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Abstract

Many recent researches focus on ICN (Information-Centric Network), in which named con-
tent becomes the first citizen instead of end-host. In ICN, Named content can be further
divided into many small sized chunks, and chunk-based communication has merits over
content-based communication. The universal in-network cache is one of the fundamental
infrastructures for ICN. In this work, a chunk-level cache mechanism based on pre-fetch
operation is proposed. The main idea is that, routers with cache store should pre-fetch and
cache the next chunks which may be accessed in the near future according to received
requests and cache policy for reducing the users’ perceived latency. Two pre-fetch driven
modes are present to answer when and how to pre-fetch. The LRU (Least Recently Used)
is employed for the cache replacement. Simulation results show that the average user per-
ceived latency and hops can be decreased by employed this cache mechanism based on
pre-fetch operation. Furthermore, we also demonstrate that the results are influenced by
many factors, such as the cache capacity, Zipf parameters and pre-fetch window size.

1. Introduction

Recently, most of the network applications and services only care about content distribution
and retrieval, while the current Internet still relies on the host-to-host communication model.
Several researchers devote to Information-Centric Network (ICN) [1-6] in recent years, which
is a significant potential approach to resolve such mismatching problem mentioned above. The
voice transformed in MANET [7, 8] is one type of the contents. The content objects in ICN are
routed by content names, not by host locators (IP address). Named contents become the first
citizen in the ICN architecture instead of end-host, which gives the opportunity to identify con-
tent objects as they travel from source to destination. In turn, given that named content objects
are transferred instead of unidentifiable data containers, i.e., IP packets, these objects can be
cached in the network and served to subsequent users with the similar interest.

AL ICN architectures proposed share three commonalities [9, 10]. The first one is the pub-
lish/subscribe (pub/sub) paradigm. A content provider publishes a content object, while a cli-
ent subscribes to the content file through describing the corresponding interest. This temporal
and spatial decoupling between information generation and interest indication is a desirable
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feature for future internet. Secondly, the information oriented security model is adopted. Because
content objects are signed by the original content provider, the authenticity of content can be easily
verified by network elements or consumers. The web application protection techniques in [11-14]
can be seen as the typical ICN information oriented security models. The third commonality is the
universal in-network cache, which is the main researching concern of this paper. content in ICN
can be further divided into many small-sized chunks. Chunk-based communication has merits
over content-based communication, for example, user can get a content file from many different
sources by the means of chunks, and fine-granularity cache scheme should be designed.

Caching and pre-fetching operation are well-known strategies deployed in application layer
for improving the performance of current network. The caching scheme is composed by two
key parts: i) Cache decision, which decides on whether an object should or not to be stored;
and ii) Replacement policy, which is used to select the replacing objects in cache for the newly
replied objects. Compared to the traditional application-layer content distribution system, the
network-layer cache platform of ICN has its own prosperities: 1) Universal cache with small
capacities. Almost all routers in the network can be configured with small capacity and high-
speed memory technology. 2) Interaction relationship between cache configuration and net-
work traffic. The router cache policy or capacity impacts the upward traffic through cache hit
rate. Meanwhile, the downward traffic can affect the arriving rate of the cache router to further
result in the cache policy or capacity deployment. 3) Provides a unified platform of network
layer content caching for various flows. 4) ICN content acquisition mode provides new cache
management method. In-network cache policy for ICN has attracted more attentions in last
few years [15-23]. Ioannis Psaras et al. [15] determine the caching probability of a content
object in each node on the path. Progressive caching [16] sequentially pushes the content to be
cached closer to the edge node based on content popularity. The main idea of chunk-level
cache scheme WAVE [17] is suggested that routers should dynamically adjust their cache win-
dows for content on the basis of the content popularity, and should recommend the number of
chunks to be cached at the downstream node. ABC (Age-Based Cooperation) [18] sets an age
for each cached item, which should be evicted from the cache only when the age is expired.
Aifang Xu et al. [19] propose use tracking store (TS) to assist caching objects. Jos’e Quevedo
et al. [20] use a freshness value to design the cache policy under wireless sensor network. Pend-
ing time history is carried in interest for help to compute the better caching set for each router
in [21]. Wang, W. et al. [22] exploits the correlation between content popularity and network
topology information for ICN caching. ILP is used for programming the caching of the com-
plex dynamic streaming in [23]. The different methods for the above mentioned works were
proposed to improve the network performance. However, none of them has involved in pre-
fetch operation to further fast the content retrieval.

By the same token, the essence of pre-fetching algorithm relies on its operation, how to pre-
fetch, and the pre-fetched objects. Comparing to cache policy, pre-fetch operation is likely a
strategy to hide retrieval network latency for the user rather than to reduce it. Pre-fetch opera-
tion has been studied in web service last twenty years ago [24-26]. One main drawback in Web
pre-fetch system is over-prefetch, that is, when space (cache) on a server is allowed, all the
referencing webs should be pre-fetched and cached to be requested. Nevertheless, many pre-
fetched objects may not be issued by clients, which waste storage capacity and overlong the
total network latency. Path-based pre-fetching and caching are integrated in file system [24].
The result has shown that aggressive pre-fetching is harmful to latency reduction. To offset
such defects, most web pre-fetch operations concentrate on the high accuracy prediction
model of pre-fetch probability (referencing objects), which include temporal locality, data min-
ing, or more complicated mathematic models. Padmanabhan and Mogul [25] have investigated
the tradeoff between network load incremental and performance gain of web pre-fetching

PLOS ONE | DOI:10.1371/journal.pone.0158260 June 30, 2016 2/18



@’PLOS ‘ ONE

Cache Scheme Based on Pre-Fetch Operation in ICN

based on renewing of dependency graph. Cao et al. [26] have studied an integrated caching and
pre-fetch model on a file system from a theoretical viewpoint. The differences between in-net-
work caching for ICN and the web caching have been listed before. Because of the characteris-
tics of universal caching and chunk-based communication in ICN, routers could pre-fetch the
following chunks for a given content, avoiding complex predication algorithm in web pre-fetch
operation. The shortcoming of over-prefetch should be ignored for the LRU cache replacement
in our work. Even though the number of chunks pre-fetched is large enough, the network
latency is also shorter than that without pre-fetch operation. The pre-fetching operation for
ICN has been studied in [27-29]. The pre-fetching is mentioned in [27] to improve the retrans-
mission and congestion control mechanisms in ICN. But no details or following works are
given about the pre-fetch operation. Authors in [28] focus on prefetching content chunks for
individual mobile devices, by predicting the next network location the device is moving to, and
at what time, and examine how best to partition the storage at the AP. Obviously, the pre-fetch-
ing operation here is just activated by APs, and the main contribution is about the predicting of
the device’s mobility and the user pattern. [29] harnesses multiple caches in ICN to pre-fetch
video stream during peak congestion. Architecture for pre-fetching for video streams is pre-
sented, which combines network monitoring with ICN semantics to populate a cache ahead of
the need of the video client. Our argument is that all the cache routing should determine the pre-
fetch operation, and the focus is how and when to pre-fetch. Moreover, our goal is to reduce the
latency experienced by clients by considering cache policy based on pre-fetch operation.

In this paper, the idea of pre-fetching and caching can be perfectly applied into in-network
ICN caching together. Cache router can activate the pre-fetch operation, and pre-fetched
objects should also be stored on ICN cache routers. Therefore, our main contribution is trying
to answer how to design an efficient cache scheme based on pre-fetch operation to reduce
latency, and measure the effect of pre-fetch windows for improving performance.

2. Preliminary Knowledge

Our cache scheme based on pre-fetch operation can be applied onto any of chunk-level ICN
architecture. In order to facilitate the presentation, the CCN (content centric network) [3] is
taken as an example. The term “data” and “chunk” can be interchangeable in remain part of
this paper, unless specifically stated.

In CCN, named contents are published at nodes (providers). Each router in CCN contains two
main data structures (as shown in Fig 1): FIB (Forwarding Information Base) and PIT (Pending
Interest Table). Routing strategies are employed to form the FIB, which directs the corresponding
requests (called interests in CCN) for named contents towards the correct providers. Forwarded
interests should leave bread crumbs in PIT for sending the returned data down to request genera-
tors. Some of the routers with cache function known as cache router in CCN should hold a
CacheStore (CS, buffer memory) to store the very objects based on their cache scheme.

When an interest packet arrives on an interface, the cache router first checks its local CS. If
the requested data exists in the CS, the router should send it back directly through this inter-
face, and the interest should be discarded, as illustrated by step 7-8. Otherwise, it reviews
whether such an interest is already in the PIT, if so, it updates the interface in PIT to assure the
correctly reply of chunk. Otherwise, router forwards the request upstream toward content
source based on FIB, meanwhile, leaves a bread crumb in PIT (step 1-3). The content source of
an object is not only including the content provider, but also the routers caching the object.

The process of relaying replied chunk is relatively simple, since data is only routed through
the chain of PIT entries back to the original requester(s) (step 4-6). Whenever a router receives
a chunk, it should decide whether to cache or not based on its own caching policy.
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The request process is assumed to be the so-called “independent reference model”: the prob-
ability of arriving request for a given object only depends on the object’s popularity but not on
the sequence of requests that came before. The popularity of content object follows generalized
Zipflaw, which have been illustrated in many realistic traffic flows [5]: the request rate g(n) for
the ny, most popular object is proportional to 1/n* for some Zipf parameter a (denoted by Zipf
(a0)). Equivalently, we also assume content requests occur at the instants of independent Pois-
son processes, and cache router implements LRU replacement policy.

3. Cache Scheme Based on Prefetching Operation

A content object can be further divided into many fine-granularity chunks with chunk-level
communication model in ICN. An end user should send out the interests for all chunks of a
content object to the provider, if he wants to get the whole content object. An interest is corre-
sponding to a chunk, not for a content object.
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Fig 1. CCN overview.
doi:10.1371/journal.pone.0158260.g001
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3.1 Problem illustration

As mentioned in section 2, by-path caching is one of the main components in CCN. The inter-
est is forwarded by the routers following the FIB, while leaving a bread crumb in the PIT,
which directs the data reply. Once a cache router receives a data, it should decide whether
cache or not according to the cache policy.

The stop-and-wait request mode is assumed to be applied in CCN: end user should issue
the next chunk immediately only after receiving the reply of the requested chunk. If an end
user fetches a content object from the provider passing through three cache routers, and none
of the cache routers has cached any chunks of such content object, the hop number for success-
tully achieving a chunk is accounted for 8. If the average propagation delay of each link for
transmitting a chunk is d, the propagation delay experienced by the user to get a chunk should
be 8d. The propagation delay is the main factor of user perceived delay to ignore the processing
and transmission time while d is large enough. If the chunk number of the content object is N,
the total propagation delay the user experienced will be 8*Nc¢*d.

For some latency-sensitive flow, such as VoD, it is intolerable for a user to wait for a long
time to get the following chunks or the whole object. The bad quality of service will lead to the
loss of users, which would decrease profit of network provider.

Obviously, in CCN, all the cache action is activated by the data, which is derived from the
user requests in essence. In other words, only after the chunk has been asked by the users not
long ago, the chunk should be stored in the cache. Should the follow-up chunks retrieval be
fasted to reduce the total latency experience by user? Should the routers prepare for the chunks
which will be requested in the near future? The main goal of the cache scheme based on pre-
fetch operation proposed is to decrease user perceived latency. The details of the cache scheme
based on pre-fetch operation are given in the following.

3.2 Pre-fetch operation

A cache scheme should decide what to be cached and the replacement policy. Both fetched and
pre-fetched chunks are considered to be cached in cache scheme based pre-fetch operation,
and LRU replacement policy is used in our scheme.

The pre-fetch operation as the core function of our cache scheme should answer what to be
pre-fetched and how to pre-fetch. We argue that, the probability for the downstream node (or end
user) to request the following few chunks in the same content of the requested chunk deems to be
rather higher than to request the other chunks far away or from other contents. Then pre-fetching
the following chunks of the same content omits complex pre-fetch prediction, which is the main
work in web pre-fetch or recommendation system recently. The number of pre-fetch chunks is
labelled as pre-fetch window W, which is the main factor affecting the latency reduction.

In the following, we focus on how to pre-fetch. As the assumption mentioned in WAVE
[17], the original servers as well as cache routers can recommend its downstream cache routers
to store the chunks. We also assume the pre-fetch operation can be advised by the upstream
nodes. For more efficient prefetching and caching, we need some collaboration among cache
routers. In this paper, a cache router suggests the pre-fetching operation to its downstream
cache routers by marking the chunk when it forwards the chunk. For this, the pre-fetch flag bit
is needed in the chunk (e.g., in the Data packet header in CCN). If a cache router receives a
chunk with the non-zero pre-fetch flag, the router is suggested by the upstream node with the
pre-fetching operation. A cache router generates the pre-fetch operation only when meets any
of the following pre-fetch-driven-modes.

1. cache-driven mode: A downstream request is hit in its local cache
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2. data-driven mode: It receives the replied data requested by the downstream nodes (not gen-
erated by itself), and the pre-fetch flag in the header is 1.

Note that, the request mentioned in both modes should be received from the neighbour
nodes, not issued by its own pre-fetch operation, which avoids the endless self-driving pre-
fetch operation.

The cache-driven mode endows each cache router to decide the pre-fetch operation by itself,
while the data-driven mode enable the upward nodes to recommend whether the pre-fetch oper-
ation should occur at the downstream cache router or not through setting the pre-fetch flag in
the chunk packet header, which is the collaborative pre-fetch idea. The pre-fetch flag can be
decided by many factors, such as the content popularity, hops to the nearest source (cache or pro-
vider), and the priority, etc. However, how to set the pre-fetch flag is beyond the scope of this
paper. The pre-fetch flag here is just decided by the hop to the nearest content source.

Fig 2 gives an example of request process for cache scheme based on pre-fetch operation
with pre-fetch window W =1 (denoted W(1)), while it omits the reply process under the
assumption of stop-and-wait request mode. The provider owns the whole chunks of the
requested content, depicted by the numeric boxes below. No chunks for the requested content
have been cached on the cache routers before. All links have the same communication delay.
The pre-fetch flag here is decided only by the hop number to the nearest content source in the
header. If the hop equals to 1, the pre-fetch flag is set to be 1. Otherwise, the pre-fetch flag
remains 0. The dotted arrows with different colours are used to express the three classes of
interests respectively: user interest, data-driven pre-fetch interest, cache-driven pre-fetch inter-
est. The first number on the dotted arrow is the sequence number of event generated; the sec-
ond one represents the requested chunk number of the content object. The numeric boxes
below each cache router are the pre-fetched chunks which should be cached. For simplifying
the description, we use interest[i] to represent the request for the i, chunk, data[i] to denote
the reply of interest[i], and (a,b) to show the event on dotted arrow.

_____________ 1&'1______________
— 2%2— —
-—————-—————— 32— ———————— — =
— —453— —
« 652 — — —553— — —
—-—————- 7$3— — — — — — —
— — —8%4— — —
— —955— —
- ¢ — —-1054— — -
Provider — —11$5— — —
4 -1256— — End user

]
E 4+~ —- User interest
e

4— — - Data_driven prefetch interest

4— — - cache_driven prefetch interest

Fig 2. Example of pre-fetch operation.

doi:10.1371/journal.pone.0158260.9002
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The request process of cache scheme based on pre-fetch operation is given as below.

Step 1: The end user firstly sends out the user request interest[1], which should be for-
warded towards the provider based on the CCN communication process (as shown in (1, 1))

Step 2: After received the data[1] (which is omitted in Fig 2 and should occur between (1,1)
and (2,2)), router A should cache and forward data[1] downwards according to standard CCN
replying process. Meanwhile, because the pre-fetch flag in the header is 1 (hop is 1), router A
generates and sends out interest[2] to the provider for pre-fetching the 2,,; chunk based on
data-driven mode, as shown in (2,2). Because of the LRU cache replacement, router A should
cache the data[2] after received it, which is the first chunk in numeric boxes below router A.
But data[2] should not be forwarded downstream without arriving interest.

Step 3: Interest[2] originated from end user (3,2) should be hit in local CS of router A
because of its previous pre-fetch operation, which enables router A to pre-fetch the next chunk
according to cache-driven mode, the interest[3] of event (4,3). Data[2] will be forwarded back
to requestor by router A.

Step 4: The reply of data[2] allows router B to generate data-driven pre-fetch interest[3] (see
event(5,3)), since the hop between router B to the nearest source of data[2] (router A) is 1, that
is, the pre-fetch flag is 1. Then such interest[3] should be hit on router A for step 3. Router A
should issue cache-driven pre-fetch interest[4] upstream to provider (6,4).

Step 5: User request interest[3] (7,3) can be hit on router B for event (5,3), which drives the
cache-driven pre-fetch interest[4] of router B (see (8,4)). Finally in turn to cache-driven pre-
fetch interest[5] of router A (9,5).

Step 6: Similarly, the reply of data[3] enable router C to pre-fetch data[4] (10,4). Cache-
driven pre-fetch interest[5] (11,5) and [6] (12,6) are sequentially activated on router B and A.

After step 6, user could gain the following chunks directly on router C. At the same time,
the following user interest[i] could trigger a cache-driven pre-fetch interest[i+1], [i+2] and [i
+3] on router C, B and A, respectively.

Comparing to the previous average hop 8 and the total hop 8Nk, the hops in cache scheme
based on pre-fetch operation are shrinking to be (12+2 Nc)/ Nc and (12+2 Nc). When Nc is
much larger than 3, the average hop reduced is 6.

The above pre-fetch process is also applicable for other pre-fetch window W. Then the
number of pre-fetch router sent out is set to be W, when router performs pre-fetch operation.

3.3 Qualitative analysis

In this section, we first give the mathematical model for network delay comparison between
CCN architectures with pre-fetching and without pre-fetching. And the result of average
latency comparison is given to show the validity of the pre-fetching based caching scheme in
CCN.

Let N be the number of total content objects. Each object is composed by K chunks. The
request rate of contents follows Zipf distribution. Therefore, the requested probability for n,
most popular content p(n) is given as p(n) = A / n, where A = Z 1/n". ais the Zipf parame-

nell,N]
ter. It is reasonable to apply the independent reference model at each router, because its request
process results from the superposition of many independent overflow processes, each of that
contributes a small fraction of overall request. In this configuration, the occupancy states of
cache routers can reasonably be assumed to be statistically independent.

The total request rate on a router is the sum of rates requested by neighbouring nodes and
generated by itself. If the total request content rate on a node is g, the request rate for content n
should be g(n) = gxp(n). The request rate for each chunk in content # is also q(n), for the
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chunks of the same content object with the same request rates. Given the delivery of content
from server to user should traverse routers Rys, Ry, - - -, Ry; and the delay for each hop is T,

We firstly give the quality analysis on standard CCN architecture without pre-fetching.
Because all of the chunks belonging to the same content are assumed to have the same request
rate, the hit ratios for all chunks in a router i are the same. For chunk k of content n, the hit
ratio on router i is Py(n, k). For any chunks m of content #, the hit ratio satisfied that Py(n, k) =
P,(n, m) = Py(n). On the path from server to a user with M routers, all requested chunks can be
attained from server, that is, Py, ,(n) = 1.

With LRU, we use an approximation proposed by Che et al. [5] to estimate the cache hit
ratio. If the cache capacity is C, the hit ratio P i(n, k) for chunk k of content n with request rate g

(n) can be written as P,(n, k) = 1 — e~7¢*4" for some parameter Tc. The capacity should hold
all cached object, that is, C = Z K(1 — e Texamy,
n€e[1,N]

To model the delay for the chunk k of content # in CCN, it is known that only the missing
requests should be forwarded upward. That is, the request k reaches on a router i only when
the interest is missed in all of the downstream routers. Let AP;(n, k) to be the arrival probability
of request k reaches on a router i, which can be expressed as

AP (n,k) = H(l _pj(”7k)) (1)

j<i

Tcen(n, k) is the delay for retrieval of the chunk k in content 1, which can be described as
the sum of all situations that the interest k is hit on each router. Because of the all the chunks in
the same content get the same hit ratio on a router. So the average delay for the chunks in con-
tent nTcen(n) is also Teen(n, k). That is,

Teen () = Teen(n, k) Z 2iT,,, x p;(n, k) x AP,(n, k) (2)

i€[l,M+1]

The term 2iT},,, is the round-trip-time between router i and the user. The average delay for
user to get any chunk of any content should be expressed as

Tooy avg = Z p(n) X Teey(n) (3)

n€[1,N]

Then the network latency for cache scheme based on pre-fetching is derived. Because of the
pre-fetching operation, the request rate on each router is different from the one without pre-
fetching, which further causes the change of the hit ratio on routers, and finally leads to the
delay variation.

W(1) as an example is analysed here to show the effect of the cache scheme based on pre-
fetch. The other pre-fetch windows can be deduced in the same way. The online cache is func-
tionally supposed to be composed by common cache and pre-fetching cache under the pre-
fetching operation. The pre-fetched without requested downstream chunks should be stored in
pre-fetching cache. The pre-fetch operation is enabled after the hit rate of common cache has
been stabilized. The chunks in pre-fetching cache should be hold for a time to ensure the arrival
of request downstream. The chunk should be shifted to common cache, if the chunk is
requested by downstream node. The overdue of pre-fetched chunk means that the chunk
should not be requested by downstream node obviously, so the chunk should be deleted from
pre-fetching cache when the stored time exceeds for a limit. Although the functions of com-
mon cache and pre-fetching cache are different, they share the same buffer memory with
almost the same eviction time in LRU.
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For chunk k of content #, the hit rate on router R;’s common cache is P*"(n, k). It is reason-
able assumed that the hit rates for a given chunk on all routers’ common cache are almost the
same. That is, P (n, k) = P (n, k) (Vi # j), for router R; is different from R;. With LRU
approximation mentioned before, the hit ratio of common cache can be estimated. If the com-
mon cache capacity is C, the hit rate P©°"(n, k) for chunk k of content n with popularity g(n)
can be written as P“"(n,k) = 1 — e~ e*1" for some parameter Tc. The capacity should hold
all cached objects, that is, C = Z K(1- e’TCxq(”)). The hit rate of all chunks on serveris 1,

ne(1,N]
that is, P (n,k) = 1. Let P{"(n, k) to be the possibility for router R; to pre-fetch chunk k of
content n, which can also be seemed as the pre-fetch hit rate. If chunk k has been pre-fetched
by router R; before the downstream requesting, the interest should be hit. The pre-fetch opera-
tion should not occurred on server, therefore, Py, (1, k) = 0.
If the total hit rate on router R; is H;(n, k) (i € [1, M + 1]), that is,

H,(n,K) = P (n, k) + P (n, k) (4)

The hit rate of pre-fetch cache P/ (n, k) is calculated in the following section. Router R; (i €
[1, M]) pre-fetches chunk k only when the following prerequisites are met: a) At first, chunk k
has not been stored in common cache. The possibility is calculated as (1 — P©"(n, k)); b) sec-
ondly, one of the driven modes is satisfied. The downstream request for chunk k-1 must arrive
and hit at router R; in cache-driven mode; while in data-driven mode, the downstream request
for chunk k-1 must arrive and be hit at router R;+1, when the pre-fetch flag is determined by
the hop in the header. For router R;, the downstream request is the pre-fetch request generated
by downstream routers, or the user request. Hence,

P(n, k) = (1 — P (n, k))[(z P (n,k — 1)hit; (n,k — 1) + P,(n,k — 1))

0<j<i

+ ( Z Pfre(m k— l)hitj,iﬂ(n’k - 1) + Pi+1(n’k - 1))]

0<j<it+1

(5)

In expression (5), Z P (n,k — 1)hit, (n,k — 1) + P,(n,k — 1) and
0<j<i
Z P (n,k — 1)hit,, (n,k — 1) + P, ,(n, k — 1) are the probabilities for downstream
0<j<it1
request k-1 arriving and being hit at router R; and R;+1, respectively. If a pre-fetch request k is
generated by router R;, the conditional probability for the request k arrives and hits on
upstream router R; is hit; j(n, k). Where,

hit, (n,k) = H,(n, k) [] (1 — H(n,k)) (6)

i<t<j
The delay expectation T(n,k) for user to get the chunk k of content » should be

T(n, k) = Z T,(n, k) (7)

i€[1,M+1]

Where, Tj(n, k) is the delay expected for user to get chunk k from router i. Let Py(n, k) and
Di(n, k) to be the probability and delay experienced respectively, when user sends out the
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request k be hit at router R;. Then

T k) =111 — H(n,K)) x [P (n, k) x D" (n, k) + P (n, k) x D" (n, k)]

j<i

— re P (n, k) P*(n,k)
= T = o) P8k P o ) b e B )+ B F)

= P,(n,k) x D,(n, k) (8)

x D" (n, k) + x DI (n, k)]

If the content k request by user is hit on the common cache of R;, the delay is represented by
D™(n, k); otherwise, if the request is hit at the pre-fetch cache of R;, the delay is D! (n, k).
Then

P,(n.k) = H,(n,k) [ [(1 — H(n,k)) ©)

j<i

P (n, k)
H,(n, k)

x D (n, k) + P k) D" (n, k) (10)

Di(n7k) = H(T’l k) i

We calculate the delay expectation for user to get the chunk k from router R; in the
following.

It is more complex for solving D;(n, k). Because when user request k arrives at router R;, it
can be hit on the common cache. Similarly, it can be stored on the pre-fetch cache; or it has
been pre-fetched but has not got the replied chunk by R;. If the pre-fetch request generated by
R; is hit by a upstream router R, it also can be hit by common cache or pre-fetch operation of
R,, which is the repeat of the previous procedure. Obviously, it is too difficult to get the accurate
value of D;(n, k). However, we can always find the nearest source node S (i < S< M +1) of
chunk k from R;. The source node is the node storing the chunk k in its common caches. There-
fore, we turn to get the worst-case delay. That is, if the user request is hit by pre-fetch operation
of R;, the routers between R; and S are assumed without pre-fetch operation. Under this situa-
tion, let Wait; s(n, k) be the waiting time after request arriving at R;.

If Sis R;, that is, user request is hit at the common cache of router R;, Wait; s(n, k) = 0. If
S>1, R; is the nearest pre-fetching node from user. The generation time of pre-fetch request k
almost is the same as the replied time of chunk k-1 on R;. Hence, Wait; 5(n, k) = max{0, (S — i) —
(i — 1)} = max{0, S — 2i + 1}. Combining the above two situations, the waiting time on R; can be
expressed as

Wait, (n, k) = max{0, (S —i) — (i — 1)} = max{0,$ — 2i + 1} (11)

The probability for the upstream router R; of R; acting as S is PS; j(n, k), then

k P(n,k)/H,(n,k), if i=]j
PS. .(k) =
ul P (n,k)/H,(n,k) x hit"(n,k), else

Therefore,

D(n,k)= > PS;(k) x 2T,,, x [(i + 1) + wait, (n, k)] (13)
jeli,M+1] '
Substituting the expression (9)-(13) into (8), the T;(n,k) should be
Ti(n,k) =T1(1 = Hy(n,k)) x [P (n, k) + P"(n, k)] x[32 PS;(n,k) x 2T,,, x [(i +1)
i j

hop
j<i

+ wait, (n, k)]] (14)
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Then, the delay T(n,k) for user getting chunk k of content # should be attained after substi-
tuting (14) into (7).
The average delay for getting any chunk of content # is

T.avg(n) = Z T(n,k)/K (15)

ke[1,K]
Thus, the average delay for user to get any chunk of any content should be

Delay.avg = Z p(n) x Tavg(n) (16)

n€[1,N]

To show the validity of our method, the parameters are given in the following. The content
number N is 10000, and the chunk number K is 10. The number of cache routers M is 3. The
cache capacities deployed on cache routers are all set from 100 to 1000. And the request rates
originated from users on all routers are set as 50. The Zipf parameter is 0.8. Table 1 gives the
results compared between the standard CCN with LRU and the cache scheme based on pre-
fetch. Ty, is 10 ms. Table 1 gives the results compared between the standard CCN with LRU
and the cache scheme based on pre-fetch. Obviously, under different cache deployment, the
average delay under pre-fetching Delay_avg is always smaller than Tccy_avg without pre-
fetching.

The other results compared with the delay without pre-fetch operation will be given in the
following section through the simulation.

4. Performance Evaluations

The performance is shown in both the results of analysis and simulation. According to the for-
mer qualitative analysis, the efficiency of cache scheme based on pre-fetch operation can be
demonstrated. While the performance evaluation is further conducted by simulation in three
aspects: i) the average latency; ii) the average hops; iii) the hit rate. The simulation results will
be influenced by cache capacity, Zipf distribution parameters a and pre-fetch window size W.

4 1 Simulation scenarios

Binary trees with 15 nodes are deployed, as shown in Fig 3. The leaves behave as clients which
connected by end users who should generate the requests. The root node is the only content
provider. The other intermediate nodes are cache routers with the same cache capacity, which
can trigger the pre-fetch operations. The cache routers are named as level_down and level_up
routers, respectively, according to the location in the topology. The uplinks refer to the links
between root to level_up cache routers, while the links between level_up and level_down cache
routers are named as downlink. All the links are set to be with infinite bandwidth and the same
propagation delay, which set to be 100ms. As a rule of thumb, the shortest path routing is used
in the experiment.

Table 1.
Average latency comparison Cache capacity
100 500 1000
Tcen_avg(ms) 72 58 47
Delay_avg(ms) 48 33 29

doi:10.1371/journal.pone.0158260.t001
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We study the cache scheme based on pre-fetch operation under an open source software
cenSim [30], chunk-level simulator of CCN. We assume end user should sequentially request
for whole chunks of a content object. Stop-and-wait (no-overlap) request manner is employed.
The content number and the average chunk number per content are set to be 10° and 10,
respectively, which are in accordance with Youtube-like internet catalogues [27]. And all the
chunks have the same size. The unit of cache capacity is chunk. The requests of the content-
level are generated followed by a Poisson process. The request rate (lamda) of each client is
500/s. Two main factors, i.e., cache size and Zipf parameter ¢, are adjustable in the experi-
ments. At first, cache size is varied uniformly from 100 to 10° chunks for all cache routers. Sec-
ondly, we vary the Zipf parameter with 0.8, 1.2 and 1.6. The pre-fetch window is set to be 1,
and then varies from 2 to 8 with an increment of 2.

We repeat simulations over 20 times for each combination of cache size and Zipf parameter
for each pre-fetch window. Each simulation is ended by either the convergence of hit rate for
all cache routers, or simulation time is over 2 hours after cache stuffed.

We should consider three performance metrics:

1. Hit rate. Hit rate is often used to measure the caching performance. In our experiments, we
study the hit rates of different cache level influenced by pre-fetching operation.

2. Average latency perceived by users. Our main goal of cache scheme based on pre-fetch oper-
ation is to reducing user-perceived delay. The average latency is composed by the transmis-
sion delay, propagation delay and processing delay. Because the transmission delay and
processing delay are too trivial to be ignored comparing to propagation delay in our simula-
tion, here we only care about the propagation delay.

3. Average hops. As we demonstrated in section 3, the pre-fetch flag is decided by the hops
carried by the header. So the average hop is another important metric for cache scheme
based on pre-fetch operation.

4 2. Performance results

To illustrate the effectiveness of cache scheme based on pre-fetch operation, we firstly compare
the results without and with pre-fetch operations (pre-fetch windows is 1, W(1)). Fig 4 gives

Provider
uplink uplink
Level_up

downlink  downlink downlink  downlink

& & 6 D e
DO 0 ®® @ @ @

Fig 3. Simulation topology.
doi:10.1371/journal.pone.0158260.9003
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Fig 4. Comparison of hit rate between un-prefetch and W(1) (a) hit rate of level_down. (b) hit rate of level_up.
doi:10.1371/journal.pone.0158260.g004

the hit rate comparison with different Zipf parameters and different cache sizes, deduced by
qualitative analysis. The hit rate of level_down and level_up are presented in Fig 4(A) and 4
(B), respectively. The “num” in line mark “num_n/p” represents the Zipf parameters, while the
“n/p” represent without or with pre-fetch operation. The hit rates show three main trends: @
the hit rate with pre-fetching is significant higher in both cache levels under different Zipf
parameters; @ no matter with pre-fetch operation or not, the hit rate rises with the incremental
of Zipf parameter and ® cache size in both level_up and level_down. When Zipf parameter is
1.2, the gap between pre-fetch and noprefetch is larger than the other situations in Fig 4(A).
When the cache capacity is smaller than 5107, the level_up hit rate for Zipf(1.2) and Zipf(0.8)
is almost overlapping in Fig 4(B). Meanwhile, when cache size is closer to the 0.1 of total chunk
number, both level_up hit rate for Zipf(1.2) and Zipf(0.8) are slightly higher than Zipf(1.6).

Figs 5 and 6 show the results of cache based on pre-fetching operation in terms of user per-
ceived average delay and hops under increasing of cache capacity and Zipf parameter. Firstly, it
is can be concluded that both the average delay and hops with pre-fetch operation are always
lower than that without pre-fetch operation, which demonstrates that pre-fetch operation can
effectively decrease the average delay and hops and conforms to our mathematical analysis in
section 3.3. After normalized the propagation delay of each link, the average delay shows the
same declining trend with hops. However, the average delay with pre-fetch operation is always
smaller than average hops, as shown in Figs 5 and 6. Because when a cache router received pre-
fetched data after downstream interest for a chunk, the hops in header should not to be reset,
while the delay is significantly reduced. The max differences between pre-fetch and no-prefetch
are about 300 ms, 250 ms, 100 ms, with the cache capacity is near 5000,1000,500 for Zipf(0.8),
Zipf(1.2) and Zipf(1.6) respectively, which keeps accordance with reality that caching capacity
is usually much smaller than the overall chunk population. So the pre-fetch operation is an
effective method to improve the performance for end user.

We plot the corresponding bandwidth requirement versus cache capacity for different Zipf
parameters in Fig 7. The”uplink/downlink_n/p” means the uplink or downlink bandwidth
requirement without or with pre-fetching. It can be seen that, with cache size increasing, the
bandwidth needed is reduced for all Zipf parameters. The pre-fetch operation shouldn’t raise
the bandwidth requirement for Zipf(0.8) as described in Fig 7(A). However, the bandwidths
needed of uplink and downlink under pre-fetching are both much larger for Zipf(1.2) and Zipf
(1.6), as shown in Fig 7(B) and 7(C). When Zipf parameter is 1.2, the bandwidth required of
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pre-fetch operation is always over twice more than without pre-fetching. Especially, when
cache size is about 10, the bandwidth demanded of pre-fetching is almost four times larger
than without pre-fetching. However, the gap between pre-fetching and no-prefetching is nar-
rowing with the incremental of cache capacity with Zipf(1.6).

Finally, we consider average delay for different W. Because the distinctions among delays
for some W are too trivial to be noticed, we adopt the diversity of average delay to show the
influence of W, as shown in Fig 8. Div(n1, n2) is the average delay for W(n1) minus that of W
(n2), where n1 and n2 are the pre-fetch window size. The average delay for W(2) is always
lower than W(1) for both Zipf(0.8) and Zipf(1.2). Meanwhile, when the cache size smaller than
5000, the delay for W(2) is also smaller than any other pre-fetch windows. The maximum dif-
ference is about 2 in Zipf(0.8) (in Fig 8A)), but 0.1 in Zipf(1.2) (in Fig 8B)).W(2) is the optimal
pre-fetch window for minimal average delay, which conforms with the conclusion of [27] that
enlarging pre-fetch window may worse the performance (average delay).

5. Conclusion

The cache scheme based on pre-fetch operation of ICN is proposed in this paper. The following
chunks of the request content object should be pre-fetched to short the latency user experi-
enced. Two pre-fetch driven modes, cache-driven and data-driven modes, are suggested. When
meets one of the driven modes, router should perform pre-fetch operation. Mathematical
model is formulated to qualitatively analyse the network latency for both standard CCN with-
out and with pre-fetching operation. The calculation results demonstrate that the pre-fetch
operation can reduce the average latency passed for any chunk. In the performance evaluation,
simulation results illustrate cache scheme based on pre-fetch operation should always be effi-
cient in reducing the user perceived latency and average hops. The Zipf parameter and cache
capacity have impacts on the performance of cache scheme based on pre-fetch operation.
Meanwhile, the pre-fetch window size will also affect the network latency. Our near future
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work will research the dynamically adjustment of pre-fetch windows for better performance,
and collaborative pre-fetch scheme based on pre-fetch flag decision.
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