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Simple Summary: Cystic renal disease (CRD) is a group of diseases characterized by abnormal sacs,
or cysts, in the kidneys. CRD can be detected using certain imaging modalities (i.e., ultrasound).
Patients with CRD might be symptoms-free, while others can show symptoms long after cysts
development. Although these cysts represent structural changes, we hypothesized that they have an
underlying biochemical alteration. If so, this would open the floor for potential biomarker discovery,
which would aid in CRD diagnosis and, possibly, treatment. On that basis, this study focuses on
identifying biomarkers for CRD. To achieve that, we employed a metabolomics-based approach
to identify intermediate molecules inside the cells that are byproducts of biochemical reactions.
We used dry blood spots and serum samples of CRD patients and healthy controls to study the
differences in their metabolomic profile. Our results suggest that certain metabolites, including
uridine diphosphate, cystine-5-diphosphate, and morpholine, are potential biomarkers for CRD. The
affected biochemical pathways in CRD include aminoacyl-tRNA biosynthesis, purine, pyrimidine,
glutathione, TCA cycle, and some amino acid metabolism. These preliminary results could be the
starting point for possible diagnostic and therapeutic approaches for CRD in the future.

Abstract: Cystic renal disease (CRD) comprises a heterogeneous group of genetic and acquired
disorders. The cystic lesions are detected through imaging, either incidentally or after symptoms
develop, due to an underlying disease process. In this study, we aim to study the metabolomic profiles
of CRD patients for potential disease-specific biomarkers using unlabeled and labeled metabolomics
using low and high-resolution mass spectrometry (MS), respectively. Dried-blood spot (DBS) and
serum samples, collected from CRD patients and healthy controls, were analyzed using the unlabeled
and labeled method. The metabolomics profiles for both sets of samples and groups were collected,
and their data were processed using the lab’s standard protocol. The univariate analysis showed (FDR
p < 0.05 and fold change 2) was significant to show a group of potential biomarkers for CRD discovery,
including uridine diphosphate, cystine-5-diphosphate, and morpholine. Several pathways were
involved in CRD patients based on the metabolic profile, including aminoacyl-tRNA biosynthesis,
purine and pyrimidine, glutathione, TCA cycle, and some amino acid metabolism (alanine, aspartate
and glutamate, arginine and tryptophan), which have the most impact. In conclusion, early CRD
detection and treatment is possible using a metabolomics approach that targets alanine, aspartate,
and glutamate pathway metabolites.
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1. Introduction

A cyst is the most common kidney lesion, appearing in almost 40% of patients un-
dergoing renal imaging [1]. Cystic renal disease (CRD) refers to a heterogeneous group of
genetic and acquired disorders characterized by kidneys’ cystic lesions of varying prop-
erties. The cystic lesions could be unilateral or bilateral, focal or multifocal, benign or
malignant, or acquired or congenital. According to the Bosniak classification, the cystic
lesions diversity is mainly based on the cysts’ radiological appearance, which standardizes
the characterization and management of CRD. CRD’s diagnosis is mostly radiological
and sometimes requires biopsy for pathological confirmation. Ultrasonography can be
employed for cysts detection, which is safe and noninvasive. Other modalities include
contrast-enhanced computed tomography (CT); with the help of Bosniak classification,
cysts can be graded as I, II, IIF, III, or IV based on appearance and chance of malignancy.
The grading will also indicate the need for an additional follow-up and the course of
management [2].

Although radiology is now considered the gold standard of diagnosis by physicians,
there is an increasing demand for more developed high-technological modalities and a
shift to personalized medicine. Patient phenotypes and pathological states have opened
doors to applying metabolomics in drug discovery processes. They slowly alter modern
health care from clinical diagnosis and treatment, based on predictive and preventative
health monitoring symptoms, based on the patients’ personalized genomic and metabolic
information [3,4]. Metabolomics is a systemic method of identifying and quantifying the
complete set of metabolites in a specific sample to achieve a global view of the system’s
state [5]. The metabolites measured are typically the intermediate products of various cel-
lular metabolic pathways, profoundly influenced by environmental factors and genomics.
Numerous diseases have variable clinical presentations even when they share an under-
lying etiology. Understanding the complex molecular pathogenesis through molecular
profiling could be a critical factor in a standardized disease classification approach. Al-
though genomics helps predict what might happen in the system, it has been demonstrated
that metabolomics reveals what is currently happening inside the system [6].

Autosomal dominant polycystic kidney disease (ADPKD), occurring due to PKD1
and PKD2 mutations, have been identified more than three decades ago [7]. However, the
exact mechanism underlying ADPKD remains unknown. Significant differences in lipid
metabolism expression, between ADPKD patients and healthy controls, were detected in
a metabolomics study [7]. Further lipidomics study identified significantly lower diacyl-
glycerol, a byproduct of triglyceride metabolism, levels in mutant kidneys, and cell culture
studies demonstrated that Pkd1 deficient renal epithelial cells have a defect in palmitate
fatty acid oxidation [8].

Metabolomics analysis of CRD would help us better understand the disease’s biologi-
cal mechanism and help find diagnostic markers and therapeutic targets. A practical and
time-efficient approach is using the Chemical Isotope Labeling (CIL) approach on different
sample types, such as urine or blood derivatives, which was well studied previously [9,10].
To the best of our knowledge, no previous studies have assessed the relation between CRDs
collectively and metabolomics changes. This study aims at a metabolomics approach to
identify specific metabolites that could potentially be used as biomarkers to detect and
monitor CRD. This in-depth analysis and quantification, of the metabolites collected from
dry blood spot (DBS) and serum samples using mass spectrometry, could offer valuable
insight into the cellular pathways affected in cystic renal disease.
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2. Material and Methods
2.1. Elements and Chemicals

The reagents and standard materials used in this study were bought from Sigma
Chemicals in St. Louis, Missouri, with a minimum purity of 98%. Pterin (also known as 2-
Amino-4-hydroxypteridine) and L-Monapterin were purchased from Schricks Laboratories
in Postface, Switzerland. The Isotope-labeled internal standards were purchased from
Cambridge Isotope, Inc in Woburn, Massachusetts, and ChromSystems in Grafelfing,
Germany. All organic solvents and water utilized in sample and mobile phase preparations
were LC-MS grade and secured from Fisher Scientific in Fair Lawn, New Jersey.

The LC-MS grade reagents, including water, acetonitrile (ACN), methanol, and
formic acid, were purchased from Fisher Scientific (Ottawa, ON, Canada). Isotope-
labeled metabolites were purchased from Sigma Chemicals (St. Louis, MO, USA), Cam-
bridge Isotope, Inc. (Woburn, MA, USA), and Toronto Research Chemicals Inc. (Toronto,
ON, Canada), and 13C-dansyl chloride was available from the University of Alberta
(http://mcid.chem.ualberta.ca, (accessed on 13 December 2020)).

2.2. Study Design, Patient Recruitment, and Sample Collection

Whole blood samples were collected from 7 patients with clinically confirmed CRD
during their routine clinical visit. The patients were fasting for at least 12 h. A 100 µL
of the whole blood was spotted on Guthrie cards (Perkin Elmer 226) upon arrival at the
lab, and the cards were stored at −20 ◦C. The rest of the blood sample was centrifuged
to obtain serum fluid, and the aliquots were stored at −80 ◦C for metabolomics analysis.
In summary, for DBS analysis, DBS (n = 7) were collected from clinically confirmed CRD
patients and (n = 7) healthy adult volunteers, whereas for serum analysis (n = 7) were
collected from clinically confirmed CRD patients and (n = 33) healthy control (Ctrl) serum
samples were collected different form studies. The final protocol was revised and approved
by the Research Ethics committee of King Faisal Specialist Hospital and Research Center
(KFSHRC) Project # 2160027. Patients were chosen at random by the recruiting clinician,
and whole blood samples were collected. Any patient unable or unwilling to provide
informed consent was excluded from this study.

2.3. Label-Free Metabolomics Profiling

Metabolomics analysis on LC-MSMS consisting of a panel of 220 clinically relevant
metabolites (amino acids, sugars, organic acids, bile acids, acylcarnitines, neurotransmitters,
polyamines, and steroids) was completed as explained previously [11].

Patients, healthy Ctrl, and pooled blood DBS samples were punched (5 discs, 1/8 inch
each) into a 96 well plate (in duplicates). The metabolites were extracted by adding 150 µL
extraction solvent (40% methanol, 40% acetonitrile, 20% H2O) to each well, as described
previously (Figure 1). The supernatant was transferred to another plate and evaporated.
The extract was then reconstituted by adding 100 µL of the initial condition mobile phase
and then stored for LC-MS/MS analysis at 4 ◦C.

The extracted metabolites were divided via reversed-phase chromatography. Using
Acquity UPLC C18, 1.7 µm, 2.1 × 100 mm2 column, a negative and positive ionization mode
analysis was performed. The mobile phase consisted of (A) 0.1% acetic acid and (B) 50%
acetonitrile (ACN) and 50% Methanol (MeOH) for the positive mode, whereas in negative
mode, the mobile phase was composed of (A) 0.1% tributylamine (TBA), 0.03% acetic acid,
10% MeOH and (B) 100% ACN, with a run time of 15 min at a flow rate of 0.3 mL/min.

LC-MSMS analysis was performed as detailed elsewhere, [11] where the source and
desolvation temperatures were set at 150 ◦C and 500 ◦C, respectively. The desolvation gas
was set at 1000 L/h in both the polarity modes. The cone voltage fluctuated from 18 to
170 V, and the collision energy ranged from 7 to 65 eV.

LC-MSMS data was processed using Target Lynx WATERS-S4RWRX6, MassLynx V4. 1.
Ink (Waters Corporation, Milford, MA, USA). The software achieved data analysis and
peak integration. Our main analytical indication was the area measured under the peak.

http://mcid.chem.ualberta.ca
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2.4. CIL LC-MS Metabolomics Profiling on Serum for CRD Patients

The Chemical isotope labeling liquid chromatography-mass spectrometry (CIL LC-
MS) approach labels phenol amine submetabolome by 12C dansyl-chloride (DnsCl). In the
other hand, a pooled sample was labeled by 13C DnsCl as a reference for the 12C-labeled
samples as described earlier (Figure 1) [12]. The quality control (QC) samples were injected
once every 15 runs, where Peak pairs with ratio values having > ±25% RSD in the QC
samples were filtered out. The metabolic extracts were analyzed using a reversed-phase
chromatography, C18 column (2.1 mm × 10 cm, 1.8 µm particle size, 95 Å pore size (Agilent
Inc., Santa Clara, CA, USA) on Thermo Fisher Scientific Dionex Ultimate 3000 UHPLC
System (Sunnyvale, CA, USA) linked to a Bruker Maxis II quadrupole, time-of-flight
(Q-TOF) mass spectrometer (Bruker, Billerica, UK). The mobile phase A constituted of
0.1% (v/v) formic acid in 5% (v/v) ACN, while solvent B was 0.1% (v/v) formic acid
in acetonitrile.

The CIL LC-MS serum metabolomics profiling was processed by Bruker Daltonics
Data Analysis 4.3 Software. Peak pairs were extracted from CSV files by IsoMS, removing
the unwanted pairs. Data were aligned based on the peak’s accurate mass and retention
time, and zero-fill software was used to fill up the missing values in the aligned file [13,14].
The significantly differentially expressed metabolites were identified by performing a
univariate analysis (volcano plot), where we used a criterion of the fold change of greater
than 2. PLS-DA plots were performed using Iso MS Pro. (NovaMT Inc., Edmonton, AB,
Canada). The metabolites were positively identified by searching against DnsID Library
(www.mycompoundid.org, (accessed on 13 December 2020)) using retention time and
accurate mass [14]. Putative identification was performed by searching accurate mass
against the MyCompoundID library (www.mycompoundid.org, (accessed on 13 December
2020) [15].

www.mycompoundid.org
www.mycompoundid.org
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2.5. Statistical Analysis

The raw data from the metabolomics experiments were statistically analyzed using
MetaboAnalyst software version 4.0 (McGill University, Montreal, QC, Canada) [16]. Ana-
lytes with missing data points for more than 80% were filtered out. In contrast, some rows
with missing values were replaced with small values (half of the minimum positive values
in the original data) assumed to be above the detection limit.

The data were normalized to the equivalent internal standard’s area under the peak
and the total sample median for normal distribution evaluation. The samples’ differences
were adjusted by data log transformation. Pareto scaling approaches to ensure a compara-
tive review for individual features. The significance of metabolomics data was evaluated
at an FDR-corrected p-value < 0.05, where the values were reported as mean ± SEM. The
chemometric analysis used orthogonal partial least-squares projection to latent structure
discriminant analysis (OPLS-DA) and supervised multiple regression analysis to identify
the discrimination between different datasets [17]. The potential biomarkers and features
of the study groups were used for pathway analysis. The Receiver Operating Characteristic
(ROC) curves were constructed using the PLS-DA method in the MetaboAnalyst software
version 4.0 for global analysis.

3. Results
3.1. Demographics, Clinical and Molecular Features in CRD Patients

The clinical and laboratory characteristics of the study cohorts are represented in
Table 1. The current study included DBS samples collected from CRD patients (n = 7) and
healthy controls (Ctrl) (n = 7). Another serum sample was collected from the same CRD
patients (n = 7) and a bigger group of healthy controls (n = 33). As shown in Table 1, the
patients’ ages ranged between 8–78 years, with a mean of 40.4 ± 24.8 years (SD). Each
patient has different CRD phenotypes; however, all of them showed evidence of renal cysts.
The patients’ eGFR ranges between 9–92 mL/min, with only one (CRD-7) with a normal
eGFR and two patients (CRD-2 and 3) with an eGFR falling in the kidney failure range.
The seven patients showed different comorbidities, which might be related to the primary
renal pathology (e.g., ADPKD and hypertension in CRD-3). Noteworthy, almost half of
CRD patients have hypertension.

Table 1. Summary of relevant clinical characteristics of patients in CRD group CRD: Cystic Renal Disease; CKD: Chronic
Kidney Disease; DM: diabetes mellitus; eGFR: estimated glomerular filtration rate; ESRD: End-Stage Renal Disease; HCV:
Hepatitis C Virus; HTN: Hypertension.

Patient Age (Yrs) CRD Phenotype/Renal Disease Other Comorbidities eGFR (mL/min)

CRD-1 8 Renal hypodysplasia/
Facial dysmorphism N/A 46

CRD-2 20 Autosomal recessive polycystic
kidney disease

ERSD on HD, autoimmune
thrombocytopenia, congenital

hepatic fibrosis
10

CRD-3 45
Autosomal dominant polycystic

kidney disease/Failed kidney
transplant

DM, HTN, dyslipidemia,
chronic HCV 9

CRD-4 22
Cystic hypokalemic

nephropathy/Apparent
Mineralocorticoid excess

Congenital adrenal hyperplasia 74

CRD-5 78 Bilateral cortical simple
cysts/Diabetic kidney disease DM, HTN, HNF1B mutation 46

CRD-6 51 Bilateral cortical simple
cysts/CKD Valvular heart disease 39

CRD-7 59
Bilateral cortical simple renal

cysts/Focal segmental
glomerulosclerosis, CKD

DM, HTN, HNF-B mutation,
proteinuria 92
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3.2. Metabolomics Pattern in DBS of CRD Patients

The raw data of the average replicates were normalized, transformed, and scaled by a
median, log, and Pareto, respectively, to ensure that all visualized data are under Gaussian
distribution. Figure S1 shows the normalization of metabolites in CRD versus Ctrl groups in
DBS to remove systemic variations. The study comorbidities’ effects were evaluated using
the multi-binary analyses between the CRD sub-groups, i.e., CRD+HTN vs. CRD-HTN,
and we could not find any significant metabolic associated with these conditions.

Figure 2A represents dysregulated detected features. Among them, 17 metabolites
were up-regulated, and 15 were down-regulated based on all the detected features that
were differentially expressed. The cut-off values for the p-value and fold change were 0.05
and 2, respectively. In Figure 2B, Orthogonal partial least squares discriminant analysis
(OPLS-DA) demonstrates the variability between CRD and Control groups. The analysis
was performed in duplicates for both study groups. The score plot depicts the difference
between both groups evident by the apparent separation, with a calculated R2 = 0.998 and
Q2 = 0.726. The group separation represents the variability in metabolomics expression
level between groups, which might be explained by the presence and absence of renal cysts
in CRD and Control groups.

Based on OPLS-DA data, a Selected Frequency % score was generated to identify indi-
vidual metabolites’ contribution levels. Possibly, this can pave the ground for biomarker
discovery for CRD patients. The selected frequency plot (Figure 2C) shows pyrimidines,
such as uridine diphosphate (UDP), cytidine diphosphate (CDP), and guanine monophos-
phate (GMP) to be up-regulated in CRD patients in comparison to the Control group. In
pathway analysis (Figure 2D), amino acids (alanine, aspartate, and glutamate), purine and
pyrimidine metabolism, glutathione metabolism, and TCA cycle pathways were signif-
icantly altered. These changes are represented by the circles (pathway impact) and size
(statistical significance, p-value) on the figure.

The heat map (Figure S2) represents the relative concentration of metabolites in
CRD compared to Control groups, expressed in different red and green colors intensities,
respectively. Tables S1 and S2 summarize statistically significant pathways and metabolites
between CRD and Ctrl groups.

3.3. Metabolomics Pattern in Serum of CRD Patients

Similarly, univariate analyses showed that differentially expressed metabolites were
visualized on the volcano plot (Figure 3A). One hundred six metabolites were up-regulated
and 70 downregulated in CRD when compared to the Control group. Unfortunately,
among the 7 serum samples, one sample (CRD7) was unavailable for analysis due to
technical issues related to the pre-acquiring sample collection and processing. The cut-off
p-value has a corresponding q-value of less than 0.05 and a fold change cut-off value
of 2. Figure 3B, which represents OPLS-DA, shows the discrimination between both
groups, with an estimated R2 of 0.994 and Q2 of 0.948, which indicate the differences in
metabolites expression among CRD and Control groups. The Selected frequency score plot
in Figure 3C demonstrates that morpholine, leucyl glutamine, and isoleucyl aspartate were
up-regulated in CRD compared to the Control group. Lastly, pathway analysis (Figure 3D)
depicts the most significantly affected pathways, including tRNA biosynthesis and amino
acid metabolism pathways. It is worth mentioning that the tRNA biosynthesis pathway
was among the commonly impacted pathways in metabolomics profiling of DBS and serum
(Figures 1D and 2D). The heat map in Figures S2 and S3 shows altered metabolites in DBS
and serum, respectively, among the CRD versus Control groups, whereas Tables S3 and S4
summarize statistically significant changes in pathways and metabolites. The heat map in
Figures S2 and S3 shows altered metabolites in DBS and serum, respectively, among the
CRD versus Control groups, whereas Tables S3 and S4 summarize statistically significant
changes in pathways and metabolites.
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group. (D) Pathway analysis shows significantly altered pathways of Aminoacyl-tRNA biosynthesis and some amino acid
metabolism pathways. (color-coded and the circle’s size reflect the combination between the p-value and the pathway
impact, respectively).

3.4. Biomarker Evaluation

Receiver operating characteristics (ROC) exploring curves were generated from the
binary comparisons between CRD patients and Control groups. Multivariate exploratory
ROC analysis was generated using PLS-DA as a classification and feature ranking method.
The combination of the top-ranked metabolites in ROC curves shows AUCs ranging from
0.995–0.99 (Figure 4A) (Table S5). The significant features of the expressed metabolites
in the CRD patients and Control groups are represented in the selected frequency plots
(Figure 4B). Ornithine (Figure 4C) and 2,3-Pyridinedicarboxyic acid (Figure 4D) were
down-regulated in CRD patients compared to the Control group.
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Similarly, multivariate exploratory ROC analysis in serum showed AUCs ranging
from 0.995–1 (Figure 5A) (Table S6). The significant features of the positively identified
metabolites are represented in a selected frequency plot (Figure 5B): 2-Amino-4-chloro-4-
pentenoic acid (Figure 5C) and 2-[(2-Aminoethylcarbamoyl) methyl]-2-hydroxybutanedioic
acid (Figure 5D) to be up-regulated in the CRD patients when compared to the Control
group. Using accurate mass and retention time matches to metabolite entries in the MyCom-
poundID standard library, 2-Amino-4-chloro-4-pentenoic acid was identified, including
most of the KEGG library compounds. The KEGG number for this compound is C04075.



Biology 2021, 10, 770 10 of 15

Similarly, we identified 2-[(2-Aminoethylcarbamoyl) methyl]-2-hydroxybutanedioic acid
using mass and retention time matches, and the KEGG number is C21559.
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4. Discussion

This study focused on identifying CRD specific metabolomic pathways that could be
utilized in disease detection and follow-up. Diverse panels of metabolites were used to
cover multiple cellular pathways in both DBS and serum, such as glycolysis, tricyclic acid,
and pentose phosphate pathways.



Biology 2021, 10, 770 11 of 15

All cystic renal diseases share the same central pathology of a cyst, a fluid-filled
sac [18]. However, many other factors determine the morbidity and mortality of each
CRD, including, but not limited to, age, sex, family history of renal malignancy, genotype,
and presence of other comorbidities. For instance, simple cysts appear on ultrasound as a
solitary anechoic mass and concern malignant transformation if they grow in size, bleeds,
or get infected [19]. On the other hand, ADPKD is usually clinically apparent due to the
significant increase in both kidneys, which can be associated with hypertension features,
and rarely, intra-abdominal bleeding [12].

One potential and promising technique to study disease for diagnostic and therapeutic
purposes is metabolomics [4]. Metabolomics is an advanced science field that measures
small molecules’ overall expression (<1500 Da). Similarly, genome, transcriptome, and
proteome focus on other bio-substrate synthesis and metabolism. The study of metabolites
can aid in disease detection and, theoretically, treatment. The dysregulation of specific
metabolites can signal an altered metabolic pathway, which might have great potential as a
therapeutic target. Metabolomics application in real life has been extensively studied for
biomarker detection, and early diagnosis, of multiple diseases [5,20,21].

This study aims to introduce potential metabolic biomarkers for CRD detection and
prognosis, which is the most common inherited kidney disease and accounts for 4.5% of all
end-stage renal disease cases [5]. Many studies on renal diseases have used a metabolomics
approach to understand disease pathogenesis [20,22–25]. Among different studies that
looked into kidney diseases and metabolomics, few have focused on PRD in rats, [26,27]
mice [28], and humans [29,30].

A metabolomics study identified a pathogenic metabolic pathway using ADPKD as
a therapeutic target [31]. However, the glucose metabolism pathway results in enhanced
glycolysis in Pkd1 defective cells. There is no balance between proliferation and apoptosis
in ADPKD tissues, and glucose deprivation restored the proliferation index by lowering
the proliferation and increasing apoptotic rates in Pkd1 mutant cells. The increased ATP
content in mutated cells was attributed to aerobic glycolysis, and most enzymes involved in
glycolysis were up-regulated, while enzymes involved in gluconeogenesis were downregu-
lated [31]. In our study, nucleotide phosphate molecules (UDP, CDP, GMP), certain amino
acids, and morpholine were found to be up-regulated in CRD patients. This metabolite
panel does not contradict the previous study’s findings but suggests that other pathways
might be affected. It’s noteworthy that our study’s findings are based on patients with dif-
ferent CRD phenotypes rather than ADPKD alone, which might also explain the difference
in the pathway and metabolites analysis.

Metabolomics profiling in serum identified an alteration in the aminoacyl-tRNA
biosynthesis in common. The metabolomics analysis has also detected an alteration in the
amino acids’ metabolic pathways: alanine, aspartate, and glutamate. The CIL metabolomics
analysis has further identified the downregulation of 2-Amino-3-carboxymuconate and
Glutamine and Morpholine’s upregulation in CRD patients. Comparing two datasets is
difficult because the platforms cover different metabolites expressed differently in different
sample types. However, Aminoacyl-tRNAs are essential substrates for protein translation
attached to an amino acid by an aminoacyl-tRNA synthetase. Aminoacyl-tRNAs are
crucial substrates for protein translation that bind to an amino acid by an aminoacyl-tRNA
synthetase. The amino acid identity inserted into the protein molecule is determined by
the mRNA codon paired with that specific tRNA molecule [11]. The amino acid identity,
inserted into the protein molecule, is determined by the mRNA codon paired with that
particular tRNA molecule [32]. Amino acids have essential roles in metabolic pathways,
as substrates and regulators, and have been previously investigated [33]. Our pathway
analysis identified significant differences between the CRD and the Control groups in the
biosynthesis of alanine, aspartate, and glutamate, 2-Amino-3-carboxymuconate glutamine,
and morpholine.

Although cysts are structural pathologies, they have underlying pathophysiology,
expected to develop other cells’ alterations. For example, PKD was widely studied before
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using metabolomics. Abbiss et al. (2019) have summarized the known connected metabolic
dysregulations in PKD to include allantoin, 2-hydroxyglutarate, 2-oxoglutaric acid, aconitic
acid, ADMA, carnitine, citrate, creatinine, hippuric acid, malic acid, myo-inositol, trimethy-
lamine oxide, uric acid, 3-indoxyl sulfate, 3-methylhistidine, acetylcarnitine, citrulline,
fumaric acid, glutamic acid, glutamine, glycine, hypoxanthine, N, N-dimethylglycine, pan-
tothenic acid, pipecolate, and trigonelline [34]. This spectrum of metabolic dysregulations
shows the wide variety of metabolites impacted in one cystic disease, PKD. Similarly, in
this study, a group of amino acids was somehow linked to cyst development, as reported
recently in nonhuman-based studies [26,27,30,35].

Elevated levels of amino acids (alanine, aspartate, and glutamate) have been found
in patients with type 2 diabetes [36,37]. In contrast, leucine has a positive association
with clear cell renal cell carcinoma [38]. There are significant biochemical similarities
between CRD and malignant processes, both associated with aberrant cell proliferation,
which justifies using antiproliferative drugs to treat certain cystic kidney diseases [39].
Previous metabolomic reports have detected a decreased arginosuccinate synthase activity
in the proximal tubules of ADPKD compared to renal cell cancer patients [35]. Renal
cell carcinoma and PKD exhibit cyclin-dependent kinase inhibitors (CKIs) abnormalities
are at the core of their pathology. CKIs, such as p21, have a significant role in activating
apoptosis in dysfunctional cells. One study specifically examined p21, in transgenic rat
models with ADPKD, and found it decreased to levels similar to malignant cells [40].
Some metabolic pathways between CRD (ARPKD, specifically) and cancer were also
suggested by Hwang et al. [30]. The above should not come as a surprise, knowing that
the antiproliferative mTOR inhibitors have long been considered a potential therapeutic
intervention [41].

Morpholine is a building block in preparing antibiotics like linezolid and the anticancer
agent gefitinib (Iressa). Morpholine, also called acu-dioxomorpholine, is positively linked
to P-glycoprotein inhibitors in multi-drug resistant cancers [42]. Another study identified
N-[2-hydroxy-1-(4-morpholinylmethyl)-2-phenylethyl]-decanamide monohydrochloride
(DL-PDMP) to inhibit the proliferation of aneuploid colorectal cancer cells selectively [43].
It appears that there is no clear link between the upregulation of morpholine and CRD
pathology in previous literature. Morpholine is also an industrial chemical with potential
toxicity to the kidney and liver and may accumulate when renal function is impaired, as in
several of our patients with CRD. We used accurate mass and retention time matches to
identify morpholine in the MyCompoundID library (HMDB0031581 and KEGG C14452).
Morpholine is a component of edible coatings for fruit and vegetables and its usage as a
water additive. Using our sensitive CIL LC-MS method, it is not surprising to detect this
compound in blood.

This study has some limitations, where the sample size is small and heterogeneous in
etiology and the degree of renal impairment. For instance, based on this cohort, it will be
quite difficult to correlate the eGFR effect on the unique metabolic expression for the CRD.
Despite these limitations, both metabolomics platforms, and the two sample types, have
shown clusters of differentially regulated metabolites for CRD compared to the healthy
group. Based on the application and clinical validation study, the DBS is an ideal sample
type that needs to be further evaluated in a prototype model. The implications are that
the cysts are not just a metabolically neutral imaging phenomenon but are associated with
distinct metabolomic alterations. The exact relationship between these alterations and
the process of cystogenesis remains unclear. Potential confounders, which might have
contributed to our findings, need to be considered in future work, as reported recently
for more reliable markers. In terms of methodology, both metabolomics approaches are
targeted to the limited number of metabolites.

Moreover, since this is the first report showing the holistic metabolomics picture
in CRD’s, linking it to other previously reported findings has not been possible. The
currently available studies mainly focus on ADPKD, which is unrepresentative in our
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cohort (n = 1). These factors have to be considered in a future follow-up study for better
CRD biomarker identification.

5. Conclusions

In conclusion, cysts can affect kidneys, which results in CRD, a common renal pathol-
ogy. CRD encompasses a broad spectrum of renal diseases, which are usually diagnosed
by imaging, mainly ultrasound. This study used metabolomics approaches, in DBS and
serum, to look for possible biomarkers to aid in CRD diagnosis. In summary, we found
that aminoacyl-tRNA biosynthesis, branched amino acids, and tryptophan metabolism are
among the positively impacted pathways in the CRD group. In addition, nucleic acids,
including UDP, CDP, and GMP, were up-regulated in the CRD group in DBS metabolomics
analysis. Our findings suggest a promising group of biomarkers for CRD diagnosis, but
further studies are needed to confirm these biomarkers. They test their ability to serve as a
diagnostic tool for CRD.
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.3390/biology10080770/s1, Figure S1: Normalization of data in patients with the cystic renal disease
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Figure S2: Heat map in DBS shows altered metabolites in patients with cystic renal disease and
controls. The heat maps were created by entities Hierarchical clustering for the normalized data. The
similarity was based on Pearson, Figure S3: Heat map in serum through CIL targeted analysis shows
altered metabolites in patients with cystic renal disease and controls. The heat maps were created
by group Hierarchical clustering for the averaged normalized data where the similarity was based
on Euclidean. Table S1: Targeted Statistically significant pathways in CRD patients in comparison
with control., Table S2: Significantly changed metabolites in CRD and control patients. (Targeted
approach) Fold change > 2. Table S3: Untargeted Statistically significant pathways in CRD patients
in comparison with control. Table S4: Significantly changed metabolites in CRD and control patients.
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serum of CRD patients.
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