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Abstract: We demonstrate a side-polished fiber-optic ultrasound sensor (SPFS) with a broad frequency
bandwidth (dc–46 MHz at 6-dB reduction) and a wide amplitude detection range from several kPa
to 4.8 MPa. It also exhibits a high acoustic sensitivity of 426 mV/MPa with a signal-to-noise ratio
of 35 dB and a noise-equivalent pressure of 6.6 kPa (over 1–50 MHz bandwidth) measured at
7-MHz frequency. The SPFS does not require multi-layer-coated structures that are used in other
high-sensitivity optical detectors. Without any coating, this uses a microscale-roughened structure for
evanescent-field interaction with an external medium acoustically modulated. Such unique structure
allows significantly high sensitivity despite having a small detection area of only 0.016 mm2 as a
narrow line sensor with a width of 8 µm. The SPFS performance is characterized in terms of acoustic
frequency, amplitude responses, and sensitivities that are compared with those of a 1-mm diameter
piezoelectric hydrophone used as a reference.

Keywords: ultrasound sensor; fiber-optic sensor; optical ultrasound detector; side-polished fiber;
high-frequency ultrasound

1. Introduction

Optical ultrasound sensors have been actively studied to achieve high sensitivity and broad
acoustic frequency bandwidth. It has been demonstrated that a variety of interferometric sensors
have such characteristics. For example, polymer microring resonators [1–4], Fabry-Perot etalons [5–7],
and Mach-Zehnder structures [8,9]. Among them, the recent optical ring resonators exhibited a
low noise equivalent pressure of 105 Pa over 350-MHz bandwidth [2]. The Fabry-Perot sensors
have particular advantages in terms of fabrication flexibility. Their multi-layer structures can be
produced on a glass substrate [5,10,11], as well as on a tiny microscale tip of optical fibers to realize
miniature ultrasound devices [12]. Furthermore, these structures have been utilized for all-optical
transducers with not just a single element [12,13] but also with an optically addressable multi-channel
configuration [14]. Despite these advantages, such polymer microrings and multilayer-coated
Fabry-Perot interferometers are not mechanically robust when exposed to high-amplitude acoustic
pressure of more than a few MPa. Moreover, the fragile coatings are not suitable for detecting acoustic
cavitation that can cause physical damage.

For optical measurements of high-amplitude acoustic pressure, fiber-optic sensors with a flat
cleaved edge have been widely utilized without any coatings have been used instead [15–19]. These rely
on a single optical reflection at a sensor interface in contact with water. These robust sensors allowed
to characterize focused ultrasound amplitudes for tissue therapy up to tens of MPa [18–21] with a
sensitivity of 1–10 mV/MPa [22].
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A side-polished fiber (SPF) has provided a useful platform for a variety of optical sensors based
on surface plasmon resonance (SPR) [23–25], Bragg grating [26,27] and polymer waveguide [28].
A mechanical polishing technique was used to partially remove a glass cladding region, only leaving
an extremely thin cladding layer (<1 µm) above the fiber core. For example, a silver-coated SPF has
been developed as an SPR-based biosensor with a high sensitivity of 4365.5 nm/refractive index unit
(RIU) providing an optimal detection range of 1.38–1.40 RIU [24].

We demonstrate a side-polished fiber sensor (SPFS) for ultrasound detection with a frequency
bandwidth up to 46 MHz, an amplitude dynamic range of several kPa–4.8 MPa, an acoustic sensitivity
of 426 mV/MPa at 7 MHz, and a noise-equivalent pressure (NEP) of 6.6 kPa (over 1–50 MHz
bandwidth) obtained at 7 MHz. Our SPFS has a particular optical architecture with the upper
cladding region above the core entirely removed. Its partially polished core with microscale-roughened
surface is exposed directly to an external medium. There is no additional coating on the polished
region, making the structure mechanically robust and reliable against high-pressure amplitudes
of several MPa. The SPF works as a narrow line form (8 µm) of an acoustic sensor based on
evanescent-field interaction along the polished fiber region, enabling significantly higher sensitivity
than other non-coated optical sensors.

2. Materials and Methods

A single-mode optical fiber (SMF28; Corning, USA) was mounted on a longitudinal groove
(V-shaped) formed in a quartz block and then fixed using a UV-curable epoxy. Here, the groove
was slightly bent with 250-mm radius of curvature, resulting in a small bent angle of α (= 0.114◦;
configuration described in Section 3). The bent polished fiber could lead to an effective optical
interaction region of a few mm in length [29]. The fiber was polished with alumina powders (particle
size: 4 µm) for a hard grinding process and then with cerium oxide powders (particle size: 2.5 µm)
for softening the surface [29]. These steps removed the top cladding entirely and the core partially,
producing microscale roughness on the polished core. We prepared two sensors (SPF1 and SPF2) with
different roughness as shown in Figure 1a,b. The core thickness after polish was calculated as 4 and
3.8 µm, respectively. The same hard grinding condition in terms of strength and process time was used
for both sensors, but SPF2 was smoothened further by increasing the softening step period. In SPF1,
the lateral dimension of rough particles was in the order of tens of µm, while SPF2 had a relatively
smooth surface with several-µm particles. We confirmed high optical losses through scattering at the
roughened interface. When the sensors were contacted with water, input and output power ratios
through SPF1 and SPF2 (10 log Pin/Pout) were 31 and 22.6 dB, respectively.
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The SPFS was operated by using a continuous-wave (CW) probe laser beam (1310-nm wavelength;
Thorlabs, USA) as an input, as shown in Figure 2. The output optical signal was detected by a
broadband photoreceiver (125-MHz bandwidth; Newport, USA). Two types of acoustic sources were
used to characterize the SPFS, shown by two inset boxes in Figure 2. As an acoustic input for
broadband characterization, we used thin-film photoacoustic transmitters. Both carbon nanotube
(CNT)-polydimethylsiloxane (PDMS) composite with > 30 µm thickness and Cr coating having
100 nm thickness, shown by the top inset box in Figure 2 [30,31]. For a plane wave configuration,
these transmitters were closely positioned with 1.5-mm distance from the SPFS. Under pulsed
laser irradiation (532-nm wavelength and 6-ns width; Litron laser, UK), these transmitters could
produce short ultrasonic pulses replicating the temporal shape of an incident optical pulse [30,32].
For comparison, we used a calibrated polyvinylidene difluoride (PVDF) needle hydrophone with
1-mm diameter (Precision Acoustics, UK) replacing the SPFS in Figure 2.
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Figure 2. An experimental setup for sensor characterization. Two types of acoustic sources were used
to characterize the side-polished fiber sensor (SPFS). The top inset box shows a schematic to use a
photoacoustic transmitter (Cr or CNT-PDMS film) as the source, and the bottom inset box to use a
piezoelectric transducer.

Here, the CNT-PDMS transmitter was designed and fabricated to have a frequency bandwidth of
<30 MHz, which is relatively lower than the one reported elsewhere [33]. However, such a bandwidth
is still wide enough for characterization of the SPFS and the reference hydrophone.

3. Results and Discussion

The optical fiber can be divided into three parts along the longitudinal direction as demonstrated
in Figure 3a. Region I represents a non-polished input part, region II a polished sensing region with
the exposed fiber core, and region III a non-polished output part. A single-mode optical wave in
region I is initially guided with a propagation angle of 85◦. It then runs into the sensing surface at
the entrance of region II, which is shown as Iin. Here, the angle of incidence (85◦) is greater than the
critical angle at the core/water interface (θC = 67◦). After passing through region II, it couples back to
the non-polished region (region III) connected to the photoreceiver, which is shown as Iout.

In the SPFS, the evanescent field of core mode interacts with the refractive index modulation
of water in region II, although there are high optical losses via scattering (Is) and mode mismatch
between regions. Such evanescent field interaction and thus the sensing process occurs over the
entire volume of roughened structure, which is indicated by the thick arrow at the top of Figure 3a.
More roughness plays a role of increasing effective depth and volume for index modulation. Therefore,
we can enhance index sensitivity by increasing the volume of polish-induced roughness in region
II. Figure 3b demonstrates that the signal-to-noise ratio (SNR) increases with the roughness. Here,
we used a common source input (Cr film; photoacoustic transmitter excited by a laser energy of
10 mJ/pulse) to compare signal strengths from SPF1 and SPF2. In this example, SPF1 and SPF2 had the
SNR values of 17.4 and 15.74 dB, respectively. The peak amplitude of SPF1 was 1.5 fold higher than
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that of SPF2. Note that the dc output powers of SPF1 and SPF2 were 16 and 105 µW for a common
input power of 20 mW. This means that SPF1 can lead to stronger modulation of evanescent field
than SPF2 when the refractive index of water is acoustically modulated, despite higher optical loss as
confirmed by the dc output power. Due to the higher performance of SPF1 than SPF2, we used SPF1
only for the following characterization (named SPFS).
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Figure 3. (a) A schematic diagram showing SPFS operation (α = 0.114◦). The sensing volume increases
with polish-induced roughness at the core surface. (b) Acoustic signal waveforms for two sensors with
different roughness. The signal-to-noise ratio (SNR) increases with the roughness (in this example,
17.4 and 15.74 dB for SPF1 and SPF2, respectively).

We compared acoustic frequency characteristics of SPFS (=SPF1) and PVDF hydrophone under
the same measurement conditions. For broadband frequency characterization, we first used the Cr
transmitter capable of duplicating an incident Gaussian shape of laser pulse into an acoustic pulse.
This generates narrow ultrasonic pulses (~7 ns) with a bandwidth from dc to 70 MHz (at 6-dB reduction)
which are suitable to find a detector output close to an impulse response [30]. Figure 4a shows the
measured temporal waveforms for the Cr film excited by a pulse laser energy (E) of 2.2 mJ. We assume
these waveforms as impulse responses of detectors. The peak pressure amplitude of SPFS was 14%
higher than that of the PVDF hydrophone. The SNR values of two waveforms were 13.5 and 14 dB for
SPFS and PVDF hydrophone measurement, respectively. Here, two temporal waveforms were changed
from the input Gaussian pulse shape, implying that the frequency bandwidths of two detectors are
different. The frequency spectrum for the SPFS in Figure 4b demonstrates a peak response at 25 MHz
and a wide frequency bandwidth over 46 MHz at the upper 6-dB roll-off point. We also obtained the
characteristic spectrum of PVDF hydrophone (black solid line in Figure 4b) by using the Cr film as an
approximate impulse response generator, which demonstrates the narrow bandwidth of only 16 MHz
with a decreasing response from dc. This result almost agreed with the manufacturer-calibrated
spectrum available up to 20 MHz only (black dotted line; Precision Acoustics, UK) [34].

Next, we used the CNT-PDMS transmitter as a source to compare the detector responses. It was
significant to use CNT-PDMS transmitters because they are high-frequency and high-amplitude sources
widely utilized for a variety of all-optical ultrasound transducers for imaging and therapy [20,30,31].
Figure 4c,d show that the SPFS produced a slightly higher peak pressure (9%) and a wider bandwidth
than the reference case. The SNR values were 22.8 and 23.4 dB for waveforms measured by SPFS and
PVDF hydrophone, respectively. The measurement with CNT-PDMS again confirms that the frequency
spectrum of SPFS is enriched by higher-frequency components than that of PVDF hydrophone: 14 MHz
at the peak and 26 MHz at the 6-dB drop point.
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Figure 4. Acoustic signal waveforms and frequency spectra: (a,b) from the Cr film used as a source;
(c,d) from the CNT-PDMS transmitter as a source.

From the CNT-PDMS, the measured peak pressure values were consistently higher for the SPFS
as the input pressure increased as demonstrated in Figure 5a. The SPFS provided peak values of 0.13,
0.26, 0.36, and 0.48 V for E = 1, 2, 3 and 4 mJ/pulse, each of which was 15%, 12%, 12%, and 11% higher
than the values measured by the reference detector (0.11, 0.23, 0.32, and 0.43 V), respectively. In the
SPFS, the strength of an output signal increased with probe laser beam power (Pin) as demonstrated
in Figure 5b. For a fixed input pressure generated by the CNT-PDMS transmitter (E = 4 mJ/pulse),
a linear increase trend was confirmed for Pin = 10–120 mW. The SPF output strength was limited by
the maximum-available power of the probe laser source (120 mW).
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Figure 5. (a) Comparison of ultrasound signal amplitudes measured by SPFS and polyvinylidene
difluoride (PVDF) hydrophone for the CNT-PDMS transmitter excited by E = 1, 2, 3 and 4 mJ/pulse);
(b) SPFS peak signal values versus the probe laser beam power Pin (CNT-PDMS transmitter excited by
E = 4 mJ/pulse).

For sensitivity evaluation, we used two calibrated piezoelectric transducers with center
frequencies of 3 and 7 MHz as acoustic sources, as demonstrated in Figure 6. Although 3- and
7-MHz frequencies are far from the central frequency response range of SPFS, we utilized them as
acoustic inputs to provide frequency ranges commonly detectable by SPFS and PVDF hydrophone.
Note that the SPFS responses at 3 and 7 MHz are 3- and 2.5-dB lower than that of the peak frequency
(25 MHz). Here, the 3-MHz transducer has a planar shape (diameter: 15 mm) that was placed 1.5 mm
apart from the detector surface. The 7-MHz source was slightly concave (diameter: 5 mm, radius of
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curvature: 12 mm) but was placed close to the detector (2 mm apart). Peak amplitudes measured
by these calibrated references were 267.3 and 427.9 mV, corresponding to 270 and 400 kPa for 3 and
7 MHz sources, respectively.
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Figure 6. Temporal waveforms measured by SPFS and reference hydrophone for acoustic inputs with
(a) 3-MHz and (b) 7-MHz frequencies (Pin = 120 mW). The bottom figures show enlarged views for early
periods used for noise analysis (green boxes of the top figures) before the major signal traces arrive.

In terms of peak signal amplitudes in Figure 6, the SPFS produced lower amplitudes of 112.2
and 173.6 mV, resulting in 417 and 426 mV/MPa at 3 and 7 MHz, respectively. The comparative
study at 3 and 7 MHz frequency confirms that the peak amplitudes from the SPFS corresponded to
42.0% and 40.6% of those measured from the PVDF hydrophone. However, it should be noted that
the SPFS has a small detection area of 0.016 mm2 calculated from 8.3-µm core thickness and 2-mm
length. This corresponds to only 2% of the reference detector area (0.785 mm2). This confirms
that the SPFS produces significantly higher output amplitudes despite the small sensing area.
The acoustic sensitivity of 417–426 mV/MPa is significantly higher than those of other optical
detectors designed for high-amplitude pressure measurement; for example, 6 mV/MPa for a
commercially-available fiber-optic hydrophone [22] and 65.4 mV/MPa for an all-silica fiber-optic
Fabry-Perot interferometer [35].

In order to determine noise levels of SPFS and PVDF hydrophone, we chose a 1.5-µs period shown
in the bottom of Figure 6a,b, respectively, before the major signal traces arrive at the detectors. Peak
signal amplitudes were determined from the top waveforms of Figure 6a,b. For the 3-MHz acoustic
input, the SNRs of SPFS and PVDF hydrophone were 32 and 41 dB, respectively. For the 7-MHz case,
they were 35 and 49 dB.

We also determined the NEP at 7 MHz. The rms noise voltage for the photoreceiver bandwidth
(1–125 MHz) was first measured without any acoustic input. This value was then multiplied by a factor
of 3 to determine the peak noise voltage that can be used as a realistic indication for broadband signal
measurement [11]. By dividing the peak noise by the calibrated acoustic sensitivity (426 mV/MPa at
7-MHz frequency), we obtained 16.2 kPa over a 1–125 MHz bandwidth. For a 1–50 MHz bandwidth
that is close to that of 6-dB bandwidth of SPFS, the NEP was reduced to 6.6 kPa. Similarly, we obtained
the NEP values at 3-MHz frequency: 9.2 and 22.2 kPa for 1–50 and 1–125 MHz bandwidths. The NEP
of SPFS is better than other results obtained over narrow bandwidths: 250 kPa for the single-mode
fiber-optic detector (2-MHz bandwidth) [22], 19.4 kPa for the Fabry-Perot optical detector (2.5-MHz
bandwidth) [35], and 15 kPa for the fiber-optic Fabry-Perot sensor (20-MHz bandwidth) [11].
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For the above noise analysis using the 7-MHz concave source, we avoided choosing the crosstalk
signal shown between −2 and −1 µs range in Figure 6b. The early-arriving crosstalk in the SPFS is
caused by a geometrical shape of the 7-MHz source. Ultrasound generated from the protruded outer
region of concave curvature first strikes the surface of quartz substrate with a full area is 30 × 10 mm2,
see Figure 1; SPF is embedded in the quartz substrate and exposed on the same surface. Then,
lateral propagation along the top surface can cause the early-arriving crosstalk in the SPFS. For the
PVDF hydrophone, it was not explicitly observed in Figure 6b because the size of circular probe
(1-mm diameter) is only 1/5 of the source dimension.

The SPFS is a robust ultrasound sensor because there is no additional coating on the polished
glass surface. Device robustness was tested by using high input pressure amplitudes with an order
of MPa. The 7-MHz piezoelectric transducer was used as a calibrated source. In Figure 7a, the input
pressure was increased up to 4.8 MPa to avoid the possible cavitation-induced damage on the SPFS.
Figure 7a shows the reliable linear relationship between the SPFS output and the converted pressure
amplitudes shown in the MPa unit.
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Figure 7. (a) SPFS output pressure amplitudes converted to the MPa unit (calibrated at 7-MHz
frequency). An acoustic input is given from the 7-MHz piezoelectric transducer used as a source.
(b) SPFS output signal amplitudes for different detector lengths. The inset shows a schematic to vary
the exposed fiber length. An acoustic input is given from the CNT-PDMS transmitter.

The SPFS response was further investigated by varying the detector length of SPFS. The SPFS
output should increase with the sensing length and thus volume. The exposed SPF length was
truncated on both ends by covering them with two glass slides, only leaving a central part of the SPFS
exposed and in contact with water. Because of acoustic impedance mismatch and attenuation, the glass
plates effectively excluded acoustic transmission (measured reduction > 20 dB). The exposed length
(d) at the center was set to 0.1, 0.5, 0.8, 1.2, 1.5 and 2 mm, corresponding to the area of 0.0008, 0.004,
0.0064, 0.0096, 0.012 and 0.016 mm2, respectively. For each length, the measurement was repeated
multiple times by laterally moving the SPF (0.1-mm step lateral shift for d = 0.1 mm, 0.15-mm step
for d = 0.5 mm, and 0.1-mm step for all other d values). Figure 7b shows measured peak pressure
amplitudes for a fixed input generated by the CNT-PDMS (E = 6 mJ/pulse). This demonstrates that the
signal amplitude scales linearly with the detector length. Irregular roughness formed along the sensing
region can cause slight variation in each detector output. Interestingly, the SPFS with only 100-µm
length still has a significant response. This suggests the design possibility of microscale detector
that can be useful for miniaturized all-optical ultrasound transducers being integrated with optical
transmitters such as CNT-PDMS films.

4. Concluding Remarks

We have demonstrated a fiber-optic ultrasound sensor using the SPF structure, featuring a broad
frequency bandwidth over dc–46 MHz and a wide amplitude dynamic range of several kPa–4.8 MPa,
confirmed by using photoacoustic transmitters and piezoelectric transducers as acoustic sources.
The SPF uses a microscale-roughened structure for evanescent-field interaction with water that is
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acoustically modulated. Although the SPFS has a small detection area of only 0.016 mm2 with no
additional coatings, it exhibits the high sensitivity of 417 and 426 mV/MPa at 3- and 7-MHz frequencies
together with the NEP of 6.6 kPa (at 7 MHz) over 1–50 MHz bandwidth. Furthermore, as the sensor is
operated with the bare polished surface, it allows for mechanical robustness that is suitable for reliable
measurement of high-pressure amplitudes of the order of MPa. We expect that our structure and
operation concept can not only be extended to the array platforms using multiple SPFs but can also be
utilized to develop high-frequency and high-resolution ultrasound imaging systems, fiber integrated
ultrasound endoscopes, and all-optical ultrasound transducers.
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25. Slavík, R.; Homola, J.; Čtyroký, J.; Brynda, E. Novel spectral fiber optic sensor based on surface plasmon
resonance. Sens. Actuators B Chem. 2001, 74, 106–111. [CrossRef]

26. Schroeder, K.; Ecke, W.; Willsch, R. Optical fiber Bragg grating hydrogen sensor based on evanescent-field
interaction with palladium thin-film transducer. Opt. Lasers Eng. 2009, 47, 1018–1022. [CrossRef]

27. Dong, X.; Zhao, R. Detection of liquid-level variation using a side-polished fiber Bragg grating. Opt. Laser Technol.
2010, 42, 214–218.

28. Jung, W.G.; Kim, S.W.; Kim, K.T.; Kim, E.S.; Kang, S.W. High-sensitivity temperature sensor using a
side-polished single-mode fiber covered with the polymer planar waveguide. IEEE Photonics Technol. Lett.
2001, 13, 1209–1211. [CrossRef]

29. Tseng, S.-M.; Chen, C.-L. Side-polished fibers. Appl. Opt. 1992, 31, 3438–3447. [CrossRef]
30. Baac, H.W.; Ok, J.G.; Park, H.J.; Ling, T.; Chen, S.-L.; Hart, A.J.; Guo, L.J. Carbon nanotube composite

optoacoustic transmitters for strong and high frequency ultrasound generation. Appl. Phys. Lett. 2010,
97, 234104. [CrossRef]

31. Baac, H.W.; Ok, J.G.; Lee, T.; Guo, L.J. Nano-structural characteristics of carbon nanotube–polymer composite
films for high-amplitude optoacoustic generation. Nanoscale 2015, 7, 14460–14468. [CrossRef]

32. Diebold, G.J.; Sun, T.; Khan, M.I. Photoacoustic monopole radiation in one, two, and three dimensions.
Phys. Rev. Lett. 1991, 67, 3384–3387. [CrossRef]

33. Lee, T.; Baac, H.W.; Li, Q.; Guo, L.J. Efficient Photoacoustic Conversion in Optical Nanomaterials and
Composites. Adv. Opt. Mater. 2018. [CrossRef]

34. Needle hydrophone (Precision Acoustics). Available online: http://www.acoustics.co.uk/product/1mm-
needle-hydrophone (accessed on 17 January 2019).

35. Wang, D.H.; Wang, S.J.; Jia, P.G. In-line silica capillary tube all-silica fiber-optic Fabry–Perot interferometric
sensor for detecting high intensity focused ultrasound fields. Opt. Lett. 2012, 37, 2046–2048. [CrossRef]
[PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1121/1.3625239
http://dx.doi.org/10.1121/1.3583538
http://www.ncbi.nlm.nih.gov/pubmed/21682392
http://dx.doi.org/10.1121/1.2166708
http://dx.doi.org/10.1038/srep00989
http://dx.doi.org/10.1063/1.4943369
http://www.ondacorp.com/products_HFO.shtml
http://dx.doi.org/10.1364/AO.46.000800
http://www.ncbi.nlm.nih.gov/pubmed/17279169
http://dx.doi.org/10.1016/j.snb.2016.02.020
http://dx.doi.org/10.1016/S0925-4005(00)00718-8
http://dx.doi.org/10.1016/j.optlaseng.2009.04.002
http://dx.doi.org/10.1109/68.959366
http://dx.doi.org/10.1364/AO.31.003438
http://dx.doi.org/10.1063/1.3522833
http://dx.doi.org/10.1039/C5NR03769G
http://dx.doi.org/10.1103/PhysRevLett.67.3384
http://dx.doi.org/10.1002/adom.201800491
http://www.acoustics.co.uk/product/1mm-needle-hydrophone
http://www.acoustics.co.uk/product/1mm-needle-hydrophone
http://dx.doi.org/10.1364/OL.37.002046
http://www.ncbi.nlm.nih.gov/pubmed/22660116
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Results and Discussion 
	Concluding Remarks 
	References

