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Abstract: Matrix metalloproteinases are enzymes that degrade the extracellular matrix. They have
different substrates but similar structural organization. Matrix metalloproteinases are involved in
many physiological and pathological processes and there is a need to develop inhibitors for these
enzymes in order to modulate the degradation of the extracellular matrix (ECM). There exist two
classes of inhibitors: endogenous and synthetics. The development of synthetic inhibitors remains a
great challenge due to the low selectivity and specificity, side effects in clinical trials, and instability.
An extensive review of currently reported synthetic inhibitors and description of their properties
is presented.
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1. Introduction

Matrix metalloproteinases (MMPs) are a protein family within the metzincin superfamily,
comprising zinc-dependent endopeptidases with similar structural characteristics but with different
substrate preferences. MMPs are produced and secreted from cells as inactive proenzymes depending,
herein, on a structural alteration for activation [1–6]. In human tissues, there are 23 different types
of MMPs expressed and they can be subdivided according to their substrate specificity, sequential
similarity, and domain organization [1,2,4,7–17] (Table 1).

The most common structural features shared by MMPs are [1,2,4,5,7,8,10–14,16,18] (Figure 1) a
pro-domain, a catalytic domain, a hemopexin-like domain, and a transmembrane domain for membrane
type MMPs (MT-MMPs) although some MMPS do not have all the structural features represented in the
figure. The pro-domain keeps MMP inactive by a cysteine switch, which interacts with the catalytic zinc
making it impossible to connect the substrate. The catalytic domain has two zinc ions, three calcium
ions, and three histidine residues, which are highly conserved [1–9,11–20]. In the terminal zone of the
catalytic domain there is a region that forms the outer wall of the S1’ pocket [1,14,17]. This pocket is the
most variable region in MMPs and it is a determining factor for substrate specificity [1,2,6,7,11,17,18].
However, there are six pockets (P1, P2, P3, P1’, P2’, and P3’) and the fragments of the substrates or
inhibitors are named depending on the interaction with these pockets (R1, R2, R3, R1’ or Ra, R2’,
and R3’). The linker is proline-rich, of variable length, allowing inter-domain flexibility and enzyme
stability [4,8,12,13]. The hemopexin-like domain is necessary for collagen triple helix degradation and
is important for substrate specificity [3,4,7,9,19].
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Table 1. Matrix metalloproteinases (MMPs) classes.

Class MMP

Collagenases
MMP-1, Collagenase-1, Interstitial or Fibroblast collagenases

MMP-8, Collagenase-2, or Neutrophil collagenases
MMP-13 or Collagenase 3

Gelatinases
MMP-2 or Gelatinase A
MMP-9 or Gelatinase B

Stromelysin
MMP-3 or Stromelysin-1
MMP-10 or Stromelysin-2

MMP-11

Matrilysin MMP-7
MMP-26, Matrilysin-2, or Endometase

Membrane-type
Type I transmembrane protein

MMP-14 or MT1-MMP
MMP-15 or MT2-MMP
MMP-16 or MT3-MMP
MMP-24 or MT5-MMP

Glycosylphosphatidylinositol (GPI)-anchored MMP17 or MT4-MMP
MMP-25 or MT6-MMP

Other MMPs

MMP-12
MMP-19
MMP-20
MMP-21
MMP-23
MMP-27
MMP-28
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Figure 1. Schematic representation of the general structure of MMP. 

The MMPs can process ECM proteins and glycoproteins, membrane receptors, cytokines, 
hormones, chemokines, adhesion molecules, and growth factors [1,3,4,6,7,9–11,13,14,20–26]. 
However, the presence and the activity of MMPs have been demonstrated to be intracellular [25,26]. 
For example, some studies show intracellular localization of MMP-2 in cardiac myocytes and 
colocalization of MMP-2 with troponin I in cardiac myofilaments [23]. The MMP-2 activity has also 
been detected in nuclear extracts from human heart and rat liver [23]. The MMPs are involved in 
many biologic processes, such as tissue repair and remodulation, cellular differentiation, 
embryogenesis, angiogenesis, cell mobility, morphogenesis, wound healing, inflammatory response, 
apoptosis, ovulation, and endometrial proliferation [1,2,4,6,8,10,11,13,16–18,20,27]. The deregulation 
of MMPs activity leads to the progression of various pathologies depending on which enzyme is 
involved [1,6,10,13–17,20,27]: cancer and metastasis, inflammatory processes, arthritis, ulcers, 
periodontal diseases, brain degenerative diseases, liver cirrhosis, fibrotic lung diseases, otosclerosis, 
atherosclerosis, multiple sclerosis, dilated cardiomyopathy, aortic aneurysm, or varicose veins. 

Although therapeutic strategies for specific inhibition of MMPs have been long researched, they 
are difficult to develop because these enzymes are involved in a myriad of pathways [2,5]. However, 
this inhibition can be done at the biomolecular expression and active enzyme terms [2,5,18]. The 
MMPs inhibitors can be divided into endogenous inhibitors, which can be specific or non-specific, 
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regulation of MMPs activity, but also of families such as the disintegrin metalloproteinases (ADAM 
and with thrombospondin motifs ADAMTS) and therefore for maintaining the physiological balance 

Figure 1. Schematic representation of the general structure of MMP.

The MMPs can process ECM proteins and glycoproteins, membrane receptors, cytokines, hormones,
chemokines, adhesion molecules, and growth factors [1,3,4,6,7,9–11,13,14,20–26]. However, the
presence and the activity of MMPs have been demonstrated to be intracellular [25,26]. For example,
some studies show intracellular localization of MMP-2 in cardiac myocytes and colocalization of
MMP-2 with troponin I in cardiac myofilaments [23]. The MMP-2 activity has also been detected
in nuclear extracts from human heart and rat liver [23]. The MMPs are involved in many biologic
processes, such as tissue repair and remodulation, cellular differentiation, embryogenesis, angiogenesis,
cell mobility, morphogenesis, wound healing, inflammatory response, apoptosis, ovulation, and
endometrial proliferation [1,2,4,6,8,10,11,13,16–18,20,27]. The deregulation of MMPs activity leads to the
progression of various pathologies depending on which enzyme is involved [1,6,10,13–17,20,27]: cancer
and metastasis, inflammatory processes, arthritis, ulcers, periodontal diseases, brain degenerative
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diseases, liver cirrhosis, fibrotic lung diseases, otosclerosis, atherosclerosis, multiple sclerosis, dilated
cardiomyopathy, aortic aneurysm, or varicose veins.

Although therapeutic strategies for specific inhibition of MMPs have been long researched,
they are difficult to develop because these enzymes are involved in a myriad of pathways [2,5].
However, this inhibition can be done at the biomolecular expression and active enzyme terms [2,5,18].
The MMPs inhibitors can be divided into endogenous inhibitors, which can be specific or non-specific,
and synthetic inhibitors [1,2,4,7,10,12–14,16,20,28,29] (Table 2).

Table 2. MMPs inhibitors classification.

Specific Inhibitor Tissue Inhibitor of Metalloproteinases (TIMP)

Endogenous inhibitor Non-specifics inhibitors

α2-macroglobulin
Tissue factor pathway inhibitor (TFPI)

Membrane-bound β-amyloid precursor protein
C-terminal proteinases enhancer protein

Reversion-inducing cystein-rich protein with
Kasal domain motifs (RECK)
GPI-anchored glycoprotein

Synthetic inhibitor

Hydroxamate-based inhibitors
Non-hydroxamate-based inhibitors

Catalytic domain (non-zinc binding) inhibitors
Allosteric and exosite inhibitors

Antibody-based inhibitors

2. Specific Endogenous Inhibitor-Tissue Inhibitors of Metalloproteinases (TIMPs)

Tissue inhibitors of metalloproteinases (TIMPs) are endogenous proteins responsible for the
regulation of MMPs activity, but also of families such as the disintegrin metalloproteinases (ADAM
and with thrombospondin motifs ADAMTS) and therefore for maintaining the physiological balance
between ECM degradation and MMPs activity [1,2,8,9,18,30]. There are four TIMPs (TIMP-1, -2, -3,
and -4) (Table 3), with 22–29 KDa and 41%–52% sequential similarity [2,4,12,13,16,20,31].

Table 3. Tissue inhibitors of metalloproteinases (TIMPs) classification.

TIMP Expression Inhibition Inhibition Mode

1 Several tissues with transcription
inducible by cytokines and hormones

Strong interaction with MMP-1, -2, -3, and -9
Weak interaction with MT1-MMP, MT3-MMP,
MT5-MMP, and MMP-19

TIMP-1 forms a complex with
pro-MMP-9 by binding to the
hemopexin domain

2 Constitutive expression Strong interaction with MMP-2

TIMP-2 has four residues in the
N-terminal domain and an adjacent
CD-loop region, which allows
interaction between TIMP and the
active center of MMP-2

3 In response to mitogenic stimulation
and during cell cycle progression MMP-1, -2, -3, -9, and -13

The inhibition mode is different from
the other TIMPs for its unusual
localization, as it is largely sequestered
into the extracellular matrix or at the
cell surface via heparan sulphate
proteoglycans

4 Especially abundant in the heart, but is
also expressed in injured tissue MMP-2 and -14 -

TIMPs consist of a N- and C-terminal domain with 125 and 65 amino acids, respectively,
each containing six conserved cysteine residues, which form three conserved disulphide
bonds [2,4,7–9,12,31,32] (Figure 2a). The N-terminal domain is an independent unit, which can be
inhibited by MMPs, in a 1:1 ratio [2,4,8–10,12,13,16,20]. This domain has two groups of four residues:
Cys-Thr-Cys-Val and Glu-Ser-Val-Cys (Figure 2b), which are connected by disulphide bounds which
are important for TIMP activity [7,12]. This is the main domain responsible for MMP inhibition through
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its binding to the catalytic site in a substrate-like manner [31]. The several domains allow the TIMP
and pro-gelatinases interactions [4].

Biomolecules 2020, 10, 717 4 of 64 

between ECM degradation and MMPs activity [1,2,8,9,18,30]. There are four TIMPs (TIMP-1, -2, -3, 
and -4) (Table 3), with 22–29 KDa and 41%–52% sequential similarity [2,4,12,13,16,20,31]. 

Table 3. Tissue inhibitors of metalloproteinases (TIMPs) classification. 

TIMP Expression Inhibition Inhibition Mode 

1 

Several tissues with 
transcription inducible 
by cytokines and 
hormones 

Strong interaction with 
MMP-1, -2, -3, and -9 
Weak interaction with 
MT1-MMP, MT3-MMP, 
MT5-MMP, and MMP-19 

TIMP-1 forms a complex with pro-MMP-9 by 
binding to the hemopexin domain 

2 Constitutive expression  
Strong interaction with 
MMP-2 

TIMP-2 has four residues in the N-terminal 
domain and an adjacent CD-loop region, 
which allows interaction between TIMP and 
the active center of MMP-2 

3 

In response to 
mitogenic stimulation 
and during cell cycle 
progression 

MMP-1, -2, -3, -9, and -13 

The inhibition mode is different from the 
other TIMPs for its unusual localization, as it 
is largely sequestered into the extracellular 
matrix or at the cell surface via heparan 
sulphate proteoglycans 

4 

Especially abundant in 
the heart, but is also 
expressed in injured 
tissue 

MMP-2 and -14 - 

TIMPs consist of a N- and C-terminal domain with 125 and 65 amino acids, respectively, each 
containing six conserved cysteine residues, which form three conserved disulphide bonds [2,4,7–
9,12,31,32] (Figure 2a). The N-terminal domain is an independent unit, which can be inhibited by 
MMPs, in a 1:1 ratio [2,4,8–10,12,13,16,20]. This domain has two groups of four residues: Cys-Thr-
Cys-Val and Glu-Ser-Val-Cys (Figure 2b), which are connected by disulphide bounds which are 
important for TIMP activity [7,12]. This is the main domain responsible for MMP inhibition through 
its binding to the catalytic site in a substrate-like manner [31]. The several domains allow the TIMP 
and pro-gelatinases interactions [4]. 

 
Figure 2. (a) TIMP-1-catalytic domain of the MMP-3 complex. (b) TIMP-1-catalytic domain of the 
MMP-3 complex, where two conserved groups, Cys-Thr-Cys-Val and Glu-Ser-Val-Cys, are 
represented in yellow. 

Figure 2. (a) TIMP-1-catalytic domain of the MMP-3 complex. (b) TIMP-1-catalytic domain of the
MMP-3 complex, where two conserved groups, Cys-Thr-Cys-Val and Glu-Ser-Val-Cys, are represented
in yellow.

3. Non-Specific Endogenous Inhibitors

Non-specific endogenous inhibitors have been reported to inhibit MMPs (Table 4), however, the
inhibition mechanism details have only been partially discovered [7,12].

Table 4. Non-specific endogenous inhibitors [4,7,12,13,33,34].

Non-Specific Inhibitor Inhibition

α2-macroglobulin MMP-2 and -9

Tissue factor pathway inhibitor MMP-1 and -2

Membrane-bound β-amyloid precursor protein MMP-2

C-terminal proteinase enhancer protein MMP-2

Reversion-inducing-cysteine-rich protein with Kasal motifs (RECK) MMP-2, -9, and -14

GPI-anchored glycoprotein -

Human α2-macroglobulin is a glycoprotein with four identical subunits that act by entrapping
MMP and the complex is cleared by endocytosis [2]. The α2-macroglobulin has been found in blood
and tissue fluid [2,31]. The tissue factor pathway inhibitor (TFPI) is a serine proteinase inhibitor,
which targets MMP-1 and -2, but this inhibition mode is still unknown [7,12]. The C-terminal proteinase
enhancer protein and tissue factor pathway inhibitor have sequences with certain similarities to the
N-terminal domain of TIMPs [31].

4. Synthetic Inhibitors

MMPs are molecular targets for the development of therapeutic and diagnostic agents [14].
The development of synthetic MMP inhibitors was initially based on the peptide sequence, recognized by
proteases, with different chemical functionalities, capable of interacting potently with zinc ion [11–13,19].
The requirements for an effective inhibitor are [2,11,13,17,19,35]:
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- A functional group able to chelate the zinc ion (II)-zinc binding group (ZBG). The first generation
inhibitors used hydroxamate (CONHO−) but the second generation use carboxylate (COO−),
thiolates (S−), phosphonyls (PO2

−), for example (Figure 3);
- At least one functional group that promotes hydrogen bonding with the protein backbone;
- One or more side chains undergoing Van der Waals interactions with enzyme subsites.
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Figure 3. Examples of zinc binding groups (ZBGs). (a) Hydroxamate-based inhibitor; (b) thiolate-based
inhibitor; (c) carboxylate-based inhibitor; (d) phosphorous-based inhibitor. The R group is the scaffold
of inhibitor.

ZBGs have negative charges that prevent their penetration in the cell, restricting their activity to
the extracellular space which reduces their cell toxicity [2]. Changes in the ZBG structure or in the
point of attachment of the ZBG to the backbone of the MMP inhibitor can change its potency and
selectivity [2]. When comparing what selectivity or potency of different ZBGs leaving the structure
constant, Castelhano et al. arrived at the following list [36]: hydroxamic acid >> formylhydroxylamine
> sulfhydryl > aminocarboxylates > carboxylate.

The selectivity of inhibitor is a primordial goal of MMPs’ inhibitors (MMPis) design to increase
efficacy and prevent side effects [2]. This selectivity is based on two molecular characteristics [11]:
a chelating capacity for catalytic zinc and the presence of hydrophobic bridges of the active center for
the S1’ pocket. Numerous strategies have been suggested for creating selective MMP inhibitors [27]
(Figure 4): endogenous-like inhibitors, exosite targeting inhibitors, a combination of exosite binding
and metal chelating inhibitors, and function-blocking antibodies.
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The synthetic inhibitors have had a great challenge in their development since first it is necessary
to identify the enzymes that are involved in disease progression. Moreover, this goal has an
additional difficulty as there are more than 50 human metalloproteinases (23 MMPs, 13 ADAM,
and 19 ADAMTS) [2].

4.1. Hydroxamate-Based Inhibitors

The first generation of MMPis (1995–1999 [16]) were designed based on the knowledge of
the triple helix collagen amino acid sequence (cleavage site) and the information derived from
specific substrates [6,15,19,31,35,37]. These compounds contain a hydroxamic acid group as
ZBG [5,6,15,18,27,28,31,37]. Hydroxamic acids (HA) were first described in 1986 [38,39]. They are
easy to synthesize, are monoanionic compounds, bidentate chelating agents, and due the excellent
zinc-chelating capability they are the more popular ZBG for MMPs [2,6,17,18,27–29]. The hydroxamic
group established interactions with zinc ions, through two oxygens and two hydrogen bonds
(NH and OH groups of HA with Ala and Glu, respectively), forming a distorted triangular
bipyramid [2,5,18,19,28,29] (Figure 5a). Reich et al., in 1988 [40], used a hydroxamic acid compound,
SC-44463 (Figure 5b), to block collagenase and prevent metastasis in a mouse model, which initiated
the era of MMP inhibition therapeutics [40].
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while the NH of hydroxamate establishes another hydrogen bond with the carbonyl oxygen of Ala;
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The structure–activity relationship (SAR) studies for a series of hydroxamic acids with a quaternary
carbonyl group at R1 suggested that [13] (Figure 6):

(i) The stoichiometric orientation of the substituent at R1 position is crucial for the activity;
(ii) The phenylpropyl group was established as the best substituent at position R1;
(iii) Hydrophobic substituents at R2’ position and N-metiamides at R3’ position were considered as

the most appropriate.
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α substituent; R1: P1’ substituent group and this group is determinant to selectivity and activity; R2:
P2’ substituent and this substituent can be cyclized with Ra and R3; R3: P3’ substituent.

Modification in Ra position (α substituent): a beneficial effect is conferred by lipophilic substituents
capable of hydrogen bonding [19]. Analogues of Marimastat have been reported, where the α position
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is disubstituted by a hydroxyl group and a methyl group [19] (Figure 7a). The X-ray structures of the
MMP-3-inhibitor complex showed that there were hydrogen bonds between the hydroxyl group and
Ala165 [19]. By binding the positions Ra and R2 in a single chain, forming a cyclic inhibitor (Figure 7b),
there was a substantial increase in water solubility [19,29,41,42]. This strategy led to the discovery of
two inhibitors with similar potency to non-cyclized analogues, SE205 and SC903 [41] (Figure 7c,d).
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Figure 7. (a) Analogue of Marimastat with the α position disubstituted; (b) analogue of Marimastat
with Ra and R2 position connected; (c) SE205; (d) SC903.

The introduction of conformational restrictions through the addition of a three-membered ring
between positions α and R1 (Figure 8a) has been reported by Martin et al. [43], and it resulted in
reduced inhibition of MMP-9 [43]. However, the introduction of a six-membered ring between these
same positions resulted in the inactivity of the compound [19] (Figure 8b).
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three-membered ring; (b) inhibitor with six-membered ring.

Exploring the depth of S1’ pocket, bulky groups in Rα position confer selective inhibition for
MMP-2, -8, and -9 [29]. An example is the presence of a biphenyl group, which showed higher
inhibitory activity against MMP-9 [29].
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Modification in R1 position: the incorporation of long groups in the R1 position can promote the
selectivity of MMPis, since pocket S1’ can undergo conformational changes to accommodate certain
substituents [19].

Broadhurst et al. showed that an alkyl chain (C9) at the R1 position reduces the inhibition
of MMP-1, but maintains the inhibitory activity against MMP-2, -3, and -9 [19] (Figure 9a). For
matlystatin derivates in the C9 chain, R-94138 (Figure 9b) promotes the inhibition against MMP-9 [44].
The succinyl hydroxamates analogues in the C9 chain promote selectivity for MMP-2, however, a C10

chain (Figure 9c) results in MMP-1 inhibition, while a further increase of the chain to C16 (Figure 9d)
leads to a loss of activity against MMP-1 [19].Biomolecules 2020, 10, 717 9 of 64 
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Figure 9. Inhibitors with modification of R1 position. (a) Inhibitor with alkyl chain. This inhibitor
has activity against MMP-2, -3, and -9, but the inhibition of MMP-1 is low; (b) R-94138, Matlystatin
derivate. The inhibition of MMP-9 is 10 times higher than analogues with C8 or C10 chains; (c) succinyl
hydroxamate analogue with C10 chain, which inhibits MMP-1; (d) succinyl hydroxamate analogue
with C16 chain, which inhibits MMP-1.

Replacement of the R1-R2 bond of succinyl hydroxamates acid inhibitors by a sulfonamide bond
(Figure 10a) results in substantial loss of inhibitory activity because the hydrogen bond (C=ONH;
Figure 10b) with leucine is stronger than the new sulfonyl oxygen bond, due to the pyramidal nature
of the sulfonamide [19].
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Figure 10. (a) Succinyl hydroxamate acid with a sulphonamide bond. This compound presents
low inhibitory activity because of the pyramidal nature of the sulphonamide group. (b) Succinyl
hydroxamate acid with carbonyl bond.

Modifications in R2 position: modifications in the R2 position led to a modest effect in inhibitory
activity, in vitro, and affects the pharmacokinetic properties [29]. Marimastat and Ro31-9790 (Figure 11)
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have a good oral activity because the bulky tert-butyl group assists the adjacent amide bond during
absorption from an aqueous environment to the lipid environment of the cell membrane [45].
The beneficial combination of the tert-butyl group with the α-hydroxyl group increases the water
solubility [19,29]. Babine and Bender suggest that the tert-butyl as R2 group leads to less Van der Waals
interactions, comparing with other groups [46].Biomolecules 2020, 10, 717 10 of 64 
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(Table 5), which has an alpha-hydroxyl group increasing the aqueous solubility [29]. Marimastat 
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toxicity (MST) [6,31]. Batimastat, marimastat, and ilomastat are examples of succinyl hydroxamates, 
which have very analogous structure to that of collagen and inhibit MMPs by bidentate chelation of 
the Zn2+ [2,6,29]. 
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Figure 11. (a) Marimastat. The Ra position is substituted with a hydroxyl group (OH). (b) Ro31-9790.
The Ra position has no substituents.

Ikeda et al. described compounds with phenyl R2 substituents (Figure 12) (KB-R7785), which
are active orally, due to the beneficial effect of the R2 phenyl group on absorption, where the amide
shielding and lipophilicity may assist in transepithelial resorption [47]. This inhibitor shows activity
against MMP-1 in rats and its effectiveness in arthritis has been demonstrated [47].
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Modifications in R3 position: the S3’ pocket is an open area and several groups can be introduced
at the R3 position [19]. The introduction of the benzhydryl group leads to compounds with selectivity
to the MMPs-3 and -7 [19].

4.1.1. Succinyl Hydroxamic Acid-Based Inhibitors

Succinyl hydroxamate derivates can be subdivided to peptide derivatives or non-peptide
compounds [48]. The N-acetylcysteine has been reported to affect the tumoral invasion process
and metastasis by MMP-2 and -9 inhibition [49]. The L-cysteine-2-phenylethylamide is an effective
inhibitor, in which the phenyl group fills the S1’ pocket of MMP-8 [50]. Foley et al. prepared several
dipeptides derivatives containing cysteine (RCO-Cys-AA-NH2) and concluded [51]:

- The variation of the acyl group and the second amino acid (AA) leads to the activity against
different MMPs.

- The R group interacts with the S1’ pocket.

Batimastat (Table 5) was the first MMPi to enter in clinical trials for cancer as it inhibits MMP-1,
-2, -7, and -9, but, due to its poor oral bioavailability, it was superseded by Marimastat [28,29,31]
(Table 5), which has an alpha-hydroxyl group increasing the aqueous solubility [29]. Marimastat
inhibits the activity of MMP-1, -2, -3, -7, -9, -12, and -13 [31]. However, Marimastat failed in clinical
trials due to the absence of a therapeutic effect and the patients treated developed musculoskeletal
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toxicity (MST) [6,31]. Batimastat, marimastat, and ilomastat are examples of succinyl hydroxamates,
which have very analogous structure to that of collagen and inhibit MMPs by bidentate chelation of
the Zn2+ [2,6,29].

Table 5. Batimastat and Marimastat.

Name Molecule α Substituent Effect

Batimastat
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Figure 13. (a) Derivates of succinyl hydroxamic acid; (b) malonyl acid; (c) glutaryl acid. 

Marcq et al. [53] developed succinyl hydroxamates derivates selective for MMP-2, by 
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Several studies by Jonhson et al. [52] demonstrated that derivatives of succinyl hydroxamic acid
(Figure 13a) are more potent for MMP-1 than the corresponding malonyl (Figure 13b) or glutaryl
(Figure 13c) derivates.
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Figure 13. (a) Derivates of succinyl hydroxamic acid; (b) malonyl acid; (c) glutaryl acid.

Marcq et al. [53] developed succinyl hydroxamates derivates selective for MMP-2, by modifications
on Ilomastat structure (Figure 14a) to increase the overall hydrophobicity and, consequently,
the selectivity [53]. This study resulted in a compound (Figure 14b) with an isobutylidene group of
E geometry, which showed a 100-fold greater selectivity for MMP-2 over MMP-3, that is a 70-fold
increase compared to Ilomastat [53].
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Table 6 shows the IC50 and Ki values of some succinyl hydroxamic acid-based inhibitors [6,15–
19,29,35,37,54,55].
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Table 6 shows the IC50 and Ki values of some succinyl hydroxamic acid-based
inhibitors [6,15–19,29,35,37,54,55].

4.1.2. Sulfonamide Hydroxamic Acid-Based Inhibitors

In 1995, Novartis described the CGS-27023A (Figure 15a), a non-peptidic MMP-3 inhibitor, which
has good oral availability but did not succeed in clinical trials [56]. The isopropyl group slows down
the metabolization of the adjacent hydroxamic acid group and the 3-pyridyl substituent may aid
partitioning into the hydrated negatively charged environment of the cartilage [56]. By analysis of the
cocrystal structure of this inhibitor and MMP-12, it was possible to conclude that the binding mode
between the hydroxamate moiety and the catalytic zinc ion was the same as the binding mode of
hydroxamate-based inhibitors [6]. The interaction of CGS-27023A with MMP-3 was possible due to the
p-methoxy phenyl substituent occupation of the S1’ pocket and the pyridylmethyl and isobutyl groups
occupation of the S2’ and S1 pockets, respectively [29,56]. The modification of α to form the thioester
derivate led to an increase of the inhibition of the deep pocket of the MMPs [29,56] (Figure 15b).
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The NNGH (Figure 16a) (N-Isobutyl-N-(4-methoxyphenylsulfonyl)glycyl hydroxamic acid) was
the starting point to many potent MMPis and is accommodated in the entry of the S1’ pocket, but does
not penetrate it [6]. Barta et al. described a series of arylhydroxamate sulphonamides, active against
MMP-2 and -13 (Figure 16b) [57]. In this compound, the sulfonyl group formed a single hydrogen
bond with Leu160 and the piperidine-O-phenyl moiety extends into the S1’ pocket by Van der Waals
interactions [57]. Noe et al. described a series of 3,3-dimethyl-5-hydroxy pipecolic hydroxamic
acid, which possess potent inhibitory activity for MMP-13 [58]. In the first series of compounds,
the 3-position of the piperidine ring was explored by the introduction of a polar functionality and
it resulted in a compound with excellent activity on MMP-13 (Figure 16c), improved bioavailability,
and lower metabolic clearance [58].
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Table 6. IC50 and Ki values of succinyl hydroxamic acid-based inhibitors.
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= 30 nM; MMP-7 = 20 nM; MMP-8 = 20 nM; 

MMP-9 = 9 nM 
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= 2 nM; MMP-9 = 3 nM; MMP-12 < 5 nM;

MMP-13 = 0.74 nM; MMP-14 = 1.8 nM
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SC-44463 

IC50: MMP-1 = 20 nM; MMP-2 = 6 nM; 
MMP-3 = 30 nM; MMP-7 = 30 nM 

 
BB-16 

IC50: MMP-1 = 5 nM; MMP-2 = 10 nM; MMP-3 = 40 nM; MMP-7 = 60 nM; 
MMP-8 = 7 nM 

 
Ro-31-9790 

IC50: MMP-1 = 10 nM; MMP-2 = 8 nM; MMP-
3 = 700 nM; MMP-14 = 1.9 nM 

 
Ro-32-0554 

IC50: MMP-1 = 0.5 nM; MMP-3 = 9.1 nM; 
MMP-9 = 4.3 nM 

 
IC50: MMP-1 = 10 nM; MMP-2 = 400 nM; MMP-3 = 4.5 μM 

 
Ro-32-3555 

Ki: MMP-1 = 3 nM; MMP-2 = 154 nM; MMP-3 
= 527 nM; MMP-8 = 4 nM; MMP-9 = 59 nM; 

MMP-13 = 3 nM 

SC-44463
IC50: MMP-1 = 20 nM; MMP-2 = 6 nM;

MMP-3 = 30 nM; MMP-7 = 30 nM
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IC50: MMP-1 = 10 nM; MMP-2 = 8 nM;
MMP-3 = 700 nM; MMP-14 = 1.9 nM
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IC50: MMP-1 = 40 nM  

IC50: MMP-1 = 29 μM 

 
IC50: MMP-1 = 10 μM 

 
IC50: MMP-1 = 9 nM 

 
Analogue of Marimastat 

IC50: MMP-1 = 1 μM; MMP-2 = 15 nM; MMP-3 = 500 nM; MMP-7 = 10 μM; 
MMP-8 = 30 nM; MMP-9 = 15 nM 

 
Ki: MMP-1 = 2 nM; MMP-3 = 3 nM; MMP-9 < 

1 nM 

 
Ki: MMP-1 = 1.3 nM; MMP-2 = 1.1 nM; 

MMP-3 = 187 nM 

 
Ki: MMP-1 = 6.5 nM; MMP-2 = 20 nM; MMP-3 = 240 nM 

 
IC50: MMP-1 = 6 nM; MMP-2 = 30 nM; MMP-

3 = 40 nM 

IC50: MMP-1 = 40 nM
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1 nM 

 
Ki: MMP-1 = 1.3 nM; MMP-2 = 1.1 nM; 
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Ki: MMP-1 = 6.5 nM; MMP-2 = 20 nM; MMP-3 = 240 nM 

 
IC50: MMP-1 = 6 nM; MMP-2 = 30 nM; MMP-

3 = 40 nM 

IC50: MMP-1 = 29 µM
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IC50: MMP-1 = 6 nM; MMP-2 = 30 nM; MMP-

3 = 40 nM 

Ki: MMP-1 = 2 nM; MMP-3 = 3 nM; MMP-9
< 1 nM
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IC50: MMP-1 = 40 nM  

IC50: MMP-1 = 29 μM 

 
IC50: MMP-1 = 10 μM 

 
IC50: MMP-1 = 9 nM 

 
Analogue of Marimastat 

IC50: MMP-1 = 1 μM; MMP-2 = 15 nM; MMP-3 = 500 nM; MMP-7 = 10 μM; 
MMP-8 = 30 nM; MMP-9 = 15 nM 

 
Ki: MMP-1 = 2 nM; MMP-3 = 3 nM; MMP-9 < 

1 nM 

 
Ki: MMP-1 = 1.3 nM; MMP-2 = 1.1 nM; 

MMP-3 = 187 nM 

 
Ki: MMP-1 = 6.5 nM; MMP-2 = 20 nM; MMP-3 = 240 nM 

 
IC50: MMP-1 = 6 nM; MMP-2 = 30 nM; MMP-

3 = 40 nM 
Ki: MMP-1 = 1.3 nM; MMP-2 = 1.1 nM;

MMP-3 = 187 nM
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1 nM 
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3 = 40 nM 
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IC50: MMP-1 = 375 nM; MMP-2 < 0.15 nM; 

MMP-3 = 18 nM; MMP-9 = 1.5 nM 
 

IC50: MMP-1 = 20 nM; MMP-2 = 2 nM; MMP-3 = 100 nM; MMP-9 = 2 μM 

 
IC50: MMP-2 = 20 nM; MMP-3 = 300 nM; 

MMP-9 = 1 nM 

 
KB-R7785 

IC50: MMP-1 = 3 nM; MMP-2 = 7.5 nM; 
MMP-3 = 1.9 nM; MMP-9 = 3.9 nM 

 
IC50: MMP-1 = 5.4 nM; MMP-2 = 8.4 nM; MMP-3 = 2.3 nM; MMP-9 = 5 nM; 

MMP-14 = 2.3 nM 

 
IC50: MMP-1 = 5 nM; MMP-2 = 1 nM; MMP-3 

= 15 nM; MMP-9 = 1 nM 

 
IC50: MMP-1 = 150 nM  

IC50: MMP-3 = 300 nM 

 
Matlystatin B 

IC50: MMP-2 = 1.7 μM; MMP-9 = 570 nM 

IC50: MMP-1 = 375 nM; MMP-2 < 0.15 nM;
MMP-3 = 18 nM; MMP-9 = 1.5 nM
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IC50: MMP-2 = 20 nM; MMP-3 = 300 nM; 

MMP-9 = 1 nM 

 
KB-R7785 

IC50: MMP-1 = 3 nM; MMP-2 = 7.5 nM; 
MMP-3 = 1.9 nM; MMP-9 = 3.9 nM 

 
IC50: MMP-1 = 5.4 nM; MMP-2 = 8.4 nM; MMP-3 = 2.3 nM; MMP-9 = 5 nM; 

MMP-14 = 2.3 nM 

 
IC50: MMP-1 = 5 nM; MMP-2 = 1 nM; MMP-3 

= 15 nM; MMP-9 = 1 nM 

 
IC50: MMP-1 = 150 nM  

IC50: MMP-3 = 300 nM 

 
Matlystatin B 

IC50: MMP-2 = 1.7 μM; MMP-9 = 570 nM 

KB-R7785
IC50: MMP-1 = 3 nM; MMP-2 = 7.5 nM;

MMP-3 = 1.9 nM; MMP-9 = 3.9 nM
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MMP-3 = 18 nM; MMP-9 = 1.5 nM 
 

IC50: MMP-1 = 20 nM; MMP-2 = 2 nM; MMP-3 = 100 nM; MMP-9 = 2 μM 

 
IC50: MMP-2 = 20 nM; MMP-3 = 300 nM; 

MMP-9 = 1 nM 

 
KB-R7785 

IC50: MMP-1 = 3 nM; MMP-2 = 7.5 nM; 
MMP-3 = 1.9 nM; MMP-9 = 3.9 nM 

 
IC50: MMP-1 = 5.4 nM; MMP-2 = 8.4 nM; MMP-3 = 2.3 nM; MMP-9 = 5 nM; 

MMP-14 = 2.3 nM 

 
IC50: MMP-1 = 5 nM; MMP-2 = 1 nM; MMP-3 

= 15 nM; MMP-9 = 1 nM 

 
IC50: MMP-1 = 150 nM  

IC50: MMP-3 = 300 nM 

 
Matlystatin B 

IC50: MMP-2 = 1.7 μM; MMP-9 = 570 nM 

IC50: MMP-1 = 5.4 nM; MMP-2 = 8.4 nM; MMP-3 = 2.3 nM; MMP-9 = 5 nM;
MMP-14 = 2.3 nM
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MMP-3 = 18 nM; MMP-9 = 1.5 nM 
 

IC50: MMP-1 = 20 nM; MMP-2 = 2 nM; MMP-3 = 100 nM; MMP-9 = 2 μM 

 
IC50: MMP-2 = 20 nM; MMP-3 = 300 nM; 

MMP-9 = 1 nM 
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MMP-3 = 1.9 nM; MMP-9 = 3.9 nM 

 
IC50: MMP-1 = 5.4 nM; MMP-2 = 8.4 nM; MMP-3 = 2.3 nM; MMP-9 = 5 nM; 

MMP-14 = 2.3 nM 

 
IC50: MMP-1 = 5 nM; MMP-2 = 1 nM; MMP-3 

= 15 nM; MMP-9 = 1 nM 

 
IC50: MMP-1 = 150 nM  

IC50: MMP-3 = 300 nM 

 
Matlystatin B 

IC50: MMP-2 = 1.7 μM; MMP-9 = 570 nM 

IC50: MMP-1 = 5 nM; MMP-2 = 1 nM;
MMP-3 = 15 nM; MMP-9 = 1 nM
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IC50: MMP-1 = 375 nM; MMP-2 < 0.15 nM; 

MMP-3 = 18 nM; MMP-9 = 1.5 nM 
 

IC50: MMP-1 = 20 nM; MMP-2 = 2 nM; MMP-3 = 100 nM; MMP-9 = 2 μM 

 
IC50: MMP-2 = 20 nM; MMP-3 = 300 nM; 

MMP-9 = 1 nM 

 
KB-R7785 

IC50: MMP-1 = 3 nM; MMP-2 = 7.5 nM; 
MMP-3 = 1.9 nM; MMP-9 = 3.9 nM 

 
IC50: MMP-1 = 5.4 nM; MMP-2 = 8.4 nM; MMP-3 = 2.3 nM; MMP-9 = 5 nM; 

MMP-14 = 2.3 nM 

 
IC50: MMP-1 = 5 nM; MMP-2 = 1 nM; MMP-3 

= 15 nM; MMP-9 = 1 nM 

 
IC50: MMP-1 = 150 nM  

IC50: MMP-3 = 300 nM 

 
Matlystatin B 

IC50: MMP-2 = 1.7 μM; MMP-9 = 570 nM IC50: MMP-1 = 150 nM
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IC50: MMP-2 = 20 nM; MMP-3 = 300 nM; 
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IC50: MMP-1 = 5.4 nM; MMP-2 = 8.4 nM; MMP-3 = 2.3 nM; MMP-9 = 5 nM; 

MMP-14 = 2.3 nM 

 
IC50: MMP-1 = 5 nM; MMP-2 = 1 nM; MMP-3 
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R-94138 

IC50: MMP-2 = 38 nM; MMP-3 = 28 nM; 
MMP-7 = 23 nM; MMP-9 = 1.2 nM; MMP-

13 = 38 nM  
Ki: MMP-1 > 8.3 μM; MMP-2 = 3.4 μM; MMP-3 = 1.3 μM; MMP-7 > 8.3 μM; 

MMP-14 = 7.7 μM 

 
Ki: MMP-1 > 12.5 μM; MMP-2 = 1.1 μM; 

MMP-3 = 100 nM; MMP-7 = 200 nM; MMP-14 
= 1.8 nM 

 
Ki: MMP-1 = 200 nM 

 
IC50: MMP-1 > 5 μM; MMP-2 = 35 nM; MMP-3 = 3.56 nM; MMP-7 > 5 μM; 
MMP-9 = 304 nM; MMP-12 = 17 nM; MMP-14 = 772 nM; MMP-15 = 60 nM 

 
Ki: MMP-1 = 33.16 μM; MMP-2 = 6.3 μM; 

MMP-8 = 171 nM; MMP-9 = 4.468 μM 

R-94138
IC50: MMP-2 = 38 nM; MMP-3 = 28 nM;

MMP-7 = 23 nM; MMP-9 = 1.2 nM; MMP-13
= 38 nM
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R-94138 

IC50: MMP-2 = 38 nM; MMP-3 = 28 nM; 
MMP-7 = 23 nM; MMP-9 = 1.2 nM; MMP-

13 = 38 nM  
Ki: MMP-1 > 8.3 μM; MMP-2 = 3.4 μM; MMP-3 = 1.3 μM; MMP-7 > 8.3 μM; 

MMP-14 = 7.7 μM 

 
Ki: MMP-1 > 12.5 μM; MMP-2 = 1.1 μM; 

MMP-3 = 100 nM; MMP-7 = 200 nM; MMP-14 
= 1.8 nM 

 
Ki: MMP-1 = 200 nM 

 
IC50: MMP-1 > 5 μM; MMP-2 = 35 nM; MMP-3 = 3.56 nM; MMP-7 > 5 μM; 
MMP-9 = 304 nM; MMP-12 = 17 nM; MMP-14 = 772 nM; MMP-15 = 60 nM 

 
Ki: MMP-1 = 33.16 μM; MMP-2 = 6.3 μM; 

MMP-8 = 171 nM; MMP-9 = 4.468 μM 

Ki: MMP-1 > 8.3 µM; MMP-2 = 3.4 µM; MMP-3 = 1.3 µM; MMP-7 > 8.3
µM; MMP-14 = 7.7 µM
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R-94138 

IC50: MMP-2 = 38 nM; MMP-3 = 28 nM; 
MMP-7 = 23 nM; MMP-9 = 1.2 nM; MMP-

13 = 38 nM  
Ki: MMP-1 > 8.3 μM; MMP-2 = 3.4 μM; MMP-3 = 1.3 μM; MMP-7 > 8.3 μM; 

MMP-14 = 7.7 μM 

 
Ki: MMP-1 > 12.5 μM; MMP-2 = 1.1 μM; 

MMP-3 = 100 nM; MMP-7 = 200 nM; MMP-14 
= 1.8 nM 

 
Ki: MMP-1 = 200 nM 

 
IC50: MMP-1 > 5 μM; MMP-2 = 35 nM; MMP-3 = 3.56 nM; MMP-7 > 5 μM; 
MMP-9 = 304 nM; MMP-12 = 17 nM; MMP-14 = 772 nM; MMP-15 = 60 nM 

 
Ki: MMP-1 = 33.16 μM; MMP-2 = 6.3 μM; 

MMP-8 = 171 nM; MMP-9 = 4.468 μM 

Ki: MMP-1 > 12.5 µM; MMP-2 = 1.1 µM;
MMP-3 = 100 nM; MMP-7 = 200 nM;

MMP-14 = 1.8 nM
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R-94138 

IC50: MMP-2 = 38 nM; MMP-3 = 28 nM; 
MMP-7 = 23 nM; MMP-9 = 1.2 nM; MMP-

13 = 38 nM  
Ki: MMP-1 > 8.3 μM; MMP-2 = 3.4 μM; MMP-3 = 1.3 μM; MMP-7 > 8.3 μM; 

MMP-14 = 7.7 μM 

 
Ki: MMP-1 > 12.5 μM; MMP-2 = 1.1 μM; 

MMP-3 = 100 nM; MMP-7 = 200 nM; MMP-14 
= 1.8 nM 

 
Ki: MMP-1 = 200 nM 

 
IC50: MMP-1 > 5 μM; MMP-2 = 35 nM; MMP-3 = 3.56 nM; MMP-7 > 5 μM; 
MMP-9 = 304 nM; MMP-12 = 17 nM; MMP-14 = 772 nM; MMP-15 = 60 nM 

 
Ki: MMP-1 = 33.16 μM; MMP-2 = 6.3 μM; 

MMP-8 = 171 nM; MMP-9 = 4.468 μM 

Ki: MMP-1 = 200 nM
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MMP-8 = 171 nM; MMP-9 = 4.468 μM 
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MMP-9 = 304 nM; MMP-12 = 17 nM; MMP-14 = 772 nM; MMP-15 = 60 nM
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R-94138 

IC50: MMP-2 = 38 nM; MMP-3 = 28 nM; 
MMP-7 = 23 nM; MMP-9 = 1.2 nM; MMP-

13 = 38 nM  
Ki: MMP-1 > 8.3 μM; MMP-2 = 3.4 μM; MMP-3 = 1.3 μM; MMP-7 > 8.3 μM; 

MMP-14 = 7.7 μM 

 
Ki: MMP-1 > 12.5 μM; MMP-2 = 1.1 μM; 

MMP-3 = 100 nM; MMP-7 = 200 nM; MMP-14 
= 1.8 nM 

 
Ki: MMP-1 = 200 nM 

 
IC50: MMP-1 > 5 μM; MMP-2 = 35 nM; MMP-3 = 3.56 nM; MMP-7 > 5 μM; 
MMP-9 = 304 nM; MMP-12 = 17 nM; MMP-14 = 772 nM; MMP-15 = 60 nM 

 
Ki: MMP-1 = 33.16 μM; MMP-2 = 6.3 μM; 

MMP-8 = 171 nM; MMP-9 = 4.468 μM 
Ki: MMP-1 = 33.16 µM; MMP-2 = 6.3 µM;

MMP-8 = 171 nM; MMP-9 = 4.468 µM
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Ki: MMP-1 = 5.248 μM; MMP-2 > 3 μM; 
MMP-3 > 4.5 μM; MMP-9 < 1 nM; MMP-

13 > 5 μM 

 
BB-1101 

IC50: MMP-1 = 10 nM; MMP-2 = 5 nM; MMP-3 = 30 nM; MMP-7 = 30 nM; 
MMP-8 = 3 nM; MMP-9 = 3 nM 

 
IC50: MMP-1 = 3.1 nM; MMP-2 = 4.2 nM; 

MMP-3 = 25 nM 

 
IC50: MMP-1 = 1.1 nM; MMP-2 = 1.1 nM; 

MMP-3 = 2.3 nM; MMP-7 = 2.2 nM 
 

OPB-3206 
IC50: MMP-1 = 700 nM; MMP-2 = 5 μM; MMP-3 = 2 μM; MMP-9 = 500 nM 

 
IC50: MMP-8 = 300 nM 

Ki: MMP-1 = 5.248 µM; MMP-2 > 3 µM;
MMP-3 > 4.5 µM; MMP-9 < 1 nM; MMP-13 >

5 µM
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Ki: MMP-1 = 5.248 μM; MMP-2 > 3 μM; 
MMP-3 > 4.5 μM; MMP-9 < 1 nM; MMP-

13 > 5 μM 

 
BB-1101 

IC50: MMP-1 = 10 nM; MMP-2 = 5 nM; MMP-3 = 30 nM; MMP-7 = 30 nM; 
MMP-8 = 3 nM; MMP-9 = 3 nM 

 
IC50: MMP-1 = 3.1 nM; MMP-2 = 4.2 nM; 

MMP-3 = 25 nM 

 
IC50: MMP-1 = 1.1 nM; MMP-2 = 1.1 nM; 

MMP-3 = 2.3 nM; MMP-7 = 2.2 nM 
 

OPB-3206 
IC50: MMP-1 = 700 nM; MMP-2 = 5 μM; MMP-3 = 2 μM; MMP-9 = 500 nM 

 
IC50: MMP-8 = 300 nM 

BB-1101
IC50: MMP-1 = 10 nM; MMP-2 = 5 nM; MMP-3 = 30 nM; MMP-7 = 30 nM;

MMP-8 = 3 nM; MMP-9 = 3 nM
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Ki: MMP-1 = 5.248 μM; MMP-2 > 3 μM; 
MMP-3 > 4.5 μM; MMP-9 < 1 nM; MMP-

13 > 5 μM 

 
BB-1101 

IC50: MMP-1 = 10 nM; MMP-2 = 5 nM; MMP-3 = 30 nM; MMP-7 = 30 nM; 
MMP-8 = 3 nM; MMP-9 = 3 nM 

 
IC50: MMP-1 = 3.1 nM; MMP-2 = 4.2 nM; 

MMP-3 = 25 nM 

 
IC50: MMP-1 = 1.1 nM; MMP-2 = 1.1 nM; 

MMP-3 = 2.3 nM; MMP-7 = 2.2 nM 
 

OPB-3206 
IC50: MMP-1 = 700 nM; MMP-2 = 5 μM; MMP-3 = 2 μM; MMP-9 = 500 nM 

 
IC50: MMP-8 = 300 nM 

IC50: MMP-1 = 3.1 nM; MMP-2 = 4.2 nM;
MMP-3 = 25 nM
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Ki: MMP-1 = 5.248 μM; MMP-2 > 3 μM; 
MMP-3 > 4.5 μM; MMP-9 < 1 nM; MMP-

13 > 5 μM 

 
BB-1101 

IC50: MMP-1 = 10 nM; MMP-2 = 5 nM; MMP-3 = 30 nM; MMP-7 = 30 nM; 
MMP-8 = 3 nM; MMP-9 = 3 nM 

 
IC50: MMP-1 = 3.1 nM; MMP-2 = 4.2 nM; 

MMP-3 = 25 nM 

 
IC50: MMP-1 = 1.1 nM; MMP-2 = 1.1 nM; 

MMP-3 = 2.3 nM; MMP-7 = 2.2 nM 
 

OPB-3206 
IC50: MMP-1 = 700 nM; MMP-2 = 5 μM; MMP-3 = 2 μM; MMP-9 = 500 nM 

 
IC50: MMP-8 = 300 nM IC50: MMP-1 = 1.1 nM; MMP-2 = 1.1 nM;

MMP-3 = 2.3 nM; MMP-7 = 2.2 nM
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Ki: MMP-1 = 5.248 μM; MMP-2 > 3 μM; 
MMP-3 > 4.5 μM; MMP-9 < 1 nM; MMP-
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IC50: MMP-1 = 700 nM; MMP-2 = 5 µM; MMP-3 = 2 µM; MMP-9 = 500 nM
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Ki: MMP-1 = 5.248 μM; MMP-2 > 3 μM; 
MMP-3 > 4.5 μM; MMP-9 < 1 nM; MMP-

13 > 5 μM 
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IC50: MMP-1 = 10 nM; MMP-2 = 5 nM; MMP-3 = 30 nM; MMP-7 = 30 nM; 
MMP-8 = 3 nM; MMP-9 = 3 nM 

 
IC50: MMP-1 = 3.1 nM; MMP-2 = 4.2 nM; 

MMP-3 = 25 nM 

 
IC50: MMP-1 = 1.1 nM; MMP-2 = 1.1 nM; 

MMP-3 = 2.3 nM; MMP-7 = 2.2 nM 
 

OPB-3206 
IC50: MMP-1 = 700 nM; MMP-2 = 5 μM; MMP-3 = 2 μM; MMP-9 = 500 nM 

 
IC50: MMP-8 = 300 nM IC50: MMP-8 = 300 nM
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Batimastat (BB-94) 

IC50: MMP-1 = 3 nM; MMP-2 = 4 nM; 
MMP-3 = 20 nM; MMP-7 = 6 nM; MMP-8 
= 10 nM; MMP-9 = 1 nM; MMP-13 = 1 nM; 

MMP-14 = 2.8 nM 
Ki: MMP-1 = 10 nM; MMP-2 = 4 nM; 

MMP-3 = 20 nM; MMP-8 = 10 nM; MMP-9 
= 1 nM 

 
Ilomastat (GM6001; Galardin®) 

IC50: MMP-1 = 0.4 nM; MMP-2 = 0.4 nM; MMP-3 = 0.19 nM; MMP-14 = 5.2 
nM 

Ki: MMP-1 = 0.4 nM; MMP-2 = 0.39 nM; MMP-3 = 26 nM; MMP-8 = 0.18 nM; 
MMP-9 = 0.2 nM 

 
Analogue of Ilomastat 

IC50: MMP-2 = 1.3 nM; MMP-3 = 179 nM 

 
IC50: MMP-1 = 3 nM; MMP-3 = 280 nM; 

MMP-7 = 18 nM 

 
Ki: MMP-1 = 3 nM 

 
IC50: MMP-1 = 8 μM; MMP-2 = 8 μM; MMP-3 

= 3.5 μM 

 
IC50: MMP-1 = 3.3 μM; MMP-2 = 32 nM; 

MMP-3 = 57 nM  
IC50: MMP-3 = 3.4 μM 

 
IC50: MMP-3 = 15 nM 

Batimastat (BB-94)
IC50: MMP-1 = 3 nM; MMP-2 = 4 nM;

MMP-3 = 20 nM; MMP-7 = 6 nM; MMP-8 =
10 nM; MMP-9 = 1 nM; MMP-13 = 1 nM;

MMP-14 = 2.8 nM
Ki: MMP-1 = 10 nM; MMP-2 = 4 nM; MMP-3
= 20 nM; MMP-8 = 10 nM; MMP-9 = 1 nM
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Batimastat (BB-94) 

IC50: MMP-1 = 3 nM; MMP-2 = 4 nM; 
MMP-3 = 20 nM; MMP-7 = 6 nM; MMP-8 
= 10 nM; MMP-9 = 1 nM; MMP-13 = 1 nM; 

MMP-14 = 2.8 nM 
Ki: MMP-1 = 10 nM; MMP-2 = 4 nM; 

MMP-3 = 20 nM; MMP-8 = 10 nM; MMP-9 
= 1 nM 

 
Ilomastat (GM6001; Galardin®) 

IC50: MMP-1 = 0.4 nM; MMP-2 = 0.4 nM; MMP-3 = 0.19 nM; MMP-14 = 5.2 
nM 

Ki: MMP-1 = 0.4 nM; MMP-2 = 0.39 nM; MMP-3 = 26 nM; MMP-8 = 0.18 nM; 
MMP-9 = 0.2 nM 

 
Analogue of Ilomastat 

IC50: MMP-2 = 1.3 nM; MMP-3 = 179 nM 

 
IC50: MMP-1 = 3 nM; MMP-3 = 280 nM; 

MMP-7 = 18 nM 

 
Ki: MMP-1 = 3 nM 

 
IC50: MMP-1 = 8 μM; MMP-2 = 8 μM; MMP-3 

= 3.5 μM 

 
IC50: MMP-1 = 3.3 μM; MMP-2 = 32 nM; 

MMP-3 = 57 nM  
IC50: MMP-3 = 3.4 μM 

 
IC50: MMP-3 = 15 nM 

Ilomastat (GM6001; Galardin®)
IC50: MMP-1 = 0.4 nM; MMP-2 = 0.4 nM; MMP-3 = 0.19 nM; MMP-14 = 5.2

nM
Ki: MMP-1 = 0.4 nM; MMP-2 = 0.39 nM; MMP-3 = 26 nM; MMP-8 = 0.18

nM; MMP-9 = 0.2 nM
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Batimastat (BB-94) 

IC50: MMP-1 = 3 nM; MMP-2 = 4 nM; 
MMP-3 = 20 nM; MMP-7 = 6 nM; MMP-8 
= 10 nM; MMP-9 = 1 nM; MMP-13 = 1 nM; 

MMP-14 = 2.8 nM 
Ki: MMP-1 = 10 nM; MMP-2 = 4 nM; 

MMP-3 = 20 nM; MMP-8 = 10 nM; MMP-9 
= 1 nM 

 
Ilomastat (GM6001; Galardin®) 

IC50: MMP-1 = 0.4 nM; MMP-2 = 0.4 nM; MMP-3 = 0.19 nM; MMP-14 = 5.2 
nM 

Ki: MMP-1 = 0.4 nM; MMP-2 = 0.39 nM; MMP-3 = 26 nM; MMP-8 = 0.18 nM; 
MMP-9 = 0.2 nM 

 
Analogue of Ilomastat 

IC50: MMP-2 = 1.3 nM; MMP-3 = 179 nM 

 
IC50: MMP-1 = 3 nM; MMP-3 = 280 nM; 

MMP-7 = 18 nM 

 
Ki: MMP-1 = 3 nM 

 
IC50: MMP-1 = 8 μM; MMP-2 = 8 μM; MMP-3 

= 3.5 μM 

 
IC50: MMP-1 = 3.3 μM; MMP-2 = 32 nM; 

MMP-3 = 57 nM  
IC50: MMP-3 = 3.4 μM 

 
IC50: MMP-3 = 15 nM 

Analogue of Ilomastat
IC50: MMP-2 = 1.3 nM; MMP-3 = 179 nM
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Batimastat (BB-94) 

IC50: MMP-1 = 3 nM; MMP-2 = 4 nM; 
MMP-3 = 20 nM; MMP-7 = 6 nM; MMP-8 
= 10 nM; MMP-9 = 1 nM; MMP-13 = 1 nM; 

MMP-14 = 2.8 nM 
Ki: MMP-1 = 10 nM; MMP-2 = 4 nM; 

MMP-3 = 20 nM; MMP-8 = 10 nM; MMP-9 
= 1 nM 

 
Ilomastat (GM6001; Galardin®) 

IC50: MMP-1 = 0.4 nM; MMP-2 = 0.4 nM; MMP-3 = 0.19 nM; MMP-14 = 5.2 
nM 

Ki: MMP-1 = 0.4 nM; MMP-2 = 0.39 nM; MMP-3 = 26 nM; MMP-8 = 0.18 nM; 
MMP-9 = 0.2 nM 

 
Analogue of Ilomastat 

IC50: MMP-2 = 1.3 nM; MMP-3 = 179 nM 

 
IC50: MMP-1 = 3 nM; MMP-3 = 280 nM; 

MMP-7 = 18 nM 

 
Ki: MMP-1 = 3 nM 

 
IC50: MMP-1 = 8 μM; MMP-2 = 8 μM; MMP-3 

= 3.5 μM 

 
IC50: MMP-1 = 3.3 μM; MMP-2 = 32 nM; 

MMP-3 = 57 nM  
IC50: MMP-3 = 3.4 μM 

 
IC50: MMP-3 = 15 nM 

IC50: MMP-1 = 3 nM; MMP-3 = 280 nM;
MMP-7 = 18 nM
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Batimastat (BB-94) 

IC50: MMP-1 = 3 nM; MMP-2 = 4 nM; 
MMP-3 = 20 nM; MMP-7 = 6 nM; MMP-8 
= 10 nM; MMP-9 = 1 nM; MMP-13 = 1 nM; 

MMP-14 = 2.8 nM 
Ki: MMP-1 = 10 nM; MMP-2 = 4 nM; 

MMP-3 = 20 nM; MMP-8 = 10 nM; MMP-9 
= 1 nM 

 
Ilomastat (GM6001; Galardin®) 
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MMP-3 = 57 nM  
IC50: MMP-3 = 3.4 μM 

 
IC50: MMP-3 = 15 nM 

Ki: MMP-1 = 3 nM
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Batimastat (BB-94) 

IC50: MMP-1 = 3 nM; MMP-2 = 4 nM; 
MMP-3 = 20 nM; MMP-7 = 6 nM; MMP-8 
= 10 nM; MMP-9 = 1 nM; MMP-13 = 1 nM; 

MMP-14 = 2.8 nM 
Ki: MMP-1 = 10 nM; MMP-2 = 4 nM; 

MMP-3 = 20 nM; MMP-8 = 10 nM; MMP-9 
= 1 nM 

 
Ilomastat (GM6001; Galardin®) 

IC50: MMP-1 = 0.4 nM; MMP-2 = 0.4 nM; MMP-3 = 0.19 nM; MMP-14 = 5.2 
nM 

Ki: MMP-1 = 0.4 nM; MMP-2 = 0.39 nM; MMP-3 = 26 nM; MMP-8 = 0.18 nM; 
MMP-9 = 0.2 nM 

 
Analogue of Ilomastat 

IC50: MMP-2 = 1.3 nM; MMP-3 = 179 nM 

 
IC50: MMP-1 = 3 nM; MMP-3 = 280 nM; 

MMP-7 = 18 nM 

 
Ki: MMP-1 = 3 nM 

 
IC50: MMP-1 = 8 μM; MMP-2 = 8 μM; MMP-3 

= 3.5 μM 

 
IC50: MMP-1 = 3.3 μM; MMP-2 = 32 nM; 

MMP-3 = 57 nM  
IC50: MMP-3 = 3.4 μM 

 
IC50: MMP-3 = 15 nM 

IC50: MMP-1 = 8 µM; MMP-2 = 8 µM;
MMP-3 = 3.5 µM
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MMP-3 = 20 nM; MMP-7 = 6 nM; MMP-8 
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MMP-3 = 20 nM; MMP-8 = 10 nM; MMP-9 
= 1 nM 

 
Ilomastat (GM6001; Galardin®) 

IC50: MMP-1 = 0.4 nM; MMP-2 = 0.4 nM; MMP-3 = 0.19 nM; MMP-14 = 5.2 
nM 

Ki: MMP-1 = 0.4 nM; MMP-2 = 0.39 nM; MMP-3 = 26 nM; MMP-8 = 0.18 nM; 
MMP-9 = 0.2 nM 

 
Analogue of Ilomastat 

IC50: MMP-2 = 1.3 nM; MMP-3 = 179 nM 

 
IC50: MMP-1 = 3 nM; MMP-3 = 280 nM; 
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IC50: MMP-1 = 8 μM; MMP-2 = 8 μM; MMP-3 

= 3.5 μM 

 
IC50: MMP-1 = 3.3 μM; MMP-2 = 32 nM; 

MMP-3 = 57 nM  
IC50: MMP-3 = 3.4 μM 

 
IC50: MMP-3 = 15 nM 

IC50: MMP-1 = 3.3 µM; MMP-2 = 32 nM;
MMP-3 = 57 nM
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IC50: MMP-3 = 15 nM 

IC50: MMP-3 = 3.4 µM
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IC50: MMP-1 > 50 μM; MMP-2 > 120 μM; 

MMP-3 = 80 μM; MMP-8 > 120 μM  
IC50: MMP-2 = 52 μM; MMP-3 = 200 μM; MMP-8 = 1200 μM 

 
IC50: MMP-8 = 121 μM 

 
PKF 242-484 

Ki: MMP-1 = 3.6 nM; MMP-2 = 0.1 nM; 
MMP-3 = 0.9 nM; MMP-9 = 1 nM; MMP-

13 = 4.5 nM 

 
CT1746 

Ki: MMP-1 = 122 nM; MMP-2 = 0.04 nM; MMP-3 = 10.9 nM; MMP-7 = 136 
nM; MMP-9 = 0.17 nM 

 
ONO-4817 

IC50: MMP-1 = 1600 nM; MMP-9 = 2.1 nM 
Ki: MMP-2 = 0.73 nM; MMP-3 = 42 nM; 
MMP-7 = 2500 nM; MMP-12 = 0.45 nM; 

MMP-13 = 1.1 nM 

 
AS 111793# 

IC50: MMP-1 = 20 nM 

 
MMPI-I 

IC50: MMP-1 = 1 μM; MMP-3 = 150 μM; MMP-8 = 1 μM; MMP-9 = 30 
μM 

IC50: MMP-1 > 50 µM; MMP-2 > 120 µM;
MMP-3 = 80 µM; MMP-8 > 120 µM
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IC50: MMP-1 > 50 μM; MMP-2 > 120 μM; 

MMP-3 = 80 μM; MMP-8 > 120 μM  
IC50: MMP-2 = 52 μM; MMP-3 = 200 μM; MMP-8 = 1200 μM 

 
IC50: MMP-8 = 121 μM 

 
PKF 242-484 

Ki: MMP-1 = 3.6 nM; MMP-2 = 0.1 nM; 
MMP-3 = 0.9 nM; MMP-9 = 1 nM; MMP-

13 = 4.5 nM 

 
CT1746 

Ki: MMP-1 = 122 nM; MMP-2 = 0.04 nM; MMP-3 = 10.9 nM; MMP-7 = 136 
nM; MMP-9 = 0.17 nM 

 
ONO-4817 

IC50: MMP-1 = 1600 nM; MMP-9 = 2.1 nM 
Ki: MMP-2 = 0.73 nM; MMP-3 = 42 nM; 
MMP-7 = 2500 nM; MMP-12 = 0.45 nM; 

MMP-13 = 1.1 nM 

 
AS 111793# 

IC50: MMP-1 = 20 nM 

 
MMPI-I 

IC50: MMP-1 = 1 μM; MMP-3 = 150 μM; MMP-8 = 1 μM; MMP-9 = 30 
μM 

IC50: MMP-2 = 52 µM; MMP-3 = 200 µM; MMP-8 = 1200 µM
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IC50: MMP-1 > 50 μM; MMP-2 > 120 μM; 

MMP-3 = 80 μM; MMP-8 > 120 μM  
IC50: MMP-2 = 52 μM; MMP-3 = 200 μM; MMP-8 = 1200 μM 
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PKF 242-484 
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MMP-3 = 0.9 nM; MMP-9 = 1 nM; MMP-

13 = 4.5 nM 
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nM; MMP-9 = 0.17 nM 

 
ONO-4817 

IC50: MMP-1 = 1600 nM; MMP-9 = 2.1 nM 
Ki: MMP-2 = 0.73 nM; MMP-3 = 42 nM; 
MMP-7 = 2500 nM; MMP-12 = 0.45 nM; 

MMP-13 = 1.1 nM 

 
AS 111793# 

IC50: MMP-1 = 20 nM 

 
MMPI-I 

IC50: MMP-1 = 1 μM; MMP-3 = 150 μM; MMP-8 = 1 μM; MMP-9 = 30 
μM 

IC50: MMP-8 = 121 µM
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IC50: MMP-1 > 50 μM; MMP-2 > 120 μM; 

MMP-3 = 80 μM; MMP-8 > 120 μM  
IC50: MMP-2 = 52 μM; MMP-3 = 200 μM; MMP-8 = 1200 μM 

 
IC50: MMP-8 = 121 μM 

 
PKF 242-484 

Ki: MMP-1 = 3.6 nM; MMP-2 = 0.1 nM; 
MMP-3 = 0.9 nM; MMP-9 = 1 nM; MMP-

13 = 4.5 nM 

 
CT1746 

Ki: MMP-1 = 122 nM; MMP-2 = 0.04 nM; MMP-3 = 10.9 nM; MMP-7 = 136 
nM; MMP-9 = 0.17 nM 

 
ONO-4817 

IC50: MMP-1 = 1600 nM; MMP-9 = 2.1 nM 
Ki: MMP-2 = 0.73 nM; MMP-3 = 42 nM; 
MMP-7 = 2500 nM; MMP-12 = 0.45 nM; 

MMP-13 = 1.1 nM 

 
AS 111793# 

IC50: MMP-1 = 20 nM 

 
MMPI-I 

IC50: MMP-1 = 1 μM; MMP-3 = 150 μM; MMP-8 = 1 μM; MMP-9 = 30 
μM 

PKF 242-484
Ki: MMP-1 = 3.6 nM; MMP-2 = 0.1 nM;

MMP-3 = 0.9 nM; MMP-9 = 1 nM; MMP-13 =
4.5 nM
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IC50: MMP-1 > 50 μM; MMP-2 > 120 μM; 

MMP-3 = 80 μM; MMP-8 > 120 μM  
IC50: MMP-2 = 52 μM; MMP-3 = 200 μM; MMP-8 = 1200 μM 

 
IC50: MMP-8 = 121 μM 

 
PKF 242-484 

Ki: MMP-1 = 3.6 nM; MMP-2 = 0.1 nM; 
MMP-3 = 0.9 nM; MMP-9 = 1 nM; MMP-

13 = 4.5 nM 

 
CT1746 

Ki: MMP-1 = 122 nM; MMP-2 = 0.04 nM; MMP-3 = 10.9 nM; MMP-7 = 136 
nM; MMP-9 = 0.17 nM 

 
ONO-4817 

IC50: MMP-1 = 1600 nM; MMP-9 = 2.1 nM 
Ki: MMP-2 = 0.73 nM; MMP-3 = 42 nM; 
MMP-7 = 2500 nM; MMP-12 = 0.45 nM; 

MMP-13 = 1.1 nM 

 
AS 111793# 

IC50: MMP-1 = 20 nM 

 
MMPI-I 

IC50: MMP-1 = 1 μM; MMP-3 = 150 μM; MMP-8 = 1 μM; MMP-9 = 30 
μM 

CT1746
Ki: MMP-1 = 122 nM; MMP-2 = 0.04 nM; MMP-3 = 10.9 nM; MMP-7 = 136

nM; MMP-9 = 0.17 nM
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MMP-7 = 2500 nM; MMP-12 = 0.45 nM;

MMP-13 = 1.1 nM
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IC50: MMP-1 > 50 μM; MMP-2 > 120 μM; 

MMP-3 = 80 μM; MMP-8 > 120 μM  
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IC50: MMP-1 = 1600 nM; MMP-9 = 2.1 nM 
Ki: MMP-2 = 0.73 nM; MMP-3 = 42 nM; 
MMP-7 = 2500 nM; MMP-12 = 0.45 nM; 

MMP-13 = 1.1 nM 

 
AS 111793# 

IC50: MMP-1 = 20 nM 

 
MMPI-I 

IC50: MMP-1 = 1 μM; MMP-3 = 150 μM; MMP-8 = 1 μM; MMP-9 = 30 
μM AS 111793#

IC50: MMP-1 = 20 nM
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IC50: MMP-1 > 50 μM; MMP-2 > 120 μM; 

MMP-3 = 80 μM; MMP-8 > 120 μM  
IC50: MMP-2 = 52 μM; MMP-3 = 200 μM; MMP-8 = 1200 μM 

 
IC50: MMP-8 = 121 μM 

 
PKF 242-484 

Ki: MMP-1 = 3.6 nM; MMP-2 = 0.1 nM; 
MMP-3 = 0.9 nM; MMP-9 = 1 nM; MMP-

13 = 4.5 nM 

 
CT1746 

Ki: MMP-1 = 122 nM; MMP-2 = 0.04 nM; MMP-3 = 10.9 nM; MMP-7 = 136 
nM; MMP-9 = 0.17 nM 

 
ONO-4817 

IC50: MMP-1 = 1600 nM; MMP-9 = 2.1 nM 
Ki: MMP-2 = 0.73 nM; MMP-3 = 42 nM; 
MMP-7 = 2500 nM; MMP-12 = 0.45 nM; 

MMP-13 = 1.1 nM 

 
AS 111793# 

IC50: MMP-1 = 20 nM 

 
MMPI-I 

IC50: MMP-1 = 1 μM; MMP-3 = 150 μM; MMP-8 = 1 μM; MMP-9 = 30 
μM 

MMPI-I
IC50: MMP-1 = 1 µM; MMP-3 = 150 µM; MMP-8 = 1 µM; MMP-9 = 30

µM
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IC50: MMP-1 = 0.1 nM; MMP-3 = 9 nM; MMP-8 = 0.4 nM; MMP-

9 = 0.2 nM 

 
IC50: MMP-1 = 30 nM; MMP-2 = 20 nM; MMP-3 = 500 

nM; MMP-7 = 200 nM; MMP-8 = 20 nM 
 

Ki: MMP-1 = 1450 nM; MMP-3 = 15 nM; 
MMP-8 = 2 nM; MMP-9 = 3 nM 

 
Ki: MMP-1 = 8 nM; MMP-3 = 28 nM; MMP-8 < 2 nM; MMP-9 = 1 nM 

 
IC50: MMP-1 = 100 nM; MMP-2 = 0.07 nM; MMP-3 = 3 nM; MMP-7 = 700 

nM; MMP-8 = 4 nM; MMP-9 = 1 nM 

 
IC50: MMP-1 = 11 nM; MMP-3 = 1.04 μM  

IC50: MMP-1 = 600 nM; MMP-2 = 3 μM; MMP-3 = 50 
nM; MMP-7 = 4 nM 

 
Ki: MMP-1 = 7.56 μM; MMP-7 = 622 nM; 

MMP-13 = 7.3 nM 

IC50: MMP-1 = 0.1 nM; MMP-3 = 9 nM; MMP-8 = 0.4 nM; MMP-9 = 0.2
nM
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IC50: MMP-1 = 0.1 nM; MMP-3 = 9 nM; MMP-8 = 0.4 nM; MMP-

9 = 0.2 nM 

 
IC50: MMP-1 = 30 nM; MMP-2 = 20 nM; MMP-3 = 500 

nM; MMP-7 = 200 nM; MMP-8 = 20 nM 
 

Ki: MMP-1 = 1450 nM; MMP-3 = 15 nM; 
MMP-8 = 2 nM; MMP-9 = 3 nM 

 
Ki: MMP-1 = 8 nM; MMP-3 = 28 nM; MMP-8 < 2 nM; MMP-9 = 1 nM 

 
IC50: MMP-1 = 100 nM; MMP-2 = 0.07 nM; MMP-3 = 3 nM; MMP-7 = 700 

nM; MMP-8 = 4 nM; MMP-9 = 1 nM 

 
IC50: MMP-1 = 11 nM; MMP-3 = 1.04 μM  

IC50: MMP-1 = 600 nM; MMP-2 = 3 μM; MMP-3 = 50 
nM; MMP-7 = 4 nM 

 
Ki: MMP-1 = 7.56 μM; MMP-7 = 622 nM; 

MMP-13 = 7.3 nM 

IC50: MMP-1 = 30 nM; MMP-2 = 20 nM; MMP-3
= 500 nM; MMP-7 = 200 nM; MMP-8 = 20 nM

Biomolecules 2020, 10, 717 21 of 64 

 
IC50: MMP-1 = 0.1 nM; MMP-3 = 9 nM; MMP-8 = 0.4 nM; MMP-

9 = 0.2 nM 

 
IC50: MMP-1 = 30 nM; MMP-2 = 20 nM; MMP-3 = 500 

nM; MMP-7 = 200 nM; MMP-8 = 20 nM 
 

Ki: MMP-1 = 1450 nM; MMP-3 = 15 nM; 
MMP-8 = 2 nM; MMP-9 = 3 nM 

 
Ki: MMP-1 = 8 nM; MMP-3 = 28 nM; MMP-8 < 2 nM; MMP-9 = 1 nM 

 
IC50: MMP-1 = 100 nM; MMP-2 = 0.07 nM; MMP-3 = 3 nM; MMP-7 = 700 

nM; MMP-8 = 4 nM; MMP-9 = 1 nM 

 
IC50: MMP-1 = 11 nM; MMP-3 = 1.04 μM  

IC50: MMP-1 = 600 nM; MMP-2 = 3 μM; MMP-3 = 50 
nM; MMP-7 = 4 nM 

 
Ki: MMP-1 = 7.56 μM; MMP-7 = 622 nM; 

MMP-13 = 7.3 nM 

Ki: MMP-1 = 1450 nM; MMP-3 = 15 nM;
MMP-8 = 2 nM; MMP-9 = 3 nM
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IC50: MMP-1 = 0.1 nM; MMP-3 = 9 nM; MMP-8 = 0.4 nM; MMP-

9 = 0.2 nM 

 
IC50: MMP-1 = 30 nM; MMP-2 = 20 nM; MMP-3 = 500 

nM; MMP-7 = 200 nM; MMP-8 = 20 nM 
 

Ki: MMP-1 = 1450 nM; MMP-3 = 15 nM; 
MMP-8 = 2 nM; MMP-9 = 3 nM 

 
Ki: MMP-1 = 8 nM; MMP-3 = 28 nM; MMP-8 < 2 nM; MMP-9 = 1 nM 

 
IC50: MMP-1 = 100 nM; MMP-2 = 0.07 nM; MMP-3 = 3 nM; MMP-7 = 700 

nM; MMP-8 = 4 nM; MMP-9 = 1 nM 

 
IC50: MMP-1 = 11 nM; MMP-3 = 1.04 μM  

IC50: MMP-1 = 600 nM; MMP-2 = 3 μM; MMP-3 = 50 
nM; MMP-7 = 4 nM 

 
Ki: MMP-1 = 7.56 μM; MMP-7 = 622 nM; 

MMP-13 = 7.3 nM 

Ki: MMP-1 = 8 nM; MMP-3 = 28 nM; MMP-8 < 2 nM; MMP-9 = 1 nM

Biomolecules 2020, 10, 717 21 of 64 

 
IC50: MMP-1 = 0.1 nM; MMP-3 = 9 nM; MMP-8 = 0.4 nM; MMP-

9 = 0.2 nM 

 
IC50: MMP-1 = 30 nM; MMP-2 = 20 nM; MMP-3 = 500 

nM; MMP-7 = 200 nM; MMP-8 = 20 nM 
 

Ki: MMP-1 = 1450 nM; MMP-3 = 15 nM; 
MMP-8 = 2 nM; MMP-9 = 3 nM 

 
Ki: MMP-1 = 8 nM; MMP-3 = 28 nM; MMP-8 < 2 nM; MMP-9 = 1 nM 

 
IC50: MMP-1 = 100 nM; MMP-2 = 0.07 nM; MMP-3 = 3 nM; MMP-7 = 700 

nM; MMP-8 = 4 nM; MMP-9 = 1 nM 

 
IC50: MMP-1 = 11 nM; MMP-3 = 1.04 μM  

IC50: MMP-1 = 600 nM; MMP-2 = 3 μM; MMP-3 = 50 
nM; MMP-7 = 4 nM 

 
Ki: MMP-1 = 7.56 μM; MMP-7 = 622 nM; 

MMP-13 = 7.3 nM 

IC50: MMP-1 = 100 nM; MMP-2 = 0.07 nM; MMP-3 = 3 nM; MMP-7 =
700 nM; MMP-8 = 4 nM; MMP-9 = 1 nM
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IC50: MMP-1 = 0.1 nM; MMP-3 = 9 nM; MMP-8 = 0.4 nM; MMP-

9 = 0.2 nM 

 
IC50: MMP-1 = 30 nM; MMP-2 = 20 nM; MMP-3 = 500 

nM; MMP-7 = 200 nM; MMP-8 = 20 nM 
 

Ki: MMP-1 = 1450 nM; MMP-3 = 15 nM; 
MMP-8 = 2 nM; MMP-9 = 3 nM 

 
Ki: MMP-1 = 8 nM; MMP-3 = 28 nM; MMP-8 < 2 nM; MMP-9 = 1 nM 

 
IC50: MMP-1 = 100 nM; MMP-2 = 0.07 nM; MMP-3 = 3 nM; MMP-7 = 700 

nM; MMP-8 = 4 nM; MMP-9 = 1 nM 

 
IC50: MMP-1 = 11 nM; MMP-3 = 1.04 μM  

IC50: MMP-1 = 600 nM; MMP-2 = 3 μM; MMP-3 = 50 
nM; MMP-7 = 4 nM 

 
Ki: MMP-1 = 7.56 μM; MMP-7 = 622 nM; 

MMP-13 = 7.3 nM 
IC50: MMP-1 = 11 nM; MMP-3 = 1.04 µM
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IC50: MMP-1 = 0.1 nM; MMP-3 = 9 nM; MMP-8 = 0.4 nM; MMP-

9 = 0.2 nM 

 
IC50: MMP-1 = 30 nM; MMP-2 = 20 nM; MMP-3 = 500 

nM; MMP-7 = 200 nM; MMP-8 = 20 nM 
 

Ki: MMP-1 = 1450 nM; MMP-3 = 15 nM; 
MMP-8 = 2 nM; MMP-9 = 3 nM 

 
Ki: MMP-1 = 8 nM; MMP-3 = 28 nM; MMP-8 < 2 nM; MMP-9 = 1 nM 

 
IC50: MMP-1 = 100 nM; MMP-2 = 0.07 nM; MMP-3 = 3 nM; MMP-7 = 700 

nM; MMP-8 = 4 nM; MMP-9 = 1 nM 

 
IC50: MMP-1 = 11 nM; MMP-3 = 1.04 μM  

IC50: MMP-1 = 600 nM; MMP-2 = 3 μM; MMP-3 = 50 
nM; MMP-7 = 4 nM 

 
Ki: MMP-1 = 7.56 μM; MMP-7 = 622 nM; 

MMP-13 = 7.3 nM IC50: MMP-1 = 600 nM; MMP-2 = 3 µM; MMP-3
= 50 nM; MMP-7 = 4 nM
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IC50: MMP-1 = 0.1 nM; MMP-3 = 9 nM; MMP-8 = 0.4 nM; MMP-

9 = 0.2 nM 

 
IC50: MMP-1 = 30 nM; MMP-2 = 20 nM; MMP-3 = 500 

nM; MMP-7 = 200 nM; MMP-8 = 20 nM 
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IC50: MMP-1 = 11 nM; MMP-3 = 1.04 μM  
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MMP-13 = 7.3 nM 
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IC50: MMP-1 = 6 μM; MMP-2 = 200 nM; MMP-3 = 100 nM  

IC50: MMP-2 = 5 nM 

 
Ki: MMP-2 = 2.2 nM 

 
IC50: MMP-7 = 1 510 μM; MMP-12 = 149 μM 

 
Ki: MMP-1 > 4.949 μM; MMP-2 > 3.333 μM; MMP-9 > 

2.128 μM 

 
Ki: MMP-2 > 15 μM; MMP-8 > 15 μM; MMP-
9 > 15 μM; MMP-12 = 410 nM; MMP-13 > 15 

μM; MMP-14 = 3.07 μM 

 
IC50: MMP-1 = 5.9 μM; MMP-2 = 750 nM; MMP-3=2.1 nM; 

MMP-9 = 560 nM; MMP-14 = 930 nM 

 
IC50: MMP-1 = 51 μM; MMP-2 = 1.79 μM; MMP-3 = 5.9 
nM; MMP-9 = 840 nM; MMP-13 = 73 nM; MMP-14 = 1.9 

μM 

 
Ki: MMP-1 > 4.946 μM; MMP-2 > 3.333 μM; 

MMP-3 > 4.501 μM; MMP-7 > 6.368 μM; 
MMP-8 > 3.058 μM; MMP-9 > 2.128 μM; 

MMP-10 > 5.346 μM; MMP-12 > 6.023 μM; 
MMP-13 > 5.025 μM; MMP-14 > 5.290 μM; 

MMP-15 > 7.088 μM 

IC50: MMP-1 = 6 µM; MMP-2 = 200 nM; MMP-3 = 100 nM
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IC50: MMP-1 = 4.6 µM; MMP-2 = 4 nM; MMP-3 = 42 nM; MMP-7 > 10
µM; MMP-9 = 120 nM
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Figure 16. (a) NNGH; (b) arylhydroxamate sulphonamide compound; (c) 3-hydroxy-3-
methylpipecolic hydroxamates. 

The incorporation of a cyclic quaternary center α led to a strong inhibitory effect against MMP-
1, -2, -3, -8, -9, -12, and -13 [29]. The RS-113,456 (Figure 17a) is an inhibitor with better oral 
bioavailability and metabolic stability compared to the hydroxamate derivates [35]. These two 
features were improved by shifting the cyclic group to the α-position of the hydroxamic acid 
(Figure 17b) [29]. 

 
Figure 17. (a) RS-113,456; (b) RS-130,830. 

Table 7 shows the IC50 and Ki values of some sulfonamide hydroxamic acid-based inhibitors 
[6,15–19,29,35,37,54,55]. 

Figure 16. (a) NNGH; (b) arylhydroxamate sulphonamide compound; (c)
3-hydroxy-3-methylpipecolic hydroxamates.

The incorporation of a cyclic quaternary center α led to a strong inhibitory effect against MMP-1,
-2, -3, -8, -9, -12, and -13 [29]. The RS-113,456 (Figure 17a) is an inhibitor with better oral bioavailability
and metabolic stability compared to the hydroxamate derivates [35]. These two features were improved
by shifting the cyclic group to the α-position of the hydroxamic acid (Figure 17b) [29].
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Figure 17. (a) RS-113,456; (b) RS-130,830.

Table 7 shows the IC50 and Ki values of some sulfonamide hydroxamic acid-based
inhibitors [6,15–19,29,35,37,54,55].

4.1.3. Phosphamides Hydroxamic Acid-Based Inhibitors

The hydroxamic acids based on phosphamides are effective as MMPis due to the electronic
environment of the phosphor atom [11]. The replacement of sulphonamide group by phosphinamide
group leads to a potent inhibitor of MMP-3 (Figure 18), the collagenases and gelatinases [29].
The interactions between this inhibitor and the MMP-3 are realized by the phosphinamide phenyl
group, that accommodates into the S1’ pocket and by the phosphinamide oxygen, which establishes the
hydrogen bonds with NH of Leu164 and Ala165 [29]. However, this group is susceptible to hydrolysis
at low pH, limiting the inhibitory activity [29].
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Table 7. IC50 and Ki values of sulfonamide hydroxamic acid-based inhibitors.
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Prinomastat (AG3340) 
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13 = 0.03 nM; MMP-14 = 0.33 nM 

 
CP-471,474 

IC50: MMP-1 = 1170 nM; MMP-2 = 0.7 nM; MMP-3 = 16 nM; MMP-9 = 13 nM 
 

IC50: MMP-1 > 10 μM; MMP-2 = 3.3 nM; 
MMP-13 = 12 nM 

 
IC50: MMP-1 = 196 nM; MMP-2 = 0.01 nM; MMP-9 = 

1 nM 

 
RS-113,456 

IC50: MMP-3 = 5.2 nM 
Ki: MMP-1 = 70 nM; MMP-2 = 0.054 nM; MMP-7 = 240 nM; MMP-8 = 0.13 nM; MMP-9 = 

0.065 nM; MMP-12 = 0.15 nM; MMP-13 = 0.17 nM; MMP-14 = 0.089 nM 

 
RS-130,830 

Ki: MMP-1 = 590 nM; MMP-2 = 0.22 nM; 
MMP-3 = 9.3 nM; MMP-7 = 1.2 μM; MMP-

9 = 0.58 nM; MMP-13 = 0.52 nM 

 
RS-104,966 

Ki: MMP-1 = 23 nM; MMP-13 = 0.13 nM 
 

IC50: MMP-1 = 3 245 nM; MMP-9 = 7 nM; MMP-13 = 4 nM 

 
IC50: MMP-2 = 960 nM; MMP-13 = 1.17 μM; 

MMP-14 = 3.41 μM 

Prinomastat (AG3340)
Ki: MMP-1 = 8.3 nM; MMP-2 = 0.05 nM;

MMP-3 = 0.3 nM; MMP-7 = 54 nM;
MMP-9 = 0.26 nM; MMP-13 = 0.03 nM;

MMP-14 = 0.33 nM

Biomolecules 2020, 10, 717 27 of 64 

 
Prinomastat (AG3340) 

Ki: MMP-1 = 8.3 nM; MMP-2 = 0.05 nM; MMP-3 = 
0.3 nM; MMP-7 = 54 nM; MMP-9 = 0.26 nM; MMP-

13 = 0.03 nM; MMP-14 = 0.33 nM 

 
CP-471,474 

IC50: MMP-1 = 1170 nM; MMP-2 = 0.7 nM; MMP-3 = 16 nM; MMP-9 = 13 nM 
 

IC50: MMP-1 > 10 μM; MMP-2 = 3.3 nM; 
MMP-13 = 12 nM 

 
IC50: MMP-1 = 196 nM; MMP-2 = 0.01 nM; MMP-9 = 

1 nM 

 
RS-113,456 

IC50: MMP-3 = 5.2 nM 
Ki: MMP-1 = 70 nM; MMP-2 = 0.054 nM; MMP-7 = 240 nM; MMP-8 = 0.13 nM; MMP-9 = 

0.065 nM; MMP-12 = 0.15 nM; MMP-13 = 0.17 nM; MMP-14 = 0.089 nM 

 
RS-130,830 

Ki: MMP-1 = 590 nM; MMP-2 = 0.22 nM; 
MMP-3 = 9.3 nM; MMP-7 = 1.2 μM; MMP-

9 = 0.58 nM; MMP-13 = 0.52 nM 

 
RS-104,966 

Ki: MMP-1 = 23 nM; MMP-13 = 0.13 nM 
 

IC50: MMP-1 = 3 245 nM; MMP-9 = 7 nM; MMP-13 = 4 nM 

 
IC50: MMP-2 = 960 nM; MMP-13 = 1.17 μM; 

MMP-14 = 3.41 μM 

CP-471,474
IC50: MMP-1 = 1170 nM; MMP-2 = 0.7 nM; MMP-3 = 16 nM; MMP-9 = 13 nM

Biomolecules 2020, 10, 717 27 of 64 

 
Prinomastat (AG3340) 

Ki: MMP-1 = 8.3 nM; MMP-2 = 0.05 nM; MMP-3 = 
0.3 nM; MMP-7 = 54 nM; MMP-9 = 0.26 nM; MMP-

13 = 0.03 nM; MMP-14 = 0.33 nM 

 
CP-471,474 

IC50: MMP-1 = 1170 nM; MMP-2 = 0.7 nM; MMP-3 = 16 nM; MMP-9 = 13 nM 
 

IC50: MMP-1 > 10 μM; MMP-2 = 3.3 nM; 
MMP-13 = 12 nM 

 
IC50: MMP-1 = 196 nM; MMP-2 = 0.01 nM; MMP-9 = 

1 nM 

 
RS-113,456 

IC50: MMP-3 = 5.2 nM 
Ki: MMP-1 = 70 nM; MMP-2 = 0.054 nM; MMP-7 = 240 nM; MMP-8 = 0.13 nM; MMP-9 = 

0.065 nM; MMP-12 = 0.15 nM; MMP-13 = 0.17 nM; MMP-14 = 0.089 nM 

 
RS-130,830 

Ki: MMP-1 = 590 nM; MMP-2 = 0.22 nM; 
MMP-3 = 9.3 nM; MMP-7 = 1.2 μM; MMP-

9 = 0.58 nM; MMP-13 = 0.52 nM 

 
RS-104,966 

Ki: MMP-1 = 23 nM; MMP-13 = 0.13 nM 
 

IC50: MMP-1 = 3 245 nM; MMP-9 = 7 nM; MMP-13 = 4 nM 

 
IC50: MMP-2 = 960 nM; MMP-13 = 1.17 μM; 

MMP-14 = 3.41 μM 

IC50: MMP-1 > 10 µM; MMP-2 = 3.3 nM;
MMP-13 = 12 nM

Biomolecules 2020, 10, 717 27 of 64 

 
Prinomastat (AG3340) 

Ki: MMP-1 = 8.3 nM; MMP-2 = 0.05 nM; MMP-3 = 
0.3 nM; MMP-7 = 54 nM; MMP-9 = 0.26 nM; MMP-

13 = 0.03 nM; MMP-14 = 0.33 nM 

 
CP-471,474 

IC50: MMP-1 = 1170 nM; MMP-2 = 0.7 nM; MMP-3 = 16 nM; MMP-9 = 13 nM 
 

IC50: MMP-1 > 10 μM; MMP-2 = 3.3 nM; 
MMP-13 = 12 nM 

 
IC50: MMP-1 = 196 nM; MMP-2 = 0.01 nM; MMP-9 = 

1 nM 

 
RS-113,456 

IC50: MMP-3 = 5.2 nM 
Ki: MMP-1 = 70 nM; MMP-2 = 0.054 nM; MMP-7 = 240 nM; MMP-8 = 0.13 nM; MMP-9 = 

0.065 nM; MMP-12 = 0.15 nM; MMP-13 = 0.17 nM; MMP-14 = 0.089 nM 

 
RS-130,830 

Ki: MMP-1 = 590 nM; MMP-2 = 0.22 nM; 
MMP-3 = 9.3 nM; MMP-7 = 1.2 μM; MMP-

9 = 0.58 nM; MMP-13 = 0.52 nM 

 
RS-104,966 

Ki: MMP-1 = 23 nM; MMP-13 = 0.13 nM 
 

IC50: MMP-1 = 3 245 nM; MMP-9 = 7 nM; MMP-13 = 4 nM 

 
IC50: MMP-2 = 960 nM; MMP-13 = 1.17 μM; 

MMP-14 = 3.41 μM 

IC50: MMP-1 = 196 nM; MMP-2 = 0.01
nM; MMP-9 = 1 nM

Biomolecules 2020, 10, 717 27 of 64 

 
Prinomastat (AG3340) 

Ki: MMP-1 = 8.3 nM; MMP-2 = 0.05 nM; MMP-3 = 
0.3 nM; MMP-7 = 54 nM; MMP-9 = 0.26 nM; MMP-

13 = 0.03 nM; MMP-14 = 0.33 nM 

 
CP-471,474 

IC50: MMP-1 = 1170 nM; MMP-2 = 0.7 nM; MMP-3 = 16 nM; MMP-9 = 13 nM 
 

IC50: MMP-1 > 10 μM; MMP-2 = 3.3 nM; 
MMP-13 = 12 nM 

 
IC50: MMP-1 = 196 nM; MMP-2 = 0.01 nM; MMP-9 = 

1 nM 

 
RS-113,456 

IC50: MMP-3 = 5.2 nM 
Ki: MMP-1 = 70 nM; MMP-2 = 0.054 nM; MMP-7 = 240 nM; MMP-8 = 0.13 nM; MMP-9 = 

0.065 nM; MMP-12 = 0.15 nM; MMP-13 = 0.17 nM; MMP-14 = 0.089 nM 

 
RS-130,830 

Ki: MMP-1 = 590 nM; MMP-2 = 0.22 nM; 
MMP-3 = 9.3 nM; MMP-7 = 1.2 μM; MMP-

9 = 0.58 nM; MMP-13 = 0.52 nM 

 
RS-104,966 

Ki: MMP-1 = 23 nM; MMP-13 = 0.13 nM 
 

IC50: MMP-1 = 3 245 nM; MMP-9 = 7 nM; MMP-13 = 4 nM 

 
IC50: MMP-2 = 960 nM; MMP-13 = 1.17 μM; 

MMP-14 = 3.41 μM 

RS-113,456
IC50: MMP-3 = 5.2 nM

Ki: MMP-1 = 70 nM; MMP-2 = 0.054 nM; MMP-7 = 240 nM; MMP-8 = 0.13 nM;
MMP-9 = 0.065 nM; MMP-12 = 0.15 nM; MMP-13 = 0.17 nM; MMP-14 = 0.089 nM

Biomolecules 2020, 10, 717 27 of 64 

 
Prinomastat (AG3340) 

Ki: MMP-1 = 8.3 nM; MMP-2 = 0.05 nM; MMP-3 = 
0.3 nM; MMP-7 = 54 nM; MMP-9 = 0.26 nM; MMP-

13 = 0.03 nM; MMP-14 = 0.33 nM 

 
CP-471,474 

IC50: MMP-1 = 1170 nM; MMP-2 = 0.7 nM; MMP-3 = 16 nM; MMP-9 = 13 nM 
 

IC50: MMP-1 > 10 μM; MMP-2 = 3.3 nM; 
MMP-13 = 12 nM 

 
IC50: MMP-1 = 196 nM; MMP-2 = 0.01 nM; MMP-9 = 

1 nM 

 
RS-113,456 

IC50: MMP-3 = 5.2 nM 
Ki: MMP-1 = 70 nM; MMP-2 = 0.054 nM; MMP-7 = 240 nM; MMP-8 = 0.13 nM; MMP-9 = 

0.065 nM; MMP-12 = 0.15 nM; MMP-13 = 0.17 nM; MMP-14 = 0.089 nM 

 
RS-130,830 

Ki: MMP-1 = 590 nM; MMP-2 = 0.22 nM; 
MMP-3 = 9.3 nM; MMP-7 = 1.2 μM; MMP-

9 = 0.58 nM; MMP-13 = 0.52 nM 

 
RS-104,966 

Ki: MMP-1 = 23 nM; MMP-13 = 0.13 nM 
 

IC50: MMP-1 = 3 245 nM; MMP-9 = 7 nM; MMP-13 = 4 nM 

 
IC50: MMP-2 = 960 nM; MMP-13 = 1.17 μM; 

MMP-14 = 3.41 μM 

RS-130,830
Ki: MMP-1 = 590 nM; MMP-2 = 0.22 nM;

MMP-3 = 9.3 nM; MMP-7 = 1.2 µM; MMP-9 =
0.58 nM; MMP-13 = 0.52 nM

Biomolecules 2020, 10, 717 27 of 64 

 
Prinomastat (AG3340) 

Ki: MMP-1 = 8.3 nM; MMP-2 = 0.05 nM; MMP-3 = 
0.3 nM; MMP-7 = 54 nM; MMP-9 = 0.26 nM; MMP-

13 = 0.03 nM; MMP-14 = 0.33 nM 

 
CP-471,474 

IC50: MMP-1 = 1170 nM; MMP-2 = 0.7 nM; MMP-3 = 16 nM; MMP-9 = 13 nM 
 

IC50: MMP-1 > 10 μM; MMP-2 = 3.3 nM; 
MMP-13 = 12 nM 

 
IC50: MMP-1 = 196 nM; MMP-2 = 0.01 nM; MMP-9 = 

1 nM 

 
RS-113,456 

IC50: MMP-3 = 5.2 nM 
Ki: MMP-1 = 70 nM; MMP-2 = 0.054 nM; MMP-7 = 240 nM; MMP-8 = 0.13 nM; MMP-9 = 

0.065 nM; MMP-12 = 0.15 nM; MMP-13 = 0.17 nM; MMP-14 = 0.089 nM 

 
RS-130,830 

Ki: MMP-1 = 590 nM; MMP-2 = 0.22 nM; 
MMP-3 = 9.3 nM; MMP-7 = 1.2 μM; MMP-

9 = 0.58 nM; MMP-13 = 0.52 nM 

 
RS-104,966 

Ki: MMP-1 = 23 nM; MMP-13 = 0.13 nM 
 

IC50: MMP-1 = 3 245 nM; MMP-9 = 7 nM; MMP-13 = 4 nM 

 
IC50: MMP-2 = 960 nM; MMP-13 = 1.17 μM; 

MMP-14 = 3.41 μM 

RS-104,966
Ki: MMP-1 = 23 nM; MMP-13 = 0.13 nM

Biomolecules 2020, 10, 717 27 of 64 

 
Prinomastat (AG3340) 

Ki: MMP-1 = 8.3 nM; MMP-2 = 0.05 nM; MMP-3 = 
0.3 nM; MMP-7 = 54 nM; MMP-9 = 0.26 nM; MMP-

13 = 0.03 nM; MMP-14 = 0.33 nM 

 
CP-471,474 

IC50: MMP-1 = 1170 nM; MMP-2 = 0.7 nM; MMP-3 = 16 nM; MMP-9 = 13 nM 
 

IC50: MMP-1 > 10 μM; MMP-2 = 3.3 nM; 
MMP-13 = 12 nM 

 
IC50: MMP-1 = 196 nM; MMP-2 = 0.01 nM; MMP-9 = 

1 nM 

 
RS-113,456 

IC50: MMP-3 = 5.2 nM 
Ki: MMP-1 = 70 nM; MMP-2 = 0.054 nM; MMP-7 = 240 nM; MMP-8 = 0.13 nM; MMP-9 = 

0.065 nM; MMP-12 = 0.15 nM; MMP-13 = 0.17 nM; MMP-14 = 0.089 nM 

 
RS-130,830 

Ki: MMP-1 = 590 nM; MMP-2 = 0.22 nM; 
MMP-3 = 9.3 nM; MMP-7 = 1.2 μM; MMP-

9 = 0.58 nM; MMP-13 = 0.52 nM 

 
RS-104,966 

Ki: MMP-1 = 23 nM; MMP-13 = 0.13 nM 
 

IC50: MMP-1 = 3 245 nM; MMP-9 = 7 nM; MMP-13 = 4 nM 

 
IC50: MMP-2 = 960 nM; MMP-13 = 1.17 μM; 

MMP-14 = 3.41 μM IC50: MMP-1 = 3 245 nM; MMP-9 = 7 nM; MMP-13 = 4 nM

Biomolecules 2020, 10, 717 27 of 64 

 
Prinomastat (AG3340) 

Ki: MMP-1 = 8.3 nM; MMP-2 = 0.05 nM; MMP-3 = 
0.3 nM; MMP-7 = 54 nM; MMP-9 = 0.26 nM; MMP-

13 = 0.03 nM; MMP-14 = 0.33 nM 

 
CP-471,474 

IC50: MMP-1 = 1170 nM; MMP-2 = 0.7 nM; MMP-3 = 16 nM; MMP-9 = 13 nM 
 

IC50: MMP-1 > 10 μM; MMP-2 = 3.3 nM; 
MMP-13 = 12 nM 

 
IC50: MMP-1 = 196 nM; MMP-2 = 0.01 nM; MMP-9 = 

1 nM 

 
RS-113,456 

IC50: MMP-3 = 5.2 nM 
Ki: MMP-1 = 70 nM; MMP-2 = 0.054 nM; MMP-7 = 240 nM; MMP-8 = 0.13 nM; MMP-9 = 

0.065 nM; MMP-12 = 0.15 nM; MMP-13 = 0.17 nM; MMP-14 = 0.089 nM 

 
RS-130,830 

Ki: MMP-1 = 590 nM; MMP-2 = 0.22 nM; 
MMP-3 = 9.3 nM; MMP-7 = 1.2 μM; MMP-

9 = 0.58 nM; MMP-13 = 0.52 nM 

 
RS-104,966 

Ki: MMP-1 = 23 nM; MMP-13 = 0.13 nM 
 

IC50: MMP-1 = 3 245 nM; MMP-9 = 7 nM; MMP-13 = 4 nM 

 
IC50: MMP-2 = 960 nM; MMP-13 = 1.17 μM; 

MMP-14 = 3.41 μM 
IC50: MMP-2 = 960 nM; MMP-13 = 1.17 µM;

MMP-14 = 3.41 µM



Biomolecules 2020, 10, 717 28 of 61

Table 7. Cont.
Biomolecules 2020, 10, 717 28 of 64 

 
IC50: MMP-1 = 310 nM 

 
IC50: MMP-1 = 920 nM; MMP-13 = 0.95 nM  

IC50: MMP-1 = 841 nM; MMP-9 = 33 nM; 
MMP-13 = 29 nM 

 
IC50: MMP-1 = 763 nM; MMP-9 = 2 nM; 

MMP-13 = 2 nM 

 
MMP-8 inhibitor I 

IC50: MMP-8 = 4 nM 

 
Ro-32-7315 

IC50: MMP-1 = 500 nM; MMP-2 = 250 nM; MMP-3 = 210 nM; MMP-7 = 310 
nM; MMP-9 = 100 nM; MMP-12 = 11 nM; MMP-13 = 110 nM 

 
IC50: MMP-1 = 346 μM; MMP-9 = 24 μM 

IC50: MMP-1 = 310 nM
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PGE-4410186 

IC50: MMP-1 = 24 nM; MMP-3 = 18.4 nM; MMP-7 = 
30 nM; MMP-9 = 2.7 nM 

 
MMP-9 inhibitor I 

IC50: MMP-1 = 1.05 nM; MMP-9 = 5 nM; MMP-13 = 113 nM 

 
Ki: MMP-1 = 1.085 μM; MMP-2 = 1 nM; MMP-9 = 10 nM; 

MMP-13 = 3 nM 

 
MMPI-II (MMP-2/MMP-9 inhibitor II) 

IC50: MMP-1 = 970 nM; MMP-2 = 17 nM; MMP-3 > 
1000 nM; MMP-7 = 800 nM; MMP-9 = 30 nM; MMP-

14 = 17 nM 

 
IC50: MMP-1> 50 μM; MMP-2 = 12 nM; MMP-3 = 4.5 μM; MMP-7 > 50 μM; 

MMP-9 = 200 nM 
 

IC50: MMP-1 = 147 nM; MMP-2 = 0.09 nM; MMP-3 = 50 
nM; MMP-7 > 1 μM; MMP-8 = 1.6 nM; MMP-9 = 6.7 nM; 

MMP-14 = 9.8 nM 

PGE-4410186
IC50: MMP-1 = 24 nM; MMP-3 = 18.4

nM; MMP-7 = 30 nM; MMP-9 = 2.7 nM

Biomolecules 2020, 10, 717 29 of 64 

 
PGE-4410186 

IC50: MMP-1 = 24 nM; MMP-3 = 18.4 nM; MMP-7 = 
30 nM; MMP-9 = 2.7 nM 

 
MMP-9 inhibitor I 

IC50: MMP-1 = 1.05 nM; MMP-9 = 5 nM; MMP-13 = 113 nM 

 
Ki: MMP-1 = 1.085 μM; MMP-2 = 1 nM; MMP-9 = 10 nM; 

MMP-13 = 3 nM 

 
MMPI-II (MMP-2/MMP-9 inhibitor II) 

IC50: MMP-1 = 970 nM; MMP-2 = 17 nM; MMP-3 > 
1000 nM; MMP-7 = 800 nM; MMP-9 = 30 nM; MMP-

14 = 17 nM 

 
IC50: MMP-1> 50 μM; MMP-2 = 12 nM; MMP-3 = 4.5 μM; MMP-7 > 50 μM; 

MMP-9 = 200 nM 
 

IC50: MMP-1 = 147 nM; MMP-2 = 0.09 nM; MMP-3 = 50 
nM; MMP-7 > 1 μM; MMP-8 = 1.6 nM; MMP-9 = 6.7 nM; 

MMP-14 = 9.8 nM 

MMP-9 inhibitor I
IC50: MMP-1 = 1.05 nM; MMP-9 = 5 nM; MMP-13 = 113 nM

Biomolecules 2020, 10, 717 29 of 64 

 
PGE-4410186 

IC50: MMP-1 = 24 nM; MMP-3 = 18.4 nM; MMP-7 = 
30 nM; MMP-9 = 2.7 nM 

 
MMP-9 inhibitor I 

IC50: MMP-1 = 1.05 nM; MMP-9 = 5 nM; MMP-13 = 113 nM 

 
Ki: MMP-1 = 1.085 μM; MMP-2 = 1 nM; MMP-9 = 10 nM; 

MMP-13 = 3 nM 

 
MMPI-II (MMP-2/MMP-9 inhibitor II) 

IC50: MMP-1 = 970 nM; MMP-2 = 17 nM; MMP-3 > 
1000 nM; MMP-7 = 800 nM; MMP-9 = 30 nM; MMP-

14 = 17 nM 

 
IC50: MMP-1> 50 μM; MMP-2 = 12 nM; MMP-3 = 4.5 μM; MMP-7 > 50 μM; 

MMP-9 = 200 nM 
 

IC50: MMP-1 = 147 nM; MMP-2 = 0.09 nM; MMP-3 = 50 
nM; MMP-7 > 1 μM; MMP-8 = 1.6 nM; MMP-9 = 6.7 nM; 

MMP-14 = 9.8 nM 

Ki: MMP-1 = 1.085 µM; MMP-2 = 1 nM; MMP-9 = 10 nM;
MMP-13 = 3 nM

Biomolecules 2020, 10, 717 29 of 64 

 
PGE-4410186 

IC50: MMP-1 = 24 nM; MMP-3 = 18.4 nM; MMP-7 = 
30 nM; MMP-9 = 2.7 nM 

 
MMP-9 inhibitor I 

IC50: MMP-1 = 1.05 nM; MMP-9 = 5 nM; MMP-13 = 113 nM 

 
Ki: MMP-1 = 1.085 μM; MMP-2 = 1 nM; MMP-9 = 10 nM; 

MMP-13 = 3 nM 

 
MMPI-II (MMP-2/MMP-9 inhibitor II) 

IC50: MMP-1 = 970 nM; MMP-2 = 17 nM; MMP-3 > 
1000 nM; MMP-7 = 800 nM; MMP-9 = 30 nM; MMP-

14 = 17 nM 

 
IC50: MMP-1> 50 μM; MMP-2 = 12 nM; MMP-3 = 4.5 μM; MMP-7 > 50 μM; 

MMP-9 = 200 nM 
 

IC50: MMP-1 = 147 nM; MMP-2 = 0.09 nM; MMP-3 = 50 
nM; MMP-7 > 1 μM; MMP-8 = 1.6 nM; MMP-9 = 6.7 nM; 

MMP-14 = 9.8 nM 

MMPI-II (MMP-2/MMP-9 inhibitor II)
IC50: MMP-1 = 970 nM; MMP-2 = 17 nM;

MMP-3 > 1000 nM; MMP-7 = 800 nM;
MMP-9 = 30 nM; MMP-14 = 17 nM

Biomolecules 2020, 10, 717 29 of 64 

 
PGE-4410186 

IC50: MMP-1 = 24 nM; MMP-3 = 18.4 nM; MMP-7 = 
30 nM; MMP-9 = 2.7 nM 

 
MMP-9 inhibitor I 

IC50: MMP-1 = 1.05 nM; MMP-9 = 5 nM; MMP-13 = 113 nM 

 
Ki: MMP-1 = 1.085 μM; MMP-2 = 1 nM; MMP-9 = 10 nM; 

MMP-13 = 3 nM 

 
MMPI-II (MMP-2/MMP-9 inhibitor II) 

IC50: MMP-1 = 970 nM; MMP-2 = 17 nM; MMP-3 > 
1000 nM; MMP-7 = 800 nM; MMP-9 = 30 nM; MMP-

14 = 17 nM 

 
IC50: MMP-1> 50 μM; MMP-2 = 12 nM; MMP-3 = 4.5 μM; MMP-7 > 50 μM; 

MMP-9 = 200 nM 
 

IC50: MMP-1 = 147 nM; MMP-2 = 0.09 nM; MMP-3 = 50 
nM; MMP-7 > 1 μM; MMP-8 = 1.6 nM; MMP-9 = 6.7 nM; 

MMP-14 = 9.8 nM 

IC50: MMP-1> 50 µM; MMP-2 = 12 nM; MMP-3 = 4.5 µM; MMP-7 > 50
µM; MMP-9 = 200 nM

Biomolecules 2020, 10, 717 29 of 64 

 
PGE-4410186 

IC50: MMP-1 = 24 nM; MMP-3 = 18.4 nM; MMP-7 = 
30 nM; MMP-9 = 2.7 nM 

 
MMP-9 inhibitor I 

IC50: MMP-1 = 1.05 nM; MMP-9 = 5 nM; MMP-13 = 113 nM 

 
Ki: MMP-1 = 1.085 μM; MMP-2 = 1 nM; MMP-9 = 10 nM; 

MMP-13 = 3 nM 

 
MMPI-II (MMP-2/MMP-9 inhibitor II) 

IC50: MMP-1 = 970 nM; MMP-2 = 17 nM; MMP-3 > 
1000 nM; MMP-7 = 800 nM; MMP-9 = 30 nM; MMP-

14 = 17 nM 

 
IC50: MMP-1> 50 μM; MMP-2 = 12 nM; MMP-3 = 4.5 μM; MMP-7 > 50 μM; 

MMP-9 = 200 nM 
 

IC50: MMP-1 = 147 nM; MMP-2 = 0.09 nM; MMP-3 = 50 
nM; MMP-7 > 1 μM; MMP-8 = 1.6 nM; MMP-9 = 6.7 nM; 

MMP-14 = 9.8 nM 

IC50: MMP-1 = 147 nM; MMP-2 = 0.09 nM; MMP-3 = 50
nM; MMP-7 > 1 µM; MMP-8 = 1.6 nM; MMP-9 = 6.7 nM;

MMP-14 = 9.8 nM



Biomolecules 2020, 10, 717 30 of 61

Table 7. Cont.Biomolecules 2020, 10, 717 30 of 64 

 
Ki: MMP-1 = 2 μM; MMP-2 = 10 nM; MMP-3 = 500 

nM 

 
IC50: MMP-1 = 200 nM; MMP-9 = 0.43 nM 

 
IC50: MMP-1 = 2.471 μM; MMP-7 = 961 nM; MMP-8 = 35 
nM; MMP-9 = 777 nM; MMP-13 = 96 nM; MMP-14 = 582 

nM 

 
IC50: MMP-1 = 37.3 μM; MMP-2 = 664 nM; MMP-9 = 

5.5 μM; MMP-13 = 2.277 μM; MMP-14 = 24 μM 

 
IC50: MMP-1 = 8.78 μM; MMP-2 = 355 nM; MMP-9 = 1.67 μM; MMP-13 = 

230 nM; MMP-14 = 4.71 μM 

 
Ki: (S enantiomer) MMP-3 = 19 nM 

(R enantiomer) MMP-3 = 36 nM 

 
IC50: MMP-1 = 2.268 μM; MMP-9 = 152 nM; MMP-13 = 18 nM 

 
IC50: MMP-1 = 14 μM; MMP-2 = 529 nM; MMP-3 = 1 nM; MMP-9 = 2.42 

μM; MMP-14 = 20.1 μM 

Ki: MMP-1 = 2 µM; MMP-2 = 10 nM;
MMP-3 = 500 nM
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All hydroxamate-based inhibitors are very potent and they inhibit MMPs at low concentrations [18].
On the other hand, the hydroxamate acids have poor oral bioavailability, inhibit multiple MMPs,
and cause side effects [2,17,27,28,35]. Additionally, this functional group may be metabolized via
dehydroxylation or may be cleaved by endopeptidases and releasing hydroxylamine, can be hydrolyzed
to carboxylic acids or reduced to O-glucuronyl or O-sulfate, leading to decreased effective inhibitor
concentration and reducing its potency in vivo [18,27,28,35].

Table 8 shows the IC50 and Ki values of some phosphamides hydroxamic acid-based
inhibitor [6,15–19,29,35,37,54,55].

Table 8. IC50 and Ki values of phosphamides hydroxamic acid-based inhibitors.
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that accommodates into the S1’ pocket and by the phosphinamide oxygen, which establishes the 
hydrogen bonds with NH of Leu164 and Ala165 [29]. However, this group is susceptible to hydrolysis 
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4.2. Non-Hydroxamate-Based Inhibitors

The side effects caused by hydroxamate-based inhibitors, due to the lack of selectivity
and in vivo lability, have been fostering the development of new compounds with alternative
ZBGs [5,6,11,16,17,27–29]. The second generation of MMPis (1999–2003 [16]) was designed with
a wide variety of peptidomimetic and non-peptidomimetic structures with higher selectivity
and exploiting the deep S1’ pocket present in some MMPs [6,15,16,18,59–61]. These compounds
include carboxylic acids, sulfonylhydrazides, thiols, aminomethyl benzimidazole, phosphorous-based,
nitrogen-based and heterocycles bidentate chelators, and can be monodentade, bidentade, and
tridentade chelates [2,6,18,28,29].

The non-hydroxamate-based inhibitors open up a wide spectrum of affinities for the zinc ion from
the catalytic site and new opportunities for targeting and inhibiting the active center [18,28]. They have
weak Zn2+ chelating ability and the rates of severe side effects, such as the musculoskeletal syndrome
(MSS) decreased dramatically compared with the hydroxamate inhibitors [28].
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4.2.1. Thiolates-Based Inhibitors

The ability of the monodentate binding of thiols to zinc ion in proenzymes has served as inspiration
for the design of several MMPis [5,29]. The potency of thiol inhibitors is intermediate between that
of hydroxamate- and carboxylate- based inhibitors [29]. The first example of inhibitor thiol-based
for MMP-1 is a bipeptidic analogue, where the incorporation of a thiol group as α substituent leads
to improvement of activity (Figure 19a) [19]. Derivates with “linker” substituent between P1-P1’
positions show a total loss of activity (Figure 19b) [19,62]. On the contrary incorporation of a methyl
carboxylate group leads to a significant increase in activity (Figure 19c) [19]. The increased activity of
these compounds may be a consequence of beneficial interactions between S1, the carbonyl ester, and
the thiol group, participating in the bidentate coordination of the zinc [19].
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Figure 19. (a) Thiol-based inhibitor with the thiol group as α-substituent. The stoichiometric is S when
the thiol group is present. In its absence, the compound with R stoichiometric is more active than the
S analogue; (b) thiol-based inhibitor with “linker” substituent; (c) thiol-based inhibitor with methyl
carboxylate group.

Montana et al. have identified a series of inhibitors with mercaptoacyl, obtaining moderate
inhibitors (Figure 20a) against a wide variety of enzymes with a deep pocket shown to be orally active
in mouse models with arthritis [63]. The thiol and acyl carbonyl groups could cooperate in binding to
the zinc of the active site [63]. Warshasky et al. have produced a variety of compounds in the Montana
series, in which the amide nitrogen P2’ is linked to the group P1’ (Figure 20b) [19].
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The β-mercaptoacilamide represented in Figure 21 is active against the MMP-9 in vitro and
exhibits oral activity in rats [19]. The 4-alcoxy substituent of cyclohexane group improved the activity
against all MMPs [19]. Replacement of the 4-ethoxy substituent with 4-propyloxy leads to a significant
reduction in MMP-1 activity and improves selectivity for MMP-3 [19]. The equivalent cyclopentyl
compounds are inactive [19]. The mercaptoamide is unstable in solution hence, to overcome this issue,
Campbell and Levin have prepared a series of mercaptoalcohols and mercaptoketones inhibitors [64].
The mercaptoalcohols have exhibited modest activity against MMP-1, -3, and -9, while the equivalent
mercaptoketones could be optimized to active broad-spectrum inhibitors [64].
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In 2005, Hurst et al. [65] reported a series of mercaptosulphides inhibitors that targeted MMP-1 [65].
The structure–activity relationship indicates that the five-membered ring increases the stability of the
inhibitor compared to the linear structure, which can be quickly oxidized and lose its potency [65].

Table 9 shows the IC50 and Ki values of some thiolates-based inhibitors [6,15–19,29,35,37,54,55].

4.2.2. Carboxylates-Based Inhibitors

The carboxylic inhibitors are synthetic precursors of the more popular hydroxamates yet they
are weaker zinc (II) ligands than hydroxamates [17,27] and monodentate chelate [27]. Carboxylic
acid is present in several MMPis that contain large lipophilic groups, such as biphenyls, since they
fit in the S1’ pocket [5,6]. These ZBGs are particularly appreciated for their high stability in vivo
and their great positive effects on solubility, bioavailability, and selective properties [5,17]. The
hydroxamate-based inhibitors are more potent in physiological conditions than carboxylate inhibitors,
due to differences in acidity constants [29]. The carboxylate inhibitors bind more tightly to MMPs at
low pH, while hydroxamate-based ones have a wider range of pH from 5 to 8 [29]. Fray et al. [66]
compared the inhibition profiles of hydroxamates and carboxylic inhibitors (Figure 21a) and observed
that the substitution of a carboxylate by a hydroxamate causes a 10-fold increase in potency of the
inhibitor towards MMP-3 but decreases the selectivity against MMP-1, -2, -9, and -14 [66]. This effect
is attributed to the fact that the strong zinc (II) affinity to the hydroxamic acid group is the main
determinant of the binding energy, while in carboxylates this energy relies to a bigger extent on specific
interactions with the specific pockets [66].

Hagmann et al. [67] described a series with N-carboxyalkyl group substituents, which presented
inhibition for MMP-1, -2, and -3 [67] (Figure 21b). However, the substitution of the phenethyl group,
in P1’ position, for a linear alkyl chain removes the inhibitory activity for MMP-1 but it does not affect
the activity for MMP-2 and -3 [67]. A similar effect was achieved by the 4-substitution of the phenyl
ring of the phenethyl group with a small linear alkyl group [67] (Figure 22b). A similar range of P3′

esters has been identified with “phthalamidobutyl” (Figure 22b), increasing activity against MMP-3
and further increasing selectivity [67].
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IC50: MMP-3 = 600 nM 

 
IC50: MMP-1 = 890 nM; MMP-3 = 4.6 μM; MMP-9 = 4.5 

μM 

 
IC50: MMP-1 = 15 nM; MMP-3 = 16 nM; MMP-9 = 0.3 

nM 

 
IC50: MMP-1 > 10 μM; MMP-3 = 36 nM; MMP-9 = 20 nM 

Ki: MMP-1 = 49 nM; MMP-2 = 1.1 nM;
MMP-3 = 470 nM; MMP-7 = 40 nM; MMP-9

= 0.57 nM; MMP-14 = 24 nM
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IC50: MMP-1 > 10 μM; MMP-3 = 36 nM; MMP-9 = 20 nM 

Ki: MMP-8 = 1.2 µM
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IC50: MMP-1 > 10 μM; MMP-3 = 36 nM; MMP-9 = 20 nM 

IC50: MMP-3 = 600 nM
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IC50: MMP-1 > 10 μM; MMP-3 = 36 nM; MMP-9 = 20 nM IC50: MMP-1 = 890 nM; MMP-3 = 4.6 µM; MMP-9 = 4.5 µM
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MMP-9 = 0.3 nM
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IC50 (X,Y = O): MMP-1 = 10 nM; MMP-2 = 8 nM; 

MMP-9 = 0.1 nM 
IC50 (X = OH; Y = H): MMP-1 = 140 nM; MMP-3 = 430 

nM; MMP-9 = 12 nM 
IC50 (X = H; Y = O): MMP-1 = 5 nM; MMP-3 = 9 nM; 

MMP-9 = 0.14 nM 

 
IC50: MMP-1 = 823 nM; MMP-3 = 207 nM; MMP-9 = 26 

nM 

 
IC50: MMP-1 = 70 nM; MMP-13 = 0.1 nM 

 
IC50: MMP-1 = 1.5 μM; MMP-3 = 500 nM; MMP-8 = 4 

nM; MMP-13 = 0.5 nM 

 
Ki: MMP-2 = 46 nM; MMP-3 = 10 μM; MMP-9 = 100 

nM; MMP-14 = 210 nM 

 
Ki: MMP-2 = 1.3 μM; MMP-7 > 2.5 μM; MMP-8 = 2.7 μM; 

MMP-9 = 6.3 μM; MMP-13 = 1.7 μM 

 
PNU-141803 

Ki: MMP-2 = 49.5 μM; MMP-3 = 310 nM 

 
PNU-142372 

Ki: MMP-2 = 3 μM; MMP-3 = 18 nM  
IC50: MMP-1 = 65 nM; MMP-3 > 20 μM; MMP-9 = 2.9 μM 

IC50 (X, Y = O): MMP-1 = 10 nM; MMP-2 = 8 nM;
MMP-9 = 0.1 nM

IC50 (X = OH; Y = H): MMP-1 = 140 nM; MMP-3 = 430 nM;
MMP-9 = 12 nM

IC50 (X = H; Y = O): MMP-1 = 5 nM; MMP-3 = 9 nM; MMP-9
= 0.14 nM
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IC50: MMP-1 = 823 nM; MMP-3 = 207 nM;
MMP-9 = 26 nM

Biomolecules 2020, 10, 717 36 of 64 

 
IC50 (X,Y = O): MMP-1 = 10 nM; MMP-2 = 8 nM; 

MMP-9 = 0.1 nM 
IC50 (X = OH; Y = H): MMP-1 = 140 nM; MMP-3 = 430 

nM; MMP-9 = 12 nM 
IC50 (X = H; Y = O): MMP-1 = 5 nM; MMP-3 = 9 nM; 

MMP-9 = 0.14 nM 

 
IC50: MMP-1 = 823 nM; MMP-3 = 207 nM; MMP-9 = 26 

nM 

 
IC50: MMP-1 = 70 nM; MMP-13 = 0.1 nM 

 
IC50: MMP-1 = 1.5 μM; MMP-3 = 500 nM; MMP-8 = 4 

nM; MMP-13 = 0.5 nM 

 
Ki: MMP-2 = 46 nM; MMP-3 = 10 μM; MMP-9 = 100 

nM; MMP-14 = 210 nM 

 
Ki: MMP-2 = 1.3 μM; MMP-7 > 2.5 μM; MMP-8 = 2.7 μM; 

MMP-9 = 6.3 μM; MMP-13 = 1.7 μM 

 
PNU-141803 

Ki: MMP-2 = 49.5 μM; MMP-3 = 310 nM 

 
PNU-142372 

Ki: MMP-2 = 3 μM; MMP-3 = 18 nM  
IC50: MMP-1 = 65 nM; MMP-3 > 20 μM; MMP-9 = 2.9 μM 

IC50: MMP-1 = 70 nM; MMP-13 = 0.1 nM

Biomolecules 2020, 10, 717 36 of 64 

 
IC50 (X,Y = O): MMP-1 = 10 nM; MMP-2 = 8 nM; 

MMP-9 = 0.1 nM 
IC50 (X = OH; Y = H): MMP-1 = 140 nM; MMP-3 = 430 

nM; MMP-9 = 12 nM 
IC50 (X = H; Y = O): MMP-1 = 5 nM; MMP-3 = 9 nM; 

MMP-9 = 0.14 nM 

 
IC50: MMP-1 = 823 nM; MMP-3 = 207 nM; MMP-9 = 26 

nM 

 
IC50: MMP-1 = 70 nM; MMP-13 = 0.1 nM 

 
IC50: MMP-1 = 1.5 μM; MMP-3 = 500 nM; MMP-8 = 4 

nM; MMP-13 = 0.5 nM 

 
Ki: MMP-2 = 46 nM; MMP-3 = 10 μM; MMP-9 = 100 

nM; MMP-14 = 210 nM 

 
Ki: MMP-2 = 1.3 μM; MMP-7 > 2.5 μM; MMP-8 = 2.7 μM; 

MMP-9 = 6.3 μM; MMP-13 = 1.7 μM 

 
PNU-141803 

Ki: MMP-2 = 49.5 μM; MMP-3 = 310 nM 
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IC50: MMP-1 = 1.5 µM; MMP-3 = 500 nM; MMP-8 = 4 nM;
MMP-13 = 0.5 nM
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Ki: MMP-2 = 3 μM; MMP-3 = 18 nM  
IC50: MMP-1 = 65 nM; MMP-3 > 20 μM; MMP-9 = 2.9 μM 

Ki: MMP-2 = 46 nM; MMP-3 = 10 µM;
MMP-9 = 100 nM; MMP-14 = 210 nM
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Ki: MMP-2 = 3 μM; MMP-3 = 18 nM  
IC50: MMP-1 = 65 nM; MMP-3 > 20 μM; MMP-9 = 2.9 μM 

Ki: MMP-2 = 1.3 µM; MMP-7 > 2.5 µM; MMP-8 = 2.7 µM; MMP-9 =
6.3 µM; MMP-13 = 1.7 µM
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Ki: MMP-2 = 49.5 µM; MMP-3 = 310 nM
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IC50: MMP-1 = 15 μM 

 
CP-271485 

IC50: MMP-9 = 5.1 μM; MMP-12 > 100 μM 

 
SB-3CT 

Ki: MMP-1 = 206 μM; MMP-2 = 14 nM; MMP-3 = 15 μM; 
MMP-7 = 96 μM; MMP-9 = 600 nM 

 
Ki: MMP-1 = 11 μM; MMP-2 = 50 nM; MMP-14 = 590 

nM 

 
Ki: MMP-2 = 16 nM; MMP-3 = 3.6 μM; MMP-7 = 295 

μM; MMP-9 = 180 nM; MMP-14 = 900 nM 

 
Ki: MMP-1 = 5.4 μM; MMP-2 = 110 nM; MMP-3 = 12.2 
μM; MMP-7 = 39 μM; MMP-9 = 130 nM; MMP-14 = 680 

nM 

IC50: MMP-1 = 15 µM
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nM 
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IC50: MMP-9 = 5.1 µM; MMP-12 > 100 µM
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96 µM; MMP-9 = 600 nM
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nM 
Ki: MMP-1 = 11 µM; MMP-2 = 50 nM; MMP-14 = 590 nM
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Ki: MMP-1 = 5.4 µM; MMP-2 = 110 nM; MMP-3 = 12.2 µM; MMP-7
= 39 µM; MMP-9 = 130 nM; MMP-14 = 680 nM
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4.2.2. Carboxylates-Based Inhibitors 

The carboxylic inhibitors are synthetic precursors of the more popular hydroxamates yet they 
are weaker zinc (II) ligands than hydroxamates [17,27] and monodentate chelate [27]. Carboxylic acid 
is present in several MMPis that contain large lipophilic groups, such as biphenyls, since they fit in 
the S1’ pocket [5,6]. These ZBGs are particularly appreciated for their high stability in vivo and their 
great positive effects on solubility, bioavailability, and selective properties [5,17]. The hydroxamate-
based inhibitors are more potent in physiological conditions than carboxylate inhibitors, due to 
differences in acidity constants [29]. The carboxylate inhibitors bind more tightly to MMPs at low pH, 
while hydroxamate-based ones have a wider range of pH from 5 to 8 [29]. Fray et al. [66] compared 
the inhibition profiles of hydroxamates and carboxylic inhibitors (Figure 21a) and observed that the 
substitution of a carboxylate by a hydroxamate causes a 10-fold increase in potency of the inhibitor 
towards MMP-3 but decreases the selectivity against MMP-1, -2, -9, and -14 [66]. This effect is 
attributed to the fact that the strong zinc (II) affinity to the hydroxamic acid group is the main 
determinant of the binding energy, while in carboxylates this energy relies to a bigger extent on 
specific interactions with the specific pockets [66]. 

Hagmann et al. [67] described a series with N-carboxyalkyl group substituents, which presented 
inhibition for MMP-1, -2, and -3 [67] (Figure 21b). However, the substitution of the phenethyl group, 
in P1’ position, for a linear alkyl chain removes the inhibitory activity for MMP-1 but it does not affect 
the activity for MMP-2 and -3 [67]. A similar effect was achieved by the 4-substitution of the phenyl 
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Figure 22. (a) Fray et al. inhibitors. R = NH(OH), hydroxamate-based inhibitor. R = OH, carboxylate-
based inhibitor. (b) Hagmann inhibitors. If X = H and Y = Me the compound presents inhibition to 
MMP-1, -2, and -3. When X = C4H9 and Y = Me, the inhibitor has a similar effect to the previous one. 
The inhibitor with X = H and Y = Phthbutyl (phthalamidibutyl) shows activity against MMP-3. 

The interaction of the P1′ biphenyl substituent with pocket S1′ is an important factor contributing 
to the binding of the inhibitor [19]. The X-ray structure of the acyclic compound with MMP-3 revealed 
an important interaction between the phenyl terminal of the biphenyl group and the side chain of 
histidine (His224) [19]. The carboxylic acids derived from “D-valine” have a selective inhibition for 
MMP-2 and -3 [19]. The 4-substitution of the biphenyl ring helped to increase potency compared to 
the unsubstituted analogue and also helped to improve the pharmacokinetic properties [19]. 

With the aim of development inhibitors with high selectivity for a single MMP, Wyeth 
published, in 2005, a series of biphenyl compounds with carboxylates sulphonamides (Figure 23a). 
These compounds were tested for the treatment of osteoarthritis and indeed presented selectivity 
against MMP-13 [18]. Wyeth research developed a series of carboxylic acids-based inhibitors, which 
were potent and selective against MMP-13, with the carboxylate function connected to a benzofuran 

Figure 22. (a) Fray et al. inhibitors. R = NH(OH), hydroxamate-based inhibitor. R = OH,
carboxylate-based inhibitor. (b) Hagmann inhibitors. If X = H and Y = Me the compound presents
inhibition to MMP-1, -2, and -3. When X = C4H9 and Y = Me, the inhibitor has a similar effect to
the previous one. The inhibitor with X = H and Y = Phthbutyl (phthalamidibutyl) shows activity
against MMP-3.

The interaction of the P1
′ biphenyl substituent with pocket S1

′ is an important factor contributing
to the binding of the inhibitor [19]. The X-ray structure of the acyclic compound with MMP-3 revealed
an important interaction between the phenyl terminal of the biphenyl group and the side chain of
histidine (His224) [19]. The carboxylic acids derived from “D-valine” have a selective inhibition for
MMP-2 and -3 [19]. The 4-substitution of the biphenyl ring helped to increase potency compared to the
unsubstituted analogue and also helped to improve the pharmacokinetic properties [19].

With the aim of development inhibitors with high selectivity for a single MMP, Wyeth published, in
2005, a series of biphenyl compounds with carboxylates sulphonamides (Figure 23a). These compounds
were tested for the treatment of osteoarthritis and indeed presented selectivity against MMP-13 [18].
Wyeth research developed a series of carboxylic acids-based inhibitors, which were potent and selective
against MMP-13, with the carboxylate function connected to a benzofuran via a biphenyl sulphonamide
spacer (Figure 23b) [16]. The presence of a bulky substituent in the benzofuran 4-position resulted in a
compound 100-fold more selective for MMP-13 over MMP-2 [16].
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participated in clinical trials, proving tolerable and no serious MSS, but the efficacy was negative in 
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Figure 23. (a) Inhibitor of Wyeth with carboxylate sulphonamide; (b) inhibitor of Wyeth with the
carboxylate function connected to a bezofuran via biphenyl sulphonamide spacer.

Tanomastat (Bayer) inhibits MMP-2, -3, -9, and -13 but not MMP-1 [6,29]. This inhibitor participated
in clinical trials, proving tolerable and no serious MSS, but the efficacy was negative in small-cell lung
cancer because the median overall survival of patients treated did not increase [6,29].

Table 10 shows the IC50 and Ki values of some carboxylates-based
inhibitors [6,15–19,29,35,37,54,55].
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L-758,354 

Ki: MMP-2 = 17 nM; MMP-3 = 10 nM 

 
Ki: MMP-3 = 42 nM  

Ki: MMP-3 = 21 nM 

 
Tanomastat (BAY 12-9566) 

Ki: MMP-1 > 5 μM; MMP-2 = 11 nM; MMP-3 = 134 
nM; MMP-9 = 301 nM; MMP-13 = 1.47 μM 

 
Ki: MMP-1 = 0.9 nM; MMP-3 = 15 nM; MMP-9 = 3 nM  

AG 3067 
Ki: MMP-1 > 1000 nM; MMP-2 = 16 nM; MMP-3 = 2 nM; MMP-7 = 614 nM 

L-758,354
Ki: MMP-2 = 17 nM; MMP-3 = 10 nM
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IC50: MMP-2 = 34.2 μM; MMP-3 = 23 nM; MMP-9 = 

30.4 μM; MMP-13 = 2.3 μM; MMP-14 = 66.9 μM 
 

AG 3365 
Ki: MMP-2 = 0.04 nM; MMP-3 = 1.5 nM; MMP-7 = 305 

nM; MMP-13 = 0.05 nM 

 
AG 3433 

Ki: MMP-2 = 0.9 nM; MMP-3 = 19 nM; MMP-7 = 4545 μM; MMP-13 = 3.3 nM 

 
An-1 

IC50: MMP-2 = 9.3 nM; MMP-9 = 201 nM 

 
IC50: MMP-1 > 98 μM; MMP-2 = 4.52 μM; MMP-3 > 98 
μM; MMP-7 > 98 μM; MMP-12 = 520 nM; MMP-13 = 12 

μM; MMP-14 = 43.5 μM 
 

IC50: MMP-1 > 98 μM; MMP-12 = 62 nM; MMP-13 = 970 nM 

IC50: MMP-2 = 34.2 µM; MMP-3 = 23 nM; MMP-9 =
30.4 µM; MMP-13 = 2.3 µM; MMP-14 = 66.9 µM
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PF-00356231 

IC50: MMP-2 > 100 μM; MMP-3 = 390 nM; MMP-8 = 1.7 μM; 
MMP-9 = 980 nM; MMP-12 = 14 nM; MMP-13 = 270 nM 

 
MMP 408 

IC50: MMP-1 > 6 μM; MMP-3 = 351 nM; MMP-7 > 6 μM; 
MMP-9 = 1.3 μM; MMP-12 = 2 nM; MMP-13 = 120 nM; MMP-

14 = 1.1 μM 
IC50: MMP-3 = 50 nM 

 
Ki: MMP-1 > 10 μM; MMP-2 > 1.06 μM; MMP-3 = 3.88 μM; MMP-7 = 2.01 μM; MMP-8 = 410 

nM; MMP-9 > 10 μM; MMP-12 = 1 nM; MMP-13 = 684 nM; MMP-14 = 3.01 μM 

 
Ki: MMP-1 = 127 nM; MMP-3 = 5.819 μM; MMP- = 671 nM; MMP-9 = 2.232 μM; MMP-12 = 2.5 

nM; MMP-13 = 501 nM; MMP-14 = 968 nM 

PF-00356231
IC50: MMP-2 > 100 µM; MMP-3 = 390 nM; MMP-8 = 1.7 µM; MMP-9

= 980 nM; MMP-12 = 14 nM; MMP-13 = 270 nM
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4.2.3. Phosphorus-Based Inhibitors

The capacity of the phosphoric group to reproduce the gem-diol intermediate during peptide
hydrolysis was explored with different structures to obtain potent MMPis [5]. The phosphorus-based
of the peptide-analogous inhibitors can be phosphonates/phosphonic acids, phosphoramidates,
phosphonamidates, and phosphinates/phosphinic peptides [27]. The phosphinic acid (PO(OH)-CH2)
mimics the transition state obtained in substrate degradation, where each oxygen atom can coordinate
both the catalytic zinc and the catalytic Glu [6,19,27]. The phosphinic acids are monodentate chelates [27].
In contrast to hydroxamate compounds, the phosphinic compounds interact with both the primed
and unprimed side of the catalytic site [17,27,35] due to the placement of the ZBG in the middle of the
scaffold and not at its N- or C-terminal, as in the cases of hydroxamate and carboxylate inhibitors [17].
Another advantage of phosphinic acids is the improved metabolic stability compared with hydroxamate
acids [27].

The effectiveness of phosphoric acid inhibitors has been studied and it has been found that the
three pockets unprimed are connected to obtain the maximum performance [19]. The S1-S2 pockets
can be exploited using aromatic groups [19,68], that is why Reiter et al. prepared compounds with
4-benzyl (Figure 24) as a substituent to fill S2 pocket. They found that in the absence of this substituent
or its replacement by small aliphatic or cyclohexyl methyl groups led to a loss of activity [19,68].
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Figure 24. Compound prepared by Reiter et al., with a 4-benzyl substituent. The 4-benzyl group
fills the S2 pocket and if the benzyl group was omitted or replaced by a small aliphatic or cyclohexyl
methyl group, the activity is lost. The isobuthyl group fills the S1’ pocket in a manner similar to other
substrate-like inhibitors.

Matziari et al. [69] synthesized a series of phosphinic pseudopeptides bearing long P1’ side chains,
compounds that contain groups at the ortho-position of the phenyl ring and are selective for MMP-11 by
the interaction of these groups with residues located at the entrance of the S1’ cavity [69]. These results
suggest that the development of compounds able to probe the entrance of the S1’ cavity might represent
an alternative strategy to gain selectivity [69].

Other phosphorus-based ZBGs are the carbamoyl phosphates, in which the two oxygens form
a five membered ring with the zinc ion [18]. The negative charge of these inhibitors prevents their
penetration into the cell and restrain them for extracellular space, contributing to low cytotoxicity [18].
Pochetti et al. [70] described a compound with high affinity to MMP-8 (Ki = 0.6 nM) but inhibits also
MMP-2 (Ki = 5 nM) and MMP-3 (Ki = 40 nM) (Figure 25). The R enantiomer is more potent (1000 time
more) than the S enantiomer (Ki = 0.7 µM) [70].
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The classical approach to synthesizing phosphinic compounds limits the full exploitation of this
class of compounds for development of highly selective inhibitors of MMPS [35].

Table 11 shows the IC50 and Ki values of some phosphorus-based inhibitors [6,15–19,29,35,37,54,55].
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4.2.4. Nitrogen-Based Inhibitors

The nitrogen-based inhibitors have a binding preference to late transition metals and improved
selectivity to zinc-dependent enzymes like MMPs [2]. The nitrogen-based inhibitors are studied by
the Food and Drug Administration (FDA) and its metabolic availability and bioavailability are well
described [2,18]. This ZBG type binds to Zn2+ using the nitrogen atom and the carbonyl oxygen
adjacent to nitrogen, which favors the formation of an enol because it is established by two hydrogen
bonds [18].

The pyrimidine-2,4,6-trione inhibitors were published in 2001 by Hoffman-LaRoche.
These compounds show relative specificity to gelatinases and potential usefulness as anticancer
drugs [2]. The derivatization of position 5 of this compound promotes access to S1’ and S2’ pockets [18].
In development of osteoarthritis drugs, the pyrimidine-2,4,6-trione inhibitors have been optimized to
inhibit MMP-13 [2].

4.2.5. Heterocyclic Bidentate-Based Inhibitors

Heterocyclic bidentate ZBGs have better biostability and higher catalytic zinc ion binding
capacity than hydroxamic acids, due to ligand rigidity [2]. Compared heterocycles bidentate and
acetohydroxamic acid, the first are more potent to inhibit MMP-1, -2, and -3 and show low toxicity in
cell viability assays [2].

Pyrones are biocompatible and they present good aqueous solubility [16]. The arylic portion was
added to fit the MMP-3 hydrophobic S1’ pocket, resulting in the compounds more potent than the
corresponding hydroxamate-based inhibitors [16].

Table 12 shows the IC50 and Ki values of some heterocyclic bidentate-based
inhibitors [6,15–19,29,35,37,54,55].

4.2.6. Tetracyclines-Based Inhibitors

Tetracyclines are antibiotics that can chelate zinc and calcium ions and inhibit MMP
activity [2,16,29]. Chemically modified tetracyclines (CMT) are preferred over conventional
tetracyclines because they reach higher plasma levels for prolonged periods, consequently require less
frequent administration, cause less gastrointestinal side effects, and have promising anti-proliferative
and anti-metastatic activity [2,16,29]. The CMT binds to pro- or active MMPs, disrupt the native
conformation of the protein, and leave the enzymes inactive [29]. In the search for new anticancer agents,
the first series of CMT was obtained by removal of the dimethylamino group from the carbon-4 position,
resulting in a compound without antimicrobial activity but with anticollagenolytic activity, in vitro
and in vivo [16]. Preclinical studies demonstrated that CMT can inhibit gelatinases, stromelysins,
collagenases, and MT-MMPs, by downregulating the expression of gelatinases, reducing the production
of pro-enzymes and inhibiting the activation of pro-gelatinases and pro-collagenases [16,29].

Doxycycline (Figure 26a) is a semi-synthetic tetracycline that inhibits MMP-2, -9, -7, and -8 and is
the only compound approved as an MMP inhibitor for the treatment of periodontitis [2,6]. The COL-3
(Figure 26b) showed specificity for MMP-2, -9, and -14, by decrease trypsinogen-2 and inducible nitric
oxide (iNO) production, which are regulators of MMP activity [16]. Although COL-3 is currently being
evaluated in clinical phase II trials, it showed poor solubility and stability [16].

4.2.7. Mechanism-Based Inhibitors

The mechanism-based inhibitors coordinate with catalytic zinc ion, in a monodentate mode,
allowing the nucleophilic attack by a conserved glutamic residue on the active site and forming a
covalent bond [2,17]. This attack causes a conformational change in the catalytic site environment [17]
preventing dissociation of the inhibitor and decreasing the rate of catalytic turnover and the amount of
inhibitor needed to saturate the enzyme [2].
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IC50: MMP-1 = 4.310 μM; MMP-9 = 2 nM 

 
Ro-28-2653 

IC50: MMP-1 = 16 μM; MMP-2 = 12 nM; MMP-3 = 1.8 μM; MMP-8 
= 15 nM; MMP-9 = 16 nM; MMP-14 = 10 nM 

 
IC50: MMP-1 = 2.4 μM; MMP-2 = 397 nM; MMP-3 = 17 μM; MMP-8 

= 394 nM; MMP-9 = 540 nM; MMP-12 = 619 nM; MMP-13 = 0.36 nM; 
MMP-14 = 540 nM 

 
IC50: MMP-13 = 0.87 nM; MMP-14 = 23 nM  

IC50: MMP-13 = 1 nM; MMP-14 = 220 nM 
 

IC50: MMP-8 = 107 nM; MMP-9 = 20 nM 

Ro-206-0222
IC50: MMP-1 = 4.310 µM; MMP-9 = 2 nM
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Ki: MMP-1 > 5 μM; MMP-2 = 1.8 nM; MMP-9 = 1.9 nM; MMP-13 = 0.33 nM  

 
IC50: MMP-2 = 0.14 μM; MMP-8 = 0.14 μM; MMP-12 = 0.22 μM; MMP-13 = 0.36 nM 

 
Ki: MMP-2 = 2.17 μM; MMP-3 > 4.50 μM; MMP-7 > 6.37 μM; MMP-12 = 

1.02 μM 

 
GW-3333 

IC50: MMP-1 = 19 μM; MMP-3 = 20 nM; MMP-9 = 
16 nM 

 
S-3304 

IC50: MMP-2 = 2 nM; MMP-9 = 10 nM 

 
AZD-126 

IC50: MMP-9 = 4.5 nM; MMP-12 = 6.1 nM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 610 nM; MMP-3 = 

10 nM  
IC50: MMP-1 > 50 μM; MMP-2 > 50 μM; MMP-3 = 19 nM 

Ki: MMP-1 > 5 µM; MMP-2 = 1.8 nM; MMP-9 = 1.9 nM; MMP-13 = 0.33 nM
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Ki: MMP-1 > 5 μM; MMP-2 = 1.8 nM; MMP-9 = 1.9 nM; MMP-13 = 0.33 nM  

 
IC50: MMP-2 = 0.14 μM; MMP-8 = 0.14 μM; MMP-12 = 0.22 μM; MMP-13 = 0.36 nM 

 
Ki: MMP-2 = 2.17 μM; MMP-3 > 4.50 μM; MMP-7 > 6.37 μM; MMP-12 = 

1.02 μM 

 
GW-3333 

IC50: MMP-1 = 19 μM; MMP-3 = 20 nM; MMP-9 = 
16 nM 

 
S-3304 

IC50: MMP-2 = 2 nM; MMP-9 = 10 nM 

 
AZD-126 

IC50: MMP-9 = 4.5 nM; MMP-12 = 6.1 nM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 610 nM; MMP-3 = 

10 nM  
IC50: MMP-1 > 50 μM; MMP-2 > 50 μM; MMP-3 = 19 nM 

GW-3333
IC50: MMP-1 = 19 µM; MMP-3 = 20 nM; MMP-9 = 16 nM
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Ki: MMP-1 > 5 μM; MMP-2 = 1.8 nM; MMP-9 = 1.9 nM; MMP-13 = 0.33 nM  

 
IC50: MMP-2 = 0.14 μM; MMP-8 = 0.14 μM; MMP-12 = 0.22 μM; MMP-13 = 0.36 nM 

 
Ki: MMP-2 = 2.17 μM; MMP-3 > 4.50 μM; MMP-7 > 6.37 μM; MMP-12 = 

1.02 μM 

 
GW-3333 

IC50: MMP-1 = 19 μM; MMP-3 = 20 nM; MMP-9 = 
16 nM 

 
S-3304 

IC50: MMP-2 = 2 nM; MMP-9 = 10 nM 

 
AZD-126 

IC50: MMP-9 = 4.5 nM; MMP-12 = 6.1 nM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 610 nM; MMP-3 = 

10 nM  
IC50: MMP-1 > 50 μM; MMP-2 > 50 μM; MMP-3 = 19 nM 

S-3304
IC50: MMP-2 = 2 nM; MMP-9 = 10 nM
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Ki: MMP-1 > 5 μM; MMP-2 = 1.8 nM; MMP-9 = 1.9 nM; MMP-13 = 0.33 nM  

 
IC50: MMP-2 = 0.14 μM; MMP-8 = 0.14 μM; MMP-12 = 0.22 μM; MMP-13 = 0.36 nM 

 
Ki: MMP-2 = 2.17 μM; MMP-3 > 4.50 μM; MMP-7 > 6.37 μM; MMP-12 = 

1.02 μM 

 
GW-3333 

IC50: MMP-1 = 19 μM; MMP-3 = 20 nM; MMP-9 = 
16 nM 

 
S-3304 

IC50: MMP-2 = 2 nM; MMP-9 = 10 nM 

 
AZD-126 

IC50: MMP-9 = 4.5 nM; MMP-12 = 6.1 nM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 610 nM; MMP-3 = 

10 nM  
IC50: MMP-1 > 50 μM; MMP-2 > 50 μM; MMP-3 = 19 nM 

AZD-126
IC50: MMP-9 = 4.5 nM; MMP-12 = 6.1 nM
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Ki: MMP-1 > 5 μM; MMP-2 = 1.8 nM; MMP-9 = 1.9 nM; MMP-13 = 0.33 nM  

 
IC50: MMP-2 = 0.14 μM; MMP-8 = 0.14 μM; MMP-12 = 0.22 μM; MMP-13 = 0.36 nM 

 
Ki: MMP-2 = 2.17 μM; MMP-3 > 4.50 μM; MMP-7 > 6.37 μM; MMP-12 = 

1.02 μM 

 
GW-3333 

IC50: MMP-1 = 19 μM; MMP-3 = 20 nM; MMP-9 = 
16 nM 

 
S-3304 

IC50: MMP-2 = 2 nM; MMP-9 = 10 nM 

 
AZD-126 

IC50: MMP-9 = 4.5 nM; MMP-12 = 6.1 nM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 610 nM; MMP-3 = 

10 nM  
IC50: MMP-1 > 50 μM; MMP-2 > 50 μM; MMP-3 = 19 nM 

IC50: MMP-1 > 50 µM; MMP-2 = 610 nM; MMP-3 = 10 nM
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Ki: MMP-1 > 5 μM; MMP-2 = 1.8 nM; MMP-9 = 1.9 nM; MMP-13 = 0.33 nM  

 
IC50: MMP-2 = 0.14 μM; MMP-8 = 0.14 μM; MMP-12 = 0.22 μM; MMP-13 = 0.36 nM 

 
Ki: MMP-2 = 2.17 μM; MMP-3 > 4.50 μM; MMP-7 > 6.37 μM; MMP-12 = 

1.02 μM 

 
GW-3333 

IC50: MMP-1 = 19 μM; MMP-3 = 20 nM; MMP-9 = 
16 nM 

 
S-3304 

IC50: MMP-2 = 2 nM; MMP-9 = 10 nM 

 
AZD-126 

IC50: MMP-9 = 4.5 nM; MMP-12 = 6.1 nM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 610 nM; MMP-3 = 

10 nM  
IC50: MMP-1 > 50 μM; MMP-2 > 50 μM; MMP-3 = 19 nM IC50: MMP-1 > 50 µM; MMP-2 > 50 µM; MMP-3 = 19 nM
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IC50: MMP-1 > 50 μM; MMP-2 = 4.4 μM; MMP-3 = 77 nM; MMP-7 > 50 
μM; MMP-8 = 245 nM; MMP-9 = 32.3 μM; MMP-12 = 85 nM; MMP-13 = 

6.6 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 9.3 μM; MMP-3 = 
0.24 μM; MMP-7 > 50 μM; MMP-8 = 64 nM; MMP-
9 > 50 μM; MMP-12 = 22 nM; MMP-13 = 20.6 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 16.5 μM; MMP-3 = 41.7 μM; MMP-
7 > 50 μM; MMP-8 = 3.8 μM; MMP-9 > 50 μM; MMP-12 = 1.2 μM; 

MMP-13 = 16.5 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 7.6 μM; MMP-3> 50 μM; MMP-7 > 50 
μM; MMP-8 = 5.0 μM; MMP-9 > 50 μM; MMP-12 = 6.7 μM; MMP-13 = 

6.7 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 0.92 μM; MMP-3 = 
0.56 μM; MMP-7 > 50 μM; MMP-8 = 86 nM; MMP-
9 = 27.1 μM; MMP-12 = 18 nM; MMP-13 = 4.1 μM 

 
IC50: MMP-1 > 400 μM; MMP-2 = 135 nM; MMP-3 = 81 nM; MMP-7 

= 1.1 μM; MMP-8 = 42 nM; MMP-9 > 7 μM; MMP-13 = 1.8 nM; 
MMP-14 = 5 μM 

 
IC50: MMP-1 = 14 μM; MMP-2 = 529 nM; MMP-3 = 1 nM; MMP-9 = 2.42 

μM; MMP-14 = 20.1 μM 

 
KI: MMP-1 > 500 μM; MMP-9 = 6 μM 

 
IC50: MMP-1 > 1 μM; MMP-2 = 5 nM; MMP-3 = 56 nM; MMP-9 = 2.4 

nM; MMP-12 = 2.5 nM 

IC50: MMP-1 > 50 µM; MMP-2 = 4.4 µM; MMP-3 = 77 nM; MMP-7 >
50 µM; MMP-8 = 245 nM; MMP-9 = 32.3 µM; MMP-12 = 85 nM;

MMP-13 = 6.6 µM
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IC50: MMP-1 > 50 μM; MMP-2 = 4.4 μM; MMP-3 = 77 nM; MMP-7 > 50 
μM; MMP-8 = 245 nM; MMP-9 = 32.3 μM; MMP-12 = 85 nM; MMP-13 = 

6.6 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 9.3 μM; MMP-3 = 
0.24 μM; MMP-7 > 50 μM; MMP-8 = 64 nM; MMP-
9 > 50 μM; MMP-12 = 22 nM; MMP-13 = 20.6 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 16.5 μM; MMP-3 = 41.7 μM; MMP-
7 > 50 μM; MMP-8 = 3.8 μM; MMP-9 > 50 μM; MMP-12 = 1.2 μM; 

MMP-13 = 16.5 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 7.6 μM; MMP-3> 50 μM; MMP-7 > 50 
μM; MMP-8 = 5.0 μM; MMP-9 > 50 μM; MMP-12 = 6.7 μM; MMP-13 = 

6.7 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 0.92 μM; MMP-3 = 
0.56 μM; MMP-7 > 50 μM; MMP-8 = 86 nM; MMP-
9 = 27.1 μM; MMP-12 = 18 nM; MMP-13 = 4.1 μM 

 
IC50: MMP-1 > 400 μM; MMP-2 = 135 nM; MMP-3 = 81 nM; MMP-7 

= 1.1 μM; MMP-8 = 42 nM; MMP-9 > 7 μM; MMP-13 = 1.8 nM; 
MMP-14 = 5 μM 

 
IC50: MMP-1 = 14 μM; MMP-2 = 529 nM; MMP-3 = 1 nM; MMP-9 = 2.42 

μM; MMP-14 = 20.1 μM 

 
KI: MMP-1 > 500 μM; MMP-9 = 6 μM 

 
IC50: MMP-1 > 1 μM; MMP-2 = 5 nM; MMP-3 = 56 nM; MMP-9 = 2.4 

nM; MMP-12 = 2.5 nM 

IC50: MMP-1 > 50 µM; MMP-2 = 9.3 µM; MMP-3 = 0.24 µM;
MMP-7 > 50 µM; MMP-8 = 64 nM; MMP-9 > 50 µM; MMP-12 = 22

nM; MMP-13 = 20.6 µM
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IC50: MMP-1 > 50 μM; MMP-2 = 4.4 μM; MMP-3 = 77 nM; MMP-7 > 50 
μM; MMP-8 = 245 nM; MMP-9 = 32.3 μM; MMP-12 = 85 nM; MMP-13 = 

6.6 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 9.3 μM; MMP-3 = 
0.24 μM; MMP-7 > 50 μM; MMP-8 = 64 nM; MMP-
9 > 50 μM; MMP-12 = 22 nM; MMP-13 = 20.6 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 16.5 μM; MMP-3 = 41.7 μM; MMP-
7 > 50 μM; MMP-8 = 3.8 μM; MMP-9 > 50 μM; MMP-12 = 1.2 μM; 

MMP-13 = 16.5 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 7.6 μM; MMP-3> 50 μM; MMP-7 > 50 
μM; MMP-8 = 5.0 μM; MMP-9 > 50 μM; MMP-12 = 6.7 μM; MMP-13 = 

6.7 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 0.92 μM; MMP-3 = 
0.56 μM; MMP-7 > 50 μM; MMP-8 = 86 nM; MMP-
9 = 27.1 μM; MMP-12 = 18 nM; MMP-13 = 4.1 μM 

 
IC50: MMP-1 > 400 μM; MMP-2 = 135 nM; MMP-3 = 81 nM; MMP-7 

= 1.1 μM; MMP-8 = 42 nM; MMP-9 > 7 μM; MMP-13 = 1.8 nM; 
MMP-14 = 5 μM 

 
IC50: MMP-1 = 14 μM; MMP-2 = 529 nM; MMP-3 = 1 nM; MMP-9 = 2.42 

μM; MMP-14 = 20.1 μM 

 
KI: MMP-1 > 500 μM; MMP-9 = 6 μM 

 
IC50: MMP-1 > 1 μM; MMP-2 = 5 nM; MMP-3 = 56 nM; MMP-9 = 2.4 

nM; MMP-12 = 2.5 nM 

IC50: MMP-1 > 50 µM; MMP-2 = 16.5 µM; MMP-3 = 41.7 µM;
MMP-7 > 50 µM; MMP-8 = 3.8 µM; MMP-9 > 50 µM; MMP-12 =

1.2 µM; MMP-13 = 16.5 µM
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Table 12. Cont.
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IC50: MMP-1 > 50 μM; MMP-2 = 4.4 μM; MMP-3 = 77 nM; MMP-7 > 50 
μM; MMP-8 = 245 nM; MMP-9 = 32.3 μM; MMP-12 = 85 nM; MMP-13 = 

6.6 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 9.3 μM; MMP-3 = 
0.24 μM; MMP-7 > 50 μM; MMP-8 = 64 nM; MMP-
9 > 50 μM; MMP-12 = 22 nM; MMP-13 = 20.6 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 16.5 μM; MMP-3 = 41.7 μM; MMP-
7 > 50 μM; MMP-8 = 3.8 μM; MMP-9 > 50 μM; MMP-12 = 1.2 μM; 

MMP-13 = 16.5 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 7.6 μM; MMP-3> 50 μM; MMP-7 > 50 
μM; MMP-8 = 5.0 μM; MMP-9 > 50 μM; MMP-12 = 6.7 μM; MMP-13 = 

6.7 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 0.92 μM; MMP-3 = 
0.56 μM; MMP-7 > 50 μM; MMP-8 = 86 nM; MMP-
9 = 27.1 μM; MMP-12 = 18 nM; MMP-13 = 4.1 μM 

 
IC50: MMP-1 > 400 μM; MMP-2 = 135 nM; MMP-3 = 81 nM; MMP-7 

= 1.1 μM; MMP-8 = 42 nM; MMP-9 > 7 μM; MMP-13 = 1.8 nM; 
MMP-14 = 5 μM 

 
IC50: MMP-1 = 14 μM; MMP-2 = 529 nM; MMP-3 = 1 nM; MMP-9 = 2.42 

μM; MMP-14 = 20.1 μM 

 
KI: MMP-1 > 500 μM; MMP-9 = 6 μM 

 
IC50: MMP-1 > 1 μM; MMP-2 = 5 nM; MMP-3 = 56 nM; MMP-9 = 2.4 

nM; MMP-12 = 2.5 nM 

IC50: MMP-1 > 50 µM; MMP-2 = 7.6 µM; MMP-3> 50 µM; MMP-7 >
50 µM; MMP-8 = 5.0 µM; MMP-9 > 50 µM; MMP-12 = 6.7 µM;

MMP-13 = 6.7 µM
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IC50: MMP-1 > 50 μM; MMP-2 = 4.4 μM; MMP-3 = 77 nM; MMP-7 > 50 
μM; MMP-8 = 245 nM; MMP-9 = 32.3 μM; MMP-12 = 85 nM; MMP-13 = 

6.6 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 9.3 μM; MMP-3 = 
0.24 μM; MMP-7 > 50 μM; MMP-8 = 64 nM; MMP-
9 > 50 μM; MMP-12 = 22 nM; MMP-13 = 20.6 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 16.5 μM; MMP-3 = 41.7 μM; MMP-
7 > 50 μM; MMP-8 = 3.8 μM; MMP-9 > 50 μM; MMP-12 = 1.2 μM; 

MMP-13 = 16.5 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 7.6 μM; MMP-3> 50 μM; MMP-7 > 50 
μM; MMP-8 = 5.0 μM; MMP-9 > 50 μM; MMP-12 = 6.7 μM; MMP-13 = 

6.7 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 0.92 μM; MMP-3 = 
0.56 μM; MMP-7 > 50 μM; MMP-8 = 86 nM; MMP-
9 = 27.1 μM; MMP-12 = 18 nM; MMP-13 = 4.1 μM 

 
IC50: MMP-1 > 400 μM; MMP-2 = 135 nM; MMP-3 = 81 nM; MMP-7 

= 1.1 μM; MMP-8 = 42 nM; MMP-9 > 7 μM; MMP-13 = 1.8 nM; 
MMP-14 = 5 μM 

 
IC50: MMP-1 = 14 μM; MMP-2 = 529 nM; MMP-3 = 1 nM; MMP-9 = 2.42 

μM; MMP-14 = 20.1 μM 

 
KI: MMP-1 > 500 μM; MMP-9 = 6 μM 

 
IC50: MMP-1 > 1 μM; MMP-2 = 5 nM; MMP-3 = 56 nM; MMP-9 = 2.4 

nM; MMP-12 = 2.5 nM 

IC50: MMP-1 > 50 µM; MMP-2 = 0.92 µM; MMP-3 = 0.56 µM;
MMP-7 > 50 µM; MMP-8 = 86 nM; MMP-9 = 27.1 µM; MMP-12 =

18 nM; MMP-13 = 4.1 µM
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IC50: MMP-1 > 50 μM; MMP-2 = 4.4 μM; MMP-3 = 77 nM; MMP-7 > 50 
μM; MMP-8 = 245 nM; MMP-9 = 32.3 μM; MMP-12 = 85 nM; MMP-13 = 

6.6 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 9.3 μM; MMP-3 = 
0.24 μM; MMP-7 > 50 μM; MMP-8 = 64 nM; MMP-
9 > 50 μM; MMP-12 = 22 nM; MMP-13 = 20.6 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 16.5 μM; MMP-3 = 41.7 μM; MMP-
7 > 50 μM; MMP-8 = 3.8 μM; MMP-9 > 50 μM; MMP-12 = 1.2 μM; 

MMP-13 = 16.5 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 7.6 μM; MMP-3> 50 μM; MMP-7 > 50 
μM; MMP-8 = 5.0 μM; MMP-9 > 50 μM; MMP-12 = 6.7 μM; MMP-13 = 

6.7 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 0.92 μM; MMP-3 = 
0.56 μM; MMP-7 > 50 μM; MMP-8 = 86 nM; MMP-
9 = 27.1 μM; MMP-12 = 18 nM; MMP-13 = 4.1 μM 

 
IC50: MMP-1 > 400 μM; MMP-2 = 135 nM; MMP-3 = 81 nM; MMP-7 

= 1.1 μM; MMP-8 = 42 nM; MMP-9 > 7 μM; MMP-13 = 1.8 nM; 
MMP-14 = 5 μM 

 
IC50: MMP-1 = 14 μM; MMP-2 = 529 nM; MMP-3 = 1 nM; MMP-9 = 2.42 

μM; MMP-14 = 20.1 μM 

 
KI: MMP-1 > 500 μM; MMP-9 = 6 μM 

 
IC50: MMP-1 > 1 μM; MMP-2 = 5 nM; MMP-3 = 56 nM; MMP-9 = 2.4 

nM; MMP-12 = 2.5 nM 

IC50: MMP-1 > 400 µM; MMP-2 = 135 nM; MMP-3 = 81 nM;
MMP-7 = 1.1 µM; MMP-8 = 42 nM; MMP-9 > 7 µM; MMP-13 = 1.8

nM; MMP-14 = 5 µM
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IC50: MMP-1 > 50 μM; MMP-2 = 4.4 μM; MMP-3 = 77 nM; MMP-7 > 50 
μM; MMP-8 = 245 nM; MMP-9 = 32.3 μM; MMP-12 = 85 nM; MMP-13 = 

6.6 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 9.3 μM; MMP-3 = 
0.24 μM; MMP-7 > 50 μM; MMP-8 = 64 nM; MMP-
9 > 50 μM; MMP-12 = 22 nM; MMP-13 = 20.6 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 16.5 μM; MMP-3 = 41.7 μM; MMP-
7 > 50 μM; MMP-8 = 3.8 μM; MMP-9 > 50 μM; MMP-12 = 1.2 μM; 

MMP-13 = 16.5 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 7.6 μM; MMP-3> 50 μM; MMP-7 > 50 
μM; MMP-8 = 5.0 μM; MMP-9 > 50 μM; MMP-12 = 6.7 μM; MMP-13 = 

6.7 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 0.92 μM; MMP-3 = 
0.56 μM; MMP-7 > 50 μM; MMP-8 = 86 nM; MMP-
9 = 27.1 μM; MMP-12 = 18 nM; MMP-13 = 4.1 μM 

 
IC50: MMP-1 > 400 μM; MMP-2 = 135 nM; MMP-3 = 81 nM; MMP-7 

= 1.1 μM; MMP-8 = 42 nM; MMP-9 > 7 μM; MMP-13 = 1.8 nM; 
MMP-14 = 5 μM 

 
IC50: MMP-1 = 14 μM; MMP-2 = 529 nM; MMP-3 = 1 nM; MMP-9 = 2.42 

μM; MMP-14 = 20.1 μM 

 
KI: MMP-1 > 500 μM; MMP-9 = 6 μM 

 
IC50: MMP-1 > 1 μM; MMP-2 = 5 nM; MMP-3 = 56 nM; MMP-9 = 2.4 

nM; MMP-12 = 2.5 nM 
IC50: MMP-1 = 14 µM; MMP-2 = 529 nM; MMP-3 = 1 nM; MMP-9 =

2.42 µM; MMP-14 = 20.1 µM
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IC50: MMP-1 > 50 μM; MMP-2 = 4.4 μM; MMP-3 = 77 nM; MMP-7 > 50 
μM; MMP-8 = 245 nM; MMP-9 = 32.3 μM; MMP-12 = 85 nM; MMP-13 = 

6.6 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 9.3 μM; MMP-3 = 
0.24 μM; MMP-7 > 50 μM; MMP-8 = 64 nM; MMP-
9 > 50 μM; MMP-12 = 22 nM; MMP-13 = 20.6 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 16.5 μM; MMP-3 = 41.7 μM; MMP-
7 > 50 μM; MMP-8 = 3.8 μM; MMP-9 > 50 μM; MMP-12 = 1.2 μM; 

MMP-13 = 16.5 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 7.6 μM; MMP-3> 50 μM; MMP-7 > 50 
μM; MMP-8 = 5.0 μM; MMP-9 > 50 μM; MMP-12 = 6.7 μM; MMP-13 = 

6.7 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 0.92 μM; MMP-3 = 
0.56 μM; MMP-7 > 50 μM; MMP-8 = 86 nM; MMP-
9 = 27.1 μM; MMP-12 = 18 nM; MMP-13 = 4.1 μM 

 
IC50: MMP-1 > 400 μM; MMP-2 = 135 nM; MMP-3 = 81 nM; MMP-7 

= 1.1 μM; MMP-8 = 42 nM; MMP-9 > 7 μM; MMP-13 = 1.8 nM; 
MMP-14 = 5 μM 

 
IC50: MMP-1 = 14 μM; MMP-2 = 529 nM; MMP-3 = 1 nM; MMP-9 = 2.42 

μM; MMP-14 = 20.1 μM 

 
KI: MMP-1 > 500 μM; MMP-9 = 6 μM 

 
IC50: MMP-1 > 1 μM; MMP-2 = 5 nM; MMP-3 = 56 nM; MMP-9 = 2.4 

nM; MMP-12 = 2.5 nM 

KI: MMP-1 > 500 µM; MMP-9 = 6 µM
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IC50: MMP-1 > 50 μM; MMP-2 = 4.4 μM; MMP-3 = 77 nM; MMP-7 > 50 
μM; MMP-8 = 245 nM; MMP-9 = 32.3 μM; MMP-12 = 85 nM; MMP-13 = 

6.6 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 9.3 μM; MMP-3 = 
0.24 μM; MMP-7 > 50 μM; MMP-8 = 64 nM; MMP-
9 > 50 μM; MMP-12 = 22 nM; MMP-13 = 20.6 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 16.5 μM; MMP-3 = 41.7 μM; MMP-
7 > 50 μM; MMP-8 = 3.8 μM; MMP-9 > 50 μM; MMP-12 = 1.2 μM; 

MMP-13 = 16.5 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 7.6 μM; MMP-3> 50 μM; MMP-7 > 50 
μM; MMP-8 = 5.0 μM; MMP-9 > 50 μM; MMP-12 = 6.7 μM; MMP-13 = 

6.7 μM 

 
IC50: MMP-1 > 50 μM; MMP-2 = 0.92 μM; MMP-3 = 
0.56 μM; MMP-7 > 50 μM; MMP-8 = 86 nM; MMP-
9 = 27.1 μM; MMP-12 = 18 nM; MMP-13 = 4.1 μM 

 
IC50: MMP-1 > 400 μM; MMP-2 = 135 nM; MMP-3 = 81 nM; MMP-7 

= 1.1 μM; MMP-8 = 42 nM; MMP-9 > 7 μM; MMP-13 = 1.8 nM; 
MMP-14 = 5 μM 

 
IC50: MMP-1 = 14 μM; MMP-2 = 529 nM; MMP-3 = 1 nM; MMP-9 = 2.42 

μM; MMP-14 = 20.1 μM 

 
KI: MMP-1 > 500 μM; MMP-9 = 6 μM 

 
IC50: MMP-1 > 1 μM; MMP-2 = 5 nM; MMP-3 = 56 nM; MMP-9 = 2.4 

nM; MMP-12 = 2.5 nM 
IC50: MMP-1 > 1 µM; MMP-2 = 5 nM; MMP-3 = 56 nM; MMP-9 =

2.4 nM; MMP-12 = 2.5 nMBiomolecules 2020, 10, 717 54 of 64 

 
IC50: MMP-1 = 30 nM; MMP-2 = 9.8 nM; MMP-3 = 1.7 μM; MMP-7 = 475 

nM; MMP-9 = 3 nM; MMP-14 = 17 μM 

 
IC50: MMP-1 > 100 μM; MMP-2 > 100 μM; MMP-3 > 

100 μM; MMP-7 > 100 μM; MMP-8 > 100 μM; 
MMP-9 > 100 μM; MMP-12 > 100 μM; MMP-13 > 

100 μM; MMP-14 > 100 μM 

 
IC50: MMP-1 > 10 μM; MMP-7 > 10 μM; MMP-9 > 10 μM; MMP-13 = 

12 nM; MMP-14 > 10 μM 

 
IC50: MMP-1 > 30 μM; MMP-2 > 30 μM; MMP-3 > 30 μM; MMP-7 > 30 
μM; MMP-8 > 100 μM; MMP-9 > 100 μM; MMP-12 > 100 μM; MMP-13 = 

0.67 nM; MMP-14 > 30 μM; MMP-17 > 30 μM 

 
IC50: MMP-1 > 10 μM; MMP-2 > 10 μM; MMP-3 > 

2.5 μM; MMP-7 > 10 μM; MMP-8 = 7.4 nM; MMP-9 
> 10 μM; MMP-12 > 10 μM; MMP-14 > 10 μM 

 
IC50: MMP-1 > 10 μM; MMP-2 = 5.3 μM; MMP-3 = 4 μM; MMP-7 > 

10 μM; MMP-8 = 720 nM; MMP-9 = 10 μM; MMP-10 = 160 nM; 
MMP-13 = 0.0039 nM; MMP-14 > 10 μM 

IC50: MMP-1 = 30 nM; MMP-2 = 9.8 nM; MMP-3 = 1.7 µM; MMP-7 =
475 nM; MMP-9 = 3 nM; MMP-14 = 17 µM
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IC50: MMP-1 = 30 nM; MMP-2 = 9.8 nM; MMP-3 = 1.7 μM; MMP-7 = 475 

nM; MMP-9 = 3 nM; MMP-14 = 17 μM 

 
IC50: MMP-1 > 100 μM; MMP-2 > 100 μM; MMP-3 > 

100 μM; MMP-7 > 100 μM; MMP-8 > 100 μM; 
MMP-9 > 100 μM; MMP-12 > 100 μM; MMP-13 > 

100 μM; MMP-14 > 100 μM 

 
IC50: MMP-1 > 10 μM; MMP-7 > 10 μM; MMP-9 > 10 μM; MMP-13 = 

12 nM; MMP-14 > 10 μM 

 
IC50: MMP-1 > 30 μM; MMP-2 > 30 μM; MMP-3 > 30 μM; MMP-7 > 30 
μM; MMP-8 > 100 μM; MMP-9 > 100 μM; MMP-12 > 100 μM; MMP-13 = 

0.67 nM; MMP-14 > 30 μM; MMP-17 > 30 μM 

 
IC50: MMP-1 > 10 μM; MMP-2 > 10 μM; MMP-3 > 

2.5 μM; MMP-7 > 10 μM; MMP-8 = 7.4 nM; MMP-9 
> 10 μM; MMP-12 > 10 μM; MMP-14 > 10 μM 

 
IC50: MMP-1 > 10 μM; MMP-2 = 5.3 μM; MMP-3 = 4 μM; MMP-7 > 

10 μM; MMP-8 = 720 nM; MMP-9 = 10 μM; MMP-10 = 160 nM; 
MMP-13 = 0.0039 nM; MMP-14 > 10 μM 

IC50: MMP-1 > 100 µM; MMP-2 > 100 µM; MMP-3 > 100 µM;
MMP-7 > 100 µM; MMP-8 > 100 µM; MMP-9 > 100 µM; MMP-12 >
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4.2.6. Tetracyclines-Based Inhibitors 

Tetracyclines are antibiotics that can chelate zinc and calcium ions and inhibit MMP activity 
[2,16,29]. Chemically modified tetracyclines (CMT) are preferred over conventional tetracyclines 
because they reach higher plasma levels for prolonged periods, consequently require less frequent 
administration, cause less gastrointestinal side effects, and have promising anti-proliferative and 
anti-metastatic activity [2,16,29]. The CMT binds to pro- or active MMPs, disrupt the native 
conformation of the protein, and leave the enzymes inactive [29]. In the search for new anticancer 
agents, the first series of CMT was obtained by removal of the dimethylamino group from the carbon-
4 position, resulting in a compound without antimicrobial activity but with anticollagenolytic 
activity, in vitro and in vivo [16]. Preclinical studies demonstrated that CMT can inhibit gelatinases, 
stromelysins, collagenases, and MT-MMPs, by downregulating the expression of gelatinases, 
reducing the production of pro-enzymes and inhibiting the activation of pro-gelatinases and pro-
collagenases [16,29]. 

Doxycycline (Figure 26a) is a semi-synthetic tetracycline that inhibits MMP-2, -9, -7, and -8 and 
is the only compound approved as an MMP inhibitor for the treatment of periodontitis [2,6]. The 
COL-3 (Figure 26b) showed specificity for MMP-2, -9, and -14, by decrease trypsinogen-2 and 
inducible nitric oxide (iNO) production, which are regulators of MMP activity [16]. Although COL-3 
is currently being evaluated in clinical phase II trials, it showed poor solubility and stability [16]. 

 
Figure 26. (a) Doxycycline; (b) COL-3. 

Table 13 shows the IC50 values of some tetracyclines-based inhibitors [6,15–19,29,35,37,54,55,71]. 

Table 13. IC50 values of tetracyclines-based inhibitors. 

 
Doxycycline 

IC50: MMP-1 > 400 μM; MMP-7 = 28 μM; MMP-3 = 30 μM; 
MMP-13 = 2 μM 

 
CMT-1 

IC50: MMP-8 = 30 μM; MMP-13 = 1 μM 
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Matastat (COL-3; CMT-3) 

IC50: MMP-1 = 34 μg. mL−1; MMP-8 = 48 μg. mL−1; MMP-13 = 
0.3 μg. mL−1 

 
Minocycline 

IC50: MMP-9 = 272 μM 

4.2.7. Mechanism-Based Inhibitors 

The mechanism-based inhibitors coordinate with catalytic zinc ion, in a monodentate mode, 
allowing the nucleophilic attack by a conserved glutamic residue on the active site and forming a 
covalent bond [2,17]. This attack causes a conformational change in the catalytic site environment [17] 
preventing dissociation of the inhibitor and decreasing the rate of catalytic turnover and the amount 
of inhibitor needed to saturate the enzyme [2]. 

In 2000, Mobashery et al. [72] were the first to report this novel type of MMPi that blocks 
gelatinases with a unique mechanistic mode [72]. The thiirane inhibitor showed a mechanism-based, 
slow-binding inhibition for MMP-2 and MMP-9 [72]. Bernardo et al. [73] also reported a slow-binding 
thiirane-containing inhibitor, (Figure 27), selective for MMP-2 and -9, where the sulfur group 
coordinates with the catalytic zinc ion, activates the thiirane group to interact with the active site 
glutamate, by nucleophilic attack causing a loss of activity [73]. These inhibitors are the first example 
of a suicide-inhibitor of MMPs [73]. 

 
Figure 27. Inhibitor developed by Bernardo el al. The sulfur group coordinates with the catalytic zinc 
ion and the activation of the thiirane group happened with interactions between the active site 
glutamate, by nucleophilic attack. 
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MMP-13 = 0.3 µg·mL−1
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IC50: MMP-9 = 272 µM

In 2000, Mobashery et al. [72] were the first to report this novel type of MMPi that blocks
gelatinases with a unique mechanistic mode [72]. The thiirane inhibitor showed a mechanism-based,
slow-binding inhibition for MMP-2 and MMP-9 [72]. Bernardo et al. [73] also reported a slow-binding
thiirane-containing inhibitor, (Figure 27), selective for MMP-2 and -9, where the sulfur group coordinates
with the catalytic zinc ion, activates the thiirane group to interact with the active site glutamate,
by nucleophilic attack causing a loss of activity [73]. These inhibitors are the first example of a
suicide-inhibitor of MMPs [73].
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Thiirane-based ND-322 is a small molecule selective to MMP-2/MT1-MMP [2]. This inhibitor
has been shown to reduce melanoma cell growth, migration, and invasion, and to delay metastatic
dissemination [2].

SB-3CT is a selective inhibitor of MMP-2 and -9 [2]. The inhibition mechanism is similar to a
“suicide inhibitor” in which a functional group is activated, leading to covalent modification of the
active site [2]. SB-3CT also shows slow-binding kinetics with MMP-2, -3, and -9, contributing to slow
dissociation of the MMP-inhibitor complex, but it is a reversible inhibitor which differentiates it from
the truly irreversible suicide inhibitors [2]. O SB-3CT has potential benefits in brain damage caused by
cerebral ischemia and has anti-cancer effects in T-cells lymphoma and prostate cancer models [2].

4.3. Catalytic Domain (Non-Zinc Binding) Inhibitors

The catalytic domain of MMPs contains other regions that can be exploited [17]. The first
3D-structure of the complex MMP-1 (catalytic domain)-synthetic inhibitor was reported in 1994 by
Glaxo researchers [35]. Thereafter, other complexes have been studied and it was found that the
S1’ pockets have different depths among MMPS and this difference has been utilized in developing
selective MMPis [28,35].

Stockman and Finel optimized two distinct series of MMP-3 inhibitors: PNU-141803 (amide,
Figure 28a) and PNU-142372 (urea, Figure 28b) [19]. The connection between MMP-3 and PNU-142372
shows that the aromatic ring from the inhibitor extends to the S3 pocket (hydrophobic) and the
thiadiazole sulfur group interacts with the catalytic zinc [19]. Moreover, the two nitrogen atoms
form hydrogen bonds with Ala164 and Glu202 residues [19]. The alkylation of nitrogen atom or its
replacement for carbon leads to the removal activity [19]. The replacement of a tyrosine for a serine
within the S3 pocket (present in MMP-1) leads to the removal of inhibitory activity and explains the
absence of activity against collagenases [19].
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Sanofi-Aventis developed a compound (Figure 29) for MMP-13 (IC50 = 6.6 µM), with very high
selectivity [6]. This compound binds deeply to the S1’ pocket and to a side pocket that has not been
identified for other MMPs [6]. The pyridyl moiety is towards to the entrance of the S1’ pocket, without
interacting with the catalytic Zn(II) ion and the oxygen atoms neither from the amide (peptidic) bonds
of the main chain (between Thr245 and Thr247) nor from hydroxyl group from the Thr247 side chain in
the S1’ pocket [6].
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Many natural compounds have been shown to possess selective inhibition [28]. Wang et al.
identified 19 potential MMPis from 4000 natural compounds isolated from medicinal plants [28].
The caffeates and flavonoids were found to be selective inhibitors against MMP-2 and -9, by occupying
the S1’ and S3 pockets [28].

The marine natural products are another pharmacological resource and include derivates from
algae, sponges, and cartilages [28]. Some examples are Neovastat, Dieckol, and Ageladine A and they
manifest anti-angiogenic, anti-proliferative, and anti-tumor effects [28].

Although the natural MMPis are more biocompatible and less toxic, they have disadvantages
such as the effective dosages are in micromolar scale, which is thousands of times higher than synthetic
inhibitors and are difficult to patent, making the pharmacological companies and investors reluctant to
sponsor large-scale clinical trials [28].

4.4. Allosteric and Exosite Inhibitors

The catalytic zinc ion is common in all MMPs, therefore, if interactions of the substrates with
this ion are minimized this would improve the inhibitor selectivity [2]. The hemopexin-like domain
can move relatively to the catalytic domain and allosterically manipulate enzymatic activity by
conformation deformation [28]. The allosteric drugs have a non-competitive inhibition mode [16,28],
they bind and lock the MMP active site, forcing it to take less favorable conformation for substrate
binding [2,16], avoiding off-target inhibition [28] and preventing the occurrence of side effects [28].
Exosite inhibitors are another alternative for selective MMPis since these inhibitors bind to alternative
sites of MMPs [16,28].

Remacle et al. reported NSC405020, a small molecule that binds selectively to the hemopexin-like
domain of MMP-14 [28]. This molecule inhibits the MMP-14 homodimerization and the interaction
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between the hemopexin-like domain and catalytic domain, preventing the type I collagen
degradation [28].

Dufour et al. developed a peptide targeting the MMP-9 hemopexin-like domain, which blocks
MMP-9 dimer formation and cell migration [28]. Scannevin et al. identified a highly selective
compound (JNJ0966), which binds to the MMP-9 pro-peptide domain, inhibiting its activation, but not
affecting the activity of MMP-1, -2, and -14 [28].

Xu et al. synthesized a peptide which inhibits the hydrolysis of type I and IV collagen by MMP-2,
through binding to its collagen binding domain [28].

4.5. Antibody-Based Inhibitors

Antibodies are selective and have high affinity to MMP [27]. Clinical trials utilizing antibodies have
provided evidence that selective MMP inhibitors do not induce MSS [27]. The therapeutic potential of
anti-MMP antibodies has yet to be realized [27]. The antibodies may also undergo proteolysis, may be
removed from circulation rapidly, and are costly [27].

Antibodies are large Y-sharped proteins which bind to an antigen via the fragment antigen-binding
(Fab variable region) [28]. Monoclonal antibodies are highly specific, and they have affinity to
MMPs [2,29]. The hemopexin domain can be a potential target for MMPs antibodies [2].

REGA-3G12 and REGA-2D9 are antibodies specific to MMP-9 [2,27,28] but not MMP-2 [28].
The inhibition mode of the REGA-3G12 involves the catalytic domain, the N-terminal region
Trp116-Lys214 [28], and not the catalytic zinc ion or the fibronectin region [2]. The AB0041 and
AB0046 are monoclonal anti-MMP-9 antibodies, which showed inhibition to tumor growth and
metastasis in a model of colorectal carcinoma [27].

Andecaliximab (GS-5745), the humanized version of AD0041 [27], is a highly selective antibody
and exerts allosteric control over tumor growth and metastasis in a colorectal carcinoma model (IC50

= 0.148 nM) [28]. This antibody is the only inhibitor that has undergone clinical trials [27,28] and it
inhibits the pro-MMP-9 activation and inhibits non-competitively the MMP-9 activity [27].

DX-2400 is an antibody isolated from phage and it targets MMP-14 and the MMP-14-pro-MMP-2
complex, decreasing MMP activity [28]. DX-2400 inhibits the metastasis in a breast cancer xenograft
mouse model [27]. However, the LAM-2/15 is the only selective inhibitor that inhibits MMP-14 catalytic
activity, but not the pro-MMP-2 activation or MMP-14 dimerization [28]. The 9E8 is another antibody
targeting MMP-14 which does not affect the catalytic activity of MMP-14 but inhibits the pro-MMP-2
activation [28].

Human scFv-Fc antibody E3 is bound to the catalytic domain of MMP-14 and inhibits type I
collagen binding [27]. Human antibody Fab libraries were synthetized and the peptide G sequence
(Phe-Ser-Ile-Ala-His-Glu) was incorporated resulting in Fab 1F8 antibody inhibitor, which inhibits the
catalytic domain of MMP-14 [27].

Antibodies can also inhibit a specific activation of an MMP [27]. For example, the mAb 9E8
inhibits the MMP-14 activation of proMMP-2 but not the catalytic activities of MMP-14 [27]. The
antibody LOOPAB also inhibits the MMP-14 activation of pro-MMP-2 but not collagenolysis activity of
MMP-14 [27]. There are antibodies that reduce the MMP expression [71].

5. Why Do MMP is Fail?

MMI inhibitor side effects are predominantly related to off-target metal chelation [74]. The majority
of MMPis used clinically are hydroxamic acid derivates with low selectivity [74] hence, they can
inhibit other proteinases [28]. The most frequent side effects observed in MMPis clinical trials is
the musculoskeletal syndrome (MSS) [17,28], which manifested as pain and immobility in the joints,
arthralgias, contractures in the hands, and an overall reduced quality of life [14,15,74], leading to MMPis
failing in the last phases of clinical trials [14]. Several studies indicate that the development of MSS is
related to dose and time, with slightly different kinetic for the different MMPis, and the development of
MSS is an indicator of successful MMPis [14,74]. The MMP inhibitors focused on chelating the catalytic
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zinc ion have poor selectivity and resulted in MSS and gastrointestinal disorders [27]. However, the
exact causes of MSS remains unknown [74], but can be related to a simultaneous inhibition of several
MMPs [6,17,27].

Analysis of the expression of a target protein shows its presence at high levels when a disease is
manifested or at low levels or absence in a healthy state [74]. However, these studies do not determine
if a particular protein is directly associated with the disease process or if it is involved in ancillary
event [74]. Studies of genetic manipulation in mouse as animal models determine the roles of MMPs in
various pathological processes [74]. However, there are caveats in the use of animal models [74]:

- The observed effects can be a consequence of the manipulated absence of MMP, being a
compensation mechanism;

- The mouse models are unable to replicate the complexity of any human disease. The mouse
models serve to recreate specific processes or sets of processes but not the physiological changes
that occur in humans.

6. Conclusions

Due to the side effects rising from the lack of selectivity and from the insufficient knowledge about
the role of each MMP in the different pathological processes, none of the designed synthetic MMP
inhibitors have yet passed the clinical trials and reached the market [6,27]. The poor performance of
MMP inhibitors in clinical trials has globally been attributed to [27]:

- Inhibition of other metalloenzymes;
- Lack of specificity within the MMP family;
- Poor pharmacokinetics;
- Dose-limiting side effects/toxicity;
- In vivo instability;
- Low oral availability/inability to assess inhibition efficacy.

In 1988, the first inhibitor was synthesized but after nearly 30 years, only one drug, Periostat®,
doxycycline hydrate, had obtained approval from the FDA for the treatment of periodontal
disease [6,16,17,27,28]. This inhibitor exhibited also therapeutic effects in treating aortic aneurysm,
multiple sclerosis, as well as Type II diabetes [28].
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