participants). We used the analogous procedure
to obtain 30 synthetic SW-GAM participants, that is, we
used the SW-GAM model as data-generating model, and
as data-generating values we used the modes that were
obtained from fitting the SW-GAM model to the data of the
30 participants selected from the data set of Woods et al.
(2015).

After having generated the two synthetic data sets each
containing 30 participants each contributing 120 trials,
we fit the SW-TN mixture to the 30 synthetic SW-TN
participants and the SW-GAM mixture to the 30 synthetic
SW-GAM participants. We collected 2000 samples of each
chain after discarding the first 1000 samples of each chain
as burn-in. Whenever this resulted in a R̂ values larger than
1.05, we fit the data again with 1000 additional samples. We
continued this process until all R̂ values of a given synthetic
participant were below 1.05. Finally, we compared whether
the modes of the posterior distributions of the synthetic
participants correspond to the data-generating values, and
we considered the interquartile ranges of the posterior
distributions to assess the uncertainty about the parameter
values.

In addition, we extended the recovery study in two ways.
First, we repeated the recovery study using 1200 trials
instead of 120 trials. More precisely, we fit the SW-TN
mixture to 30 SW-TN participants each contributing 1200
trials, and analogously for the SW-GAM mixture. Second,
we investigated the impact of the drift variance parameter
σ 2

ξ . To this aim, we used the four synthetic data sets of the
first two recovery studies, but this time the models were fit
with drift variance parameter σ 2

ξ fixed to zero. These models
thus assume, falsely, that there is no across-trial variability
in the Wald drift rate parameter. Thus, in total we conducted
eight model fitting exercises; for each mixture we had two
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synthetic data sets that differed in whether 120 or 1200 trials
were generated, and for each synthetic data set, we fit the
full and the restricted model (e.g., drift variance parameter
σ 2

ξ fixed to zero).

Results

Visual inspection of all chains and confirmation that all
parameters had R̂ values below 1.05 suggested that the
collected samples of all four recovery studies provided
a valid approximation to the joint posterior parameter
distributions (i.e., adequate convergence of the chains from
their starting values to their stationary distributions).

Recovery study 1: 30 synthetic participants each
contributing 120 trials

Figure 2 shows the correlation between the data-generating
values (x-axis) and the modes of the posterior distributions
(y-axis) obtained from fitting the SW-TN and SW-GAM
mixtures to the data of 30 synthetic SW-TN and SW-
GAM participants, respectively, each contributing 120
trials. The error bars represent the interquartile range of the
posterior distributions. Under perfect parameter recovery,
all dots would lie on the main diagonal, and all error
bars would be narrow, indicating little uncertainty about
the recovered parameter values. From the figure it is
evident that all parameters except for the drift variance
parameter can be recovered accurately; overall, there is
not much discrepancy between the data-generating values

and the modes of the posterior distributions, and only little
uncertainty about the true parameter values. However, from
Fig. 2 it is also evident that, in the case of the drift variance
parameter, many dots strongly deviate from the main
diagonal indicating that the drift variance parameter cannot
be recovered accurately, and the wide error bars signal high
uncertainty. Note that when the posterior distribution is
highly skewed, it is possible that the error bars (i.e., the
interquartile ranges of the posterior distributions) do not
cover the dots (i.e., the modes of the posterior distributions).

To assess whether parameter inferences coincide across
the two models, Fig. 3 shows the correlation between
the posterior modes of the SW-GAM (x-axis) and SW-
TN (y-axis) model, respectively, together with the error
bars representing the interquartile ranges of the posterior
distributions. First of all, Fig. 3 suggests that the uncertainty
about the true parameter values is comparable in magnitude
for both models. Second, it is evident that for all parameters
except for the drift variance parameter, the modes of both
models are similar since most modes lie close to the
main diagonal. However, for the drift variance parameter,
the posterior modes of the two models deviate from
each other in an unsystematic manner; some are higher
estimated by the SW-TN mixture, whereas others are
higher estimated by the SW-GAM mixture. Finally, note
that Fig. 3 underestimates the true accordance of the two
models because the models were fit to different synthetic
data sets, that is, the SW-TN and SW-GAM mixture were
fit to a data set that was generated with the respective
mixture.
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Fig. 2 Results for parameter recovery based on 30 synthetic participants each contributing 120 trials. Each panel shows the correlation between
the true parameter values (x-axis) and the modes of the posterior distributions (y-axis) of the SW-TN model (first row) and the SW-GAM model
(second row). Error bars and dots represent the interquartile range and modes of the posterior distributions, respectively
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Fig. 3 Results for parameter recovery based on 30 synthetic
participants each contributing 120 trials. Each panel shows the
correlation between the modes of the posterior distribution for a
specific parameter of the SW-GAM model (x-axis) and the SW-TN
model (y-axis). Error bars represent the interquartile range

Recovery study 2: 30 synthetic participants each
contributing 1200 trials

To assess the impact of the number of trials on the parameter
recovery, we repeated the same recovery study as presented
in the last section, but this time with 1200 trials instead of
120 trials. Figure 4 shows the results. From the figure it
is evident that the parameter recovery has improved: The
modes of the posterior distribution of the threshold, shift,
and drift mean parameter cluster tightly around the main
diagonal indicating a close correspondence between the true
parameter values and their recovered values. In addition, the
narrow error bars signal high certainty about the parameter
values. The recovery has also improved in the case of the
drift variance parameter, yet systematic deviances and large
uncertainty remain. Figure 4 thus suggests that, with a
large number of trials, all parameters except for the drift
variance parameter can be recovered to a high degree of
accuracy.

To assess whether parameter inferences coincide across
the two models, Fig. 5 shows the correlation between the
modes obtained from fitting the SW-GAM (x-axis) and SW-
TN model (y-axis), respectively, together with the error
bars representing the interquartile ranges of the posterior
distributions. As was the case for the previous recovery
study with 120 trials, Fig. 5 suggests that the uncertainty

about the true parameter values is comparable in magnitude
for both models, and that the parameter inferences for
threshold, shift and drift mean are similar for both models.
However, in the case of the drift variance parameter, just as
when considering 120 trials, the posterior modes of the two
models do not match.

Recovery study 3: 30 synthetic participants each
contributing 120 trials, fixed drift variance parameter

In order to investigate the impact of the drift variance
parameter on parameter recovery, we used the synthetic
data sets from the last two sections, but now the two
models were fit with a drift variance parameter fixed
to zero (i.e., the vanilla SW model with constant drift).
Figure 6 shows the correlation between the data-generating
values (x-axis) and the modes of the posterior distributions
(y-axis) obtained from fitting the SW-TN and SW-GAM
mixture, respectively, to the data of 30 synthetic participants
contributing 120 trials. The filled dots show the posterior
modes of the model with a free drift variance parameter
(obtained from recovery study 1), whereas the unfilled dots
show the posterior modes of the model with a drift variance
parameter fixed to zero. For a given synthetic participant,
the impact of fixing the drift variance parameter to zero can
be assessed by choosing a certain value on the x-axis; the
difference between the corresponding filled and unfilled dot
expresses the disagreement between the two models (i.e.,
drift variance free to vary vs. drift variance fixed to zero).
Figure 6 suggests that, in the case of the threshold and the
shift parameter, fixing the drift variance parameter to zero
does not harm recovery. However, in the case of the drift
mean parameter, fixing the drift variance parameter results
in a slight underestimation of the drift mean parameter.
Figure 6 also suggests that this pattern is present for both
the SW-TN and the SW-GAM mixture.

Recovery study 4: 30 synthetic participants each
contributing 1,200 trials, fixed drift variance parameter

To investigate whether the impact of fixing the drift variance
parameter becomes more apparent when using a larger
number of RTs, we repeated the recovery study presented
in the last section with 1200 trials instead of 120 trials.
Figure 7 shows the results. The underestimation of the drift
mean parameter when fixing the drift variance parameter is
now more systematic. In addition, fixing the drift variance
parameter seems to result in a slight underestimation of the
threshold and a slight overestimation of the shift parameter.
These results suggest that even though the drift variance
parameter cannot be recovered accurately (see Figs. 2
and 4), including it to the models does improve recovery of
the remaining parameters.
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Fig. 4 Results for parameter recovery based on 30 synthetic participants each contributing 1200 trials. Each panel shows the correlation between
the true parameter values (x-axis) and the modes of the posterior distributions (y-axis) of the SW-TN model (first row) and the SW-GAM model
(second row). Error bars represent the interquartile range

Application to real data

Data

We now apply the mixture models to the data set from
Woods et al. (2015) kindly provided to us by the authors.
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Fig. 5 Results for parameter recovery based on 30 synthetic
participants each contributing 1200 trials. Each panel shows the
correlation between the modes of the posterior distribution for a
specific parameter of the SW-GAM model (x-axis) and the SW-TN
model (y-axis). Error bars represent the interquartile range

This data set consists of 1469 participants, 40.1% men,
10.8% left-handed by self-report, and all between 18 and
65 years. All participants completed a 120-trial simple RT
task that required participants to press a response button on
a computer gaming mouse as fast as possible once upon
detecting a stimulus appearing either in the left or in the
right hemifield. As was done by Woods et al. (2015), we
excluded RTs less than 110 ms and greater than 1000 ms.
More details about the data set and the experiment can be
found in Woods et al. (2015; Experiment 1). The data set
can be downloaded from the OSF at http://osf.io/av4qn.

Cognitivemodeling analyses

We fit both models (i.e., the SW-TN and SW-GAM mixture)
to the data set provided by Woods et al. (2015) using the
Bayesian framework outlined above. We collected 4000
samples of each chain after discarding the first 1000
samples of each chain as burn-in. Whenever this resulted
in inadequate convergence (i.e., R̂ values larger than 1.05),
we fit the data again with 1000 additional samples. We
continued this process until all R̂ values for a given subject
were below 1.05.

Results

Visual inspection of the chains and confirmation that
all parameters had R̂ values below 1.05 suggested that
the collected samples provided a valid approximation to
the joint posterior parameter distribution. To assess each
model’s goodness-of-fit, we compare for each participant
the observed .1, .3, .5, .7., .9 quantiles to the predicted
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quantiles (see also Ratcliff and Van Dongen (2011)).3 The
predicted quantiles were obtained by generating 120 RTs
using the modes of the posterior distributions, for both
mixtures separately. Figure 8 suggests that both mixtures
provide a good account of the data as the predicted quantiles
closely correspond to the observed quantiles.

Figure 9 shows the histograms for the modes of the
posterior distributions of all participants for the SW-TN
and SW-GAM mixture. First of all, it is evident that the
histograms look very similar for both mixtures. Second, the
mode of the threshold parameter is around 1, the mode of
the shift parameter around .13, and the mode of the drift
mean parameter is around 10. Third, the mode of the drift
variance parameter has a bimodal distribution and should
not be interpreted due to poor parameter recovery and high
uncertainty.

Figure 10 shows contour plots that represent the
correlation between the parameters of the SW-TN and
SW-GAM mixture for a representative participant.4 A
comparison between the left and right columns suggests that
the correlation pattern is consistent across both mixtures.
Second, there is no substantial correlation between drift
variance and the remaining parameters (bottom three
rows of Fig. 10)—a foreseeable finding given the large
uncertainty about the drift variance parameter observed in
the recovery studies. Third, the top row of Fig. 10 shows
a strong negative correlation between the threshold and
shift parameter suggesting that a higher threshold can be
compensated by lower shift. Fourth, the second row of
Fig. 10 shows a strong positive correlation between the
threshold and drift mean parameter suggesting that a higher
threshold can be compensated by a higher drift mean.
Finally, a–at first glance—counterintuitive correlation is
shown in the third row: The shift parameter is negatively
correlated with the drift mean parameter. This finding is
driven by the correlations shown in the first two rows of
Fig. 10. It is evident that increasing the shift parameter
results in a lower threshold (first row), and a lower threshold
results in a lower drift mean (second row).

Discussion

This article illustrated how the shifted-Wald model can be
extended to incorporate across-trial variability in the Wald

3Note that we did not compare each model’s performance to the
performance of a benchmark model (e.g., a model without random
drift) because our purpose is parameter estimation and not model
selection.
4The correlations for all remaining participants can be examined using
the data and R code provided on the OSF at http://osf.io/av4qn. This
also involves fitting the model using the R code provided on GitHub at
https://github.com/HelenSteingroever/jags-wald/releases.

drift rate parameter. More specifically, we assumed that the
trial-dependent drift rate is governed by either a truncated
normal distribution or a gamma distribution. We showed
that analytical solutions exist for the resulting distributions
of the first-arrival times, and explicitly derived them. In
addition, we explained how they can be implemented in
a Bayesian framework. Due to the complexity of the
analytical solution for the SW-GAM mixture, we only
implemented the analytical solution for the SW-TN mixture,
but provided a sampling-based implementation for the
SW-GAM mixture. We confirmed the adequacy of both
implementations in four recovery studies, and demonstrated
their practicality on the example of a data set comprised of
1469 participants (Woods et al., 2015).

Our recovery studies showed that (1) all parameters
except for the drift variability parameter can be recovered
accurately; (2) parameter recovery of the drift variability
parameter is problematic, yet including this parameter
results in more accurate parameter recovery of the
remaining model parameters; and (3) parameter inferences
are consistent across both the SW-TN and the SW-GAM
mixtures. Our application to real data also suggests that the
results are consistent across both mixtures. In addition, we
showed that both mixtures provide a good account of the
data, but that the shift, threshold, and drift mean parameters
are correlated.

Our models can be readily applied to a large variety
of one-choice RT tasks—tasks that require participants to
“initiate a simple, preprogrammed response to a simple
triggering signal” (p. 49; Luce (1986)). Examples of
such tasks are simple RT tasks, go/no-go tasks, and
temporal-cueing tasks (Heathcote, 2004; Jepma et al., 2012;
Kamienkowski et al., 2011; Luce, 1986; Schwarz, 2001;
Smith, 2000). Next to one-choice RT tasks, our models
can also be applied to tasks from other domains involving
duration phenomena. Examples are job completion times
of employees in economics (Desmond & Chapman, 1993),
and organ transit time distributions of vascular markers
(so called washout curves) in biology (Weiss, 2012).
In addition, our implementations can be extended to
account for contaminant processes by assuming that the
observed RT originates from two processes—the Wiener
diffusion process toward a single absorbing boundary and
a contaminant process that can be modeled as a uniform
distribution between a lower and upper RT bound (Jepma
et al., 2012; Ratcliff & Tuerlinckx, 2002; Zeigenfuse
& Lee, 2010). Yet another possible extension of our
implementations is to also account for commonalities and
differences across participants using a Bayesian hierarchical
framework (Anders et al., in press; Jepma et al., 2012;
Shiffrin et al., 2008).

Our results suggest that including variability in the Wald
drift rate parameter may be worthwhile since it improves
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Fig. 8 Goodness-of-fit assessment for the SW-TN and SW-GAM mixture in the first and second row, respectively. Five observed and predicted
quantiles are compared for the data of Woods et al. (2015; n = 1469)

the parameter recovery of the remaining model parameters
(e.g., Burbeck & Luce, 1982; Ratcliff & Strayer, 2014;
Ratcliff & Tuerlinckx, 2002; Ratcliff & Van Dongen, 2011;
Ratcliff & Van Zandt, 1999; for an alternative perspective
see van Ravenzwaaij et al. (2017)). A crucial advantage of
our implementation is that it avoids having to fit the data
by simulation (e.g., Ratcliff and Van Dongen, 2011; Ratcliff
& Strayer, 2014). In addition, our results show that the
parameter inferences are not affected by whether we use the
analytical solution for the SW-TN mixture or the sampling-
based solution for the SW-GAM mixture. This suggests that
the inference is robust to the type of distribution on the drift
rate parameter and to the type of implementation.

Our recommendation to include across-trial variability
in the Wald drift rate parameter relied on a recovery

study with generated data from a shifted-Wald model that
incorporates across-trial variability. In real data, across-trial
variability in the drift rate may be absent or negligible.
In order to assess the extent to which the data support
the inclusion of the across-trial variability in the drift rate,
we recommend researchers to use the Bayes factor (Etz &
Wagenmakers, 2017; Jeffreys, 1961; Vandekerckhove et al.,
2015); this can be accomplished using bridge sampling and
the data pool reported in this article (Gronau et al., in
press). As a side note, even though it would theoretically be
possible to add across-trial variability in the shift parameter
and the threshold parameter as well, we believe that for
realistic sample sizes the Bayes factor will indicate that the
model without theses variabilities shows better predictive
performance. Here we focus on drift rate variability because
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Fig. 10 Contour plots represent the correlation between the parameters
of the SW-mixture models based on the posterior samples of a
representative participant from the Woods et al. data set (2015; n =
1469). Left column: SW-TN model. Right column: SW-GAM model

it is the most consequential and the most interesting from a
psychological perspective (see also Ratcliff, 1978).

Finally, our results can be used to create informative prior
distributions for the SW-TN and SW-GAM mixtures. Since
we fit both mixtures to a data set comprised of 1469 partici-
pants, the histograms for the posterior modes (Fig. 9) offer a
good description of which parameter values can be expected
when modeling one-choice RT data. One way to create
informative prior distributions based on Fig. 9 is to use
uniform distributions with a lower and upper bound corre-
sponding to the bounds shown in that figure (see Matzke &
Wagenmakers, 2009). Even more informative prior distribu-
tions can be used by fitting a positive-valued distribution to
the distributions of the modes, and then using the resulting
distributions as prior distributions.5

To conclude, we have extended the SW model to
incorporate across-trial variability in the Wald drift rate
parameter, and derived distributions of the first-arrival times
under the assumption that individual-trial drift rates are
governed either by a truncated normal distribution or a
gamma distribution. Our extended model can be applied to a
broad range of data sets involving duration phenomena and
can easily be extended to account for contaminant processes
and hierarchical structure.
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Appendix

Analytical solution of the SW-GAMmixture

The analytical solution for the SW-GAM mixture was
obtained by assuming that on each trial, RT follows a SW
distribution that depends in part on a trial-dependent drift
rate parameter; the drift rate parameter itself is modelled
as a draw from a gamma distribution, and this parameter
is subsequently integrated out. Table 1 and Figs. 11 and

5The modes can be downloaded from the OSF at http://osf.io/av4qn.
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12 show the results. The results are presented for several
scenarios that differ in the number of parameters fixed to
one. To obtain the results we used standard integration
techniques, but also the computer software Maple (2015).
We also tried to derive the results using Mathematica
(Wolfram Research, 2010). The results were either identical
to the ones provided by Maple, or else Mathematica failed
to provide any results.

From the table and the figures it is evident that
assuming a decision threshold α fixed to one results
in relatively short solutions that are straightforward
to implement and computationally inexpensive; how-
ever, letting decision threshold α free to vary results
in lengthy solutions involving the Laguerre polyno-
mial (https://www.maplesoft.com/support/help/maple/view.
aspx?path=LaguerreL; retrieved 2016, July 14; chapter 3 in
Bayin, 2006; Koepf, 1997). Note that LaguerreL(n, a, x)
is a function implemented in Maple that computes the nth

Laguerre polynomial.
In principle, it is possible to add the solution displayed

in Fig. 12—the solution where all relevant parameters
are free to vary—to JAGS following the procedure
described by Wabersich and Vandekerckhove (2013). Since
the LaguerreL function is not contained in JAGS, this
would involve programming the LaguerreL function in
C++, a programming language that is used for the
JAGS implementation. In order to program the Laguerre
polynomial one can use its definition as the product of a
generalized binomial coefficient and the Kummer confluent
hypergeometric function of the first kind (also known
as Kummer’s function of the first kind; Equation 10 in
Georgiev & Georgieva-Grosse, 2010):

LaguerreL(n, a, x) = La
n(x) =

(
n + a

n

)

· KummerM(−n, a + 1, x). (5)

The binomial coefficient in Eq. 5 can be rewritten using:
(

n + a

n

)

= �(n + a + 1)

� (n + 1) · � (a + 1)
. (6)

The Kummer confluent hypergeometric function of the
first kind is already implemented in C++. Note that
the analytical solutions presented in Figs. 11 and 12
involve Laguerre functions with negative inputs, resulting in
negative inputs for the gamma function in Eq. 6. Negative
inputs to the gamma function are not allowed in C++ that
is used for the JAGS implementation. One therefore needs
to use the following definition of the gamma function for
negative inputs excluding integers (otherwise the sine is
zero):

�(x) = π

x�(−x) sin(−πx)
, x ∈ R

− \ Z−
0 (7)
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(http://algolist.manual.ru/maths/count fast/gamma
function.php; retrieved July 14, 2016). The classical iden-
tities �(x) = (x − 1)! and �(x) = �(x+1)

x
suggest that the

gamma function is not defined for negative integers includ-
ing zero (i.e., x /∈ Z

−
0 ). However, Fisher and Kılıcman

(2012) proved that the gamma function can be defined for
negative integers as follows:

�(x) = (−1)−x

(−x)! (g(−x) − γ ) , x ∈ Z
−, (8)

with g(−x) = ∑−x
i=1

1
i

and γ = −�(0) =
limn→∞

∑n
k=1

(
1
k

− ln(n)
)

which is Euler’s constant.

Thus, �(0) = −γ . This information, together with Eqs. 5–
8, is sufficient to implement the Laguerre polynomial in
C++ and R.

JAGSmodel files

This section presents the JAGS model files to implement
the SW-TN and SW-GAM mixture. All relevant code
can be downloaded from GitHub at https://github.com/
HelenSteingroever/jags-wald/releases.

The JAGS model code for the SW-TN mixture is as
follows:

The JAGS model code for the SW-GAM mixture:

Note that the T(0,) argument ensures positive values
and that the second argument of the normal distribution
refers to the precision being defined as the reciprocal of
the variance (i.e., λ = 1/σ 2). In addition to the dunif(0,
5) prior (i.e., a uniform prior ranging from 0 to 5, that
is, U(0, 5)) on the drift variance, we also tried a dunif(0,
2) prior for our recovery studies. The problem with this
parameter is that, in the recovery studies, a lot of mass of
many posterior distributions often lies close to the upper
bound even though the true values did not—a finding that
did not affect the remaining parameter inferences, but that
we observed independently of whether an upper bound of 2
or 5 was used. We assume that this pattern will remain even
if we use a yet higher upper limit (i.e., the principle of stable
estimation; Edwards et al., 1963). We therefore decided to
use a dunif(0, 5) prior on the drift variance for all analyses
presented in this article.
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Fig. 11 Solution of
∫ ∞

0 SW(t;α, θ, ξ) · GAM(ξ ; κ, τ = 1) dξ , with κ the shape parameter and τ the rate parameter, derived by Maple
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Fig. 12 Solution of
∫ ∞

0 SW(t;α, θ, ξ)·GAM(ξ ; shape = κ, rate = τ) dξ , with κ the shape parameter and τ the rate parameter, derived by Maple
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