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Abstract

The human hippocampal formation can be divided into a set of cytoarchitecturally and 

functionally distinct subregions, involved in different aspects of memory formation. 

Neuroanatomical disruptions within these subregions are associated with several debilitating brain 

disorders including Alzheimer’s disease, major depression, schizophrenia, and bipolar disorder. 

Multi-center brain imaging consortia, such as the Enhancing Neuro Imaging Genetics through 

Meta-Analysis (ENIGMA) consortium, are interested in studying disease effects on these 

subregions, and in the genetic factors that affect them. For large-scale studies, automated 

extraction and subsequent genomic association studies of these hippocampal subregion measures 

may provide additional insight. Here, we evaluated the test–retest reliability and transplatform 

reliability (1.5 T versus 3 T) of the subregion segmentation module in the FreeSurfer software 
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package using three independent cohorts of healthy adults, one young (Queensland Twins Imaging 

Study, N = 39), another elderly (Alzheimer’s Disease Neuroimaging Initiative, ADNI-2, N = 163) 

and another mixed cohort of healthy and depressed participants (Max Planck Institute, MPIP, N = 

598). We also investigated agreement between the most recent version of this algorithm (v6.0) and 

an older version (v5.3), again using the ADNI-2 and MPIP cohorts in addition to a sample from 

the Netherlands Study for Depression and Anxiety (NESDA) (N = 221). Finally, we estimated the 

heritability (h2) of the segmented subregion volumes using the full sample of young, healthy 

QTIM twins (N = 728). Test–retest reliability was high for all twelve subregions in the 3 T 

ADNI-2 sample (intraclass correlation coefficient (ICC) = 0.70–0.97) and moderate-to-high in the 

4 T QTIM sample (ICC = 0.5–0.89). Transplatform reliability was strong for eleven of the twelve 

subregions (ICC = 0.66–0.96); however, the hippocampal fissure was not consistently 

reconstructed across 1.5 T and 3 T field strengths (ICC = 0.47–0.57). Between-version agreement 

was moderate for the hippocampal tail, subiculum and presubiculum (ICC = 0.78–0.84; Dice 

Similarity Coefficient (DSC) = 0.55–0.70), and poor for all other subregions (ICC = 0.34–0.81; 

DSC = 0.28–0.51). All hippocampal subregion volumes were highly heritable (h2 = 0.67–0.91). 

Our findings indicate that eleven of the twelve human hippocampal subregions segmented using 

FreeSurfer version 6.0 may serve as reliable and informative quantitative phenotypes for future 

multi-site imaging genetics initiatives such as those of the ENIGMA consortium.

Introduction

The mammalian hippocampal formation is one of the most important brain regions for 

spatial navigation (O’Keefe, 1990), episodic memory retrieval (Burgess et al., 2002), and 

associative learning processes (Morris, 2006). This seahorse-shaped structure in the medial 

temporal lobe is divided into a set of cytoarchitectonically heterogeneous subregions 

(Insausti and Amaral, 2004; Winterburn et al., 2013; Pipitone et al., 2014), each associated 

with distinct aspects of memory formation, among other functions. For example, the dentate 

gyrus (DG) and sectors 3 and 4 of the cornu ammonis (CA) are involved in declarative 

memory acquisition (Coras et al., 2014), whereas the subiculum and CA1 are associated 

with disambiguation during working memory processes(Newmark et al., 2013).The CA2 

subregion, long assumed to be a simple transition point between CA3 and CA1, has recently 

been implicated in animal models of social memory (Hitti and Siegelbaum, 2014) and 

episodic time encoding (Navratilova and Battaglia, 2015). The subiculum, a subregion that 

exerts control over the hippocampal output, has been associated with spatial memory 

functions, but its ventral part may play an additional regulatory role in inhibition of the HPA 

axis (O’Mara, 2006).

Neuroanatomical abnormalities within these hippocampal subregions are associated with a 

broad range of neurological and psychiatric disorders, from ischaemic stroke, encephalitis, 

temporal lobe epilepsy, transient global amnesia and multiple sclerosis (Bartsch, 2012; Das 

et al., 2011) to bipolar disorder (BPD), major depressive disorder (MDD) and posttraumatic 

stress disorder (PTSD) (Sala, 2008). Some of these malformations develop as a result of 

head trauma, intracranial infection or other environmental influences, but genetic factors 

also play a fundamental role (Thompson et al., 2008; van Erp et al., 2004). Recent advances 

in genome-wide association (GWA) meta-analysis and large-scale collaborative brain 
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imaging (e.g. Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA), the 

Early Growth Genetics (EGG) consortium, and the Cohorts of Heart and Aging Research in 

Genomic Epidemiology (CHARGE)) have helped identify several common genetic variants 

associated with structural variation in the hippocampus (Bis et al., 2012; Hibar et al., 2015; 

Stein et al., 2012) as well as other brain regions including the putamen, caudate nucleus 

(Hibar et al., 2015), intracranial volume (Ikram et al., 2012; Stein et al., 2012) and head 

circumference (Taal et al., 2012).

International consortia like ENIGMA are now turning their attention to specific 

investigations of genetic and phenotypic variation in healthy individuals as well as those 

diagnosed with schizophrenia, BPD, MDD, PTSD, epilepsy and many other brain illnesses 

(Thompson et al., 2014). Among subcortical structures assessed, the hippocampus has 

consistently shown the greatest effect sizes for differences between patients and controls, in 

both schizophrenia (van Erp et al., 2015) and major depression, particularly recurrent 

depression (Schmaal et al., 2015). Impaired hippocampal integrity may in turn impair 

treatment response, making it pivotal to detect such morphologically defined subgroups 

(Frodl et al., 2008; Sämann et al., 2013).

Focusing on fine-grained phenotypic variation within small subregions of the hippocampus 

may improve our power to localize genetic and disease-related effects on the brain as a 

whole. As part of its next major project, the ENIGMA consortium aims to delineate specific 

sub-regions of the hippocampus as quantitative phenotypes for genome-wide association and 

cross-sectional case:control meta-analyses. Before these new ENIGMA initiatives can begin, 

we first need to evaluate a non-invasive, reliable and relatively accessible technique for 

reconstructing the human hippocampal subfields in vivo. In turn, for future genetic mapping 

efforts, we must validate these automatically reconstructed hippocampal sub-regions as 

quantitative endophenotypes — heritable, robust brain markers that may be closer to the 

molecular basis of disease than diagnostic assessments in the clinic (Braskie and Ringman, 

2011; Glahn et al., 2007; Gottesman and Gould, 2003; Hasler and Northoff, 2011).

Several manual segmentation techniques have been developed to reconstruct hippocampal 

and parahippocampal subregions from T1-weighted MRI scans acquired at 3 to 7 T field 

strengths (Adler et al., 2014; La Joie et al., 2010; Van Leemput et al., 2009; Mueller et al., 

2007; Wisse et al., 2012). Although these methods typically segment the hippocampal 

subregions at remarkably fine-scaled resolution, a critical bottleneck for collaborative 

imaging initiatives such as ENIGMA is the need to manually label the subregion boundaries, 

which is laborious, time-consuming and susceptible to intra- and inter-observer variability 

(Van Leemput et al., 2009). Several automated protocols have been developed to address this 

issue, combining rules on image intensity and geometry to delineate the boundaries between 

hippocampal and parahippocampal subregions (Van Leemput et al., 2009; Yushkevich et al., 

2009, 2010). One often-used automated technique is provided as part of FreeSurfer, a freely 

available suite of neuroimaging structural analysis tools (Fischl, 2012).

Initial versions of the FreeSurfer algorithm (versions 5.1,5.2 and 5.3) produce subregion 

segmentations that are largely inconsistent with brain anatomy (de Flores et al., 2015; Pluta 

et al., 2012; Wisse et al., 2014). An updated version of the algorithm, to be released as part 
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of FreeSurfer version 6.0, uses a new statistical atlas constructed from ultra-high resolution 

ex vivo MRI (Iglesias et al., 2015). This revised algorithm produces subregion volume 

estimates that more closely match volumes derived from histological investigations (Iglesias 

et al., 2015). However, consensus is still lacking on the most appropriate subregion 

delineation protocol to use (Yushkevich et al., 2015). Here, using four independent samples, 

we set out to validate version 6.0 of the automated FreeSurfer algorithm from three 

complementary perspectives: First, we evaluated the algorithm’s ‘test-retest’ reliability; i.e. 
its ability to extract comparable subregion measures across multiple time points in two 

independent cohorts with different image acquisition parameters and age characteristics (our 

two samples differ in mean age by approximately 50 years). Second, we examined the 

algorithm’s ‘trans-platform’ reliability — defined as its ability to reproduce similar 

subregion measures across different MRI scanner platforms and field strengths (for example, 

3 T versus 1.5 T). Third, we investigated overall agreement between this new algorithm, 

which we will refer to as ‘FS6.0’, and the older algorithm, version 5.3, which we will refer 

to as ‘FS5.3’. The degree of quantitative deviation between volumes extracted using FS5.3 

and volumes extracted using FS6.0 may help users of the former evaluate the necessity of re-

processing their data with the latter.

Validation of a reliable, automated subregion segmentation tool may allow ENIGMA and 

other imaging consortia to study hippocampal subregions as fine-grained quantitative 

phenotypes in large-scale genome-wide association meta-analyses. However, to be 

considered a promising target for genetic mapping, the subregional volume estimates must 

show evidence of heritability (h2). Quantitative genetic analysis of automatically segmented, 

T1-weighted brain images from paired twin samples has frequently been employed to 

estimate the heritability of global volumetric measures. Prior estimates show that total 

hippocampal volume is highly heritable in both healthy adults (h2 = 0.66–0.71) (den Braber 

et al., 2013; van Erp et al., 2004; Wright et al., 2002) and children (h2 = 0.64–0.72) 

(Swagerman and Brouwer, 2014). However, structural variance within the whole 

hippocampus may be less heritable in elderly adults (h2 = 0.4–0.65) (DeStefano et al., 2009; 

Mather et al., 2015; Sullivan et al., 2001), possibly due to environmental stressors (Hedges 

and Woon, 2010), alterations in testosterone levels (Panizzon et al., 2012) or other 

endogenous biological factors. Similarly, total hippocampal volume is only moderately 

heritable in schizophrenia (h2 = 0.36–0.73) (Kaymaz and Os, 2009; Roalf et al., 2015). 

Thus, while the heritability of total hippocampal volume is well established across many 

populations, the heritability of structural variations in individual subregions has yet to be 

delineated. Therefore, in the second part of this study, we set out to disentangle the relative 

contributions of additive genetic variance and environmental influences on hippocampal 

subregion volume in two independent cohorts of healthy adults, and by this to assess the 

eligibility of such hippocampal subregion volumes as endophenotypes for future large-scale 

collaborative genetic association studies in ENIGMA.

Methods

Participants and imaging protocols

Four collections of MRI scans were analyzed in this study.
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ADNI-2

Subjects—For our test–retest and between-version reliability analyses, we analyzed 

publicly available data from 163 healthy control subjects from the second phase of the 

Alzheimer’s Disease Neuroimaging Initiative, ADNI-2 (81 women, 82 men, age mean ± SD 

= 73.58 ± 6.21 years) (http://adni.loni.usc.edu/). ADNI was launched in 2003 as a public-

private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal 

of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron 

emission tomography (PET), other biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of mild cognitive impairment 

(MCI) and early Alzheimer’s disease (AD). Further details of the ADNI project are given in 

Jack et al. (2010) and at http://www.adni-info.org.

Imaging—T1-weighted MR images were acquired using a 3 T General Electric (GE) 

Medical Systems scanner with the following parameters: 3-dimensional MP-RAGE, 8-

channel head coil, voxel size 1.2 × 1.2 × 1.2 mm, time to repeat (TR) = 400 ms, time to echo 

(TE) = 2.85 ms, flip angle = 11°, field of view (FOV) = 26 cm, resolution = 256 × 256 mm. 

A baseline and follow-up scan was acquired for all healthy controls, with an average inter-

scan interval of 3.3 months. Family trios or siblings were not scanned as part of the ADNI-2 

protocol, so this dataset was not included in our heritability analyses.

QTIM

Subjects—To estimate heritability and include an independent replication cohort for our 

test–retest reliability analysis, we analyzed MR images from healthy Caucasian young 

adults, collected as part of the Queensland Twins Imaging (QTIM) study. QTIM is a joint 

effort by researchers at QIMR Berghofer, The University of Queensland and the University 

of Southern California to study brain structure and function using T1-weighted MRI, high 

angular resolution diffusion imaging (HARDI) and functional MRI in a large population of 

young adult twins of European ancestry. Full details of the QTIM cohort are found in 

Zubicaray et al. (2008).

The heritability analysis included 728 individuals (132 monozygotic (MZ) sibling pairs and 

232 dizygotic (DZ) sibling pairs; 465 women and 263 men with an age mean ±SDof 

22.65± 2.73 years). The test–retest reliability analysis included a subset of the twins; 20 

women, 19 men; mean age in years (±SD) = 24.03 (±2.04), who were scanned twice, with 

an average interval of 3 months between scanning sessions.

Imaging—3-Dimensional T1-weighted images were acquired on a 4 T Bruker Medspec 

scanner using an inversion recovery rapid gradient echo protocol. Key acquisition 

parameters were: TI = 700 ms, TR = 1500 ms, TE = 3.35 ms, voxel size 0.94 × 0.98 × 0.98 

mm, flip angle = 8°, slice thickness = 0.9 mm, 256 × 256 acquisition matrix.

Max Planck Institute of Psychiatry (MPIP)

Subjects—As part of the (i) between-version agreement and (ii) transplatform reliability 

analyses, high resolution T1-weighted anatomical images collected at the Max Planck 

Institute of Psychiatry (MPIP), Munich, Germany, from 222 healthy participants and 367 
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patients with major depressive disorder (MDD) (334 women, 255 men, mean age ± SD = 

48.4 ± 13.5, age range: 18 to 87), were included, in addition to 20 healthy controls who were 

scanned on a 1.5 T and 3 T platform.

Imaging—The between-version comparison sample (total N = 589) was acquired on a 1.5 

T General Electric clinical scanner (T1-weighted SPGR 3D volume, TR 10030 ms; TE 3.4 

ms; 124 sagittal slices; matrix 256 × 256; FOV 23.0 × 23.0 cm2; voxel size 0.8975 × 0.8975 

× 1.2– 1.4] mm3; flip angle = 90°; birdcage resonator) with N = 186 of the total sample 

scanned after a coil upgrade (Signa Excite, sagittal T1-weighted spin echo sequence, TR 9.7 

s, TE 2.1 ms). For the trans-platform sample, one image was acquired on 3 T scanner 

(General Electric MR750, 3D BRAVO, TR 6.1 s; TE minimum; TI 450 ms, 124 sagittal 

slices; matrix 256 × 256; FOV 25.6 × 25.6 cm2; voxel size 1×1×1 mm3; flip angle = 12°) 

and a second image after immediate repositioning in the 1.5 T scanner (General Electric 

MR450, 3D FSPGR, TR 7.9 s; TE minimum, TI 450 ms, 188 sagittal slices; matrix 320 × 

256; FOV 24 × 24 cm2; voxel size 0.9375 × 0.9375 × 1 mm3; flip angle = 12°).

Netherlands Study of Depression and Anxiety (NESDA)

Subjects—To further assess the agreement between FreeSurfer versions, we analyzed data 

from 64 healthy controls and 157 patients with a diagnosis of MDD or comorbid anxiety 

disorder, collected as part of the Netherlands Study for Depression and Anxiety (NESDA) 

(145 women, 76 men, mean age ± SD = 38.14 ± 10.33 years, age range: 18 to 57).

Imaging—Imaging data were acquired using Philips 3 T magnetic resonance imaging 

systems (Best, The Netherlands) located at the Leiden University Medical Center, 

Amsterdam Medical Center, and University Medical Center Groningen. For each subject, 

anatomical images were obtained using a sagittal 3-dimensional gradient-echo T1-weighted 

sequence (repetition time, 9 ms, echo time, 3.5 ms; matrix, 256 × 256; voxel size, 1×1×1 

mm; 170 slices; duration, 4.5 min).

Full participant demographics for the ADNI-2, QTIM, MPIP and NESDA samples are 

detailed in Table 1.

Image processing

T1-weighted images were processed using FreeSurfer (FS) version 5.3.0 using the software 

package’s default, automated reconstruction protocol described by Anders M. Dale, Bruce 

Fischl and colleagues (‘recon-all’–see Dale et al., 1999; Fischl et al., 1999). Briefly, each 

T1-weighted image was subjected to an automated segmentation process involving: (i) 

conversion from three-dimensional nifti format, (ii) affine registration into Talairach space, 

(iii) normalization for variable intensities caused by inhomogeneities in the radiofrequency 

field, (iv) ‘skull-stripping’, i.e. extraction of the skull and extrameningeal tissues from each 

image, (v) segregation into left and right hemispheres using ‘cutting planes’, (vi) removal of 

the brain stem and cerebellum, (vii) correction for topology defects, (viii) definition of the 

gray/white matter and gray/cerebrospinal fluid boundaries using surface deformation (Fischl 

et al., 2004a) and (ix) parcellation of the subcortical region into distinct brain tissues, 

including the hippocampus, amygdala, thalamus, caudate nucleus, putamen, pallidum and 

Whelan et al. Page 6

Neuroimage. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



accumbens (Fischl et al., 2002, 2004a, 2004b). Using FreeSurfer’s native visualization 

toolbox, tkmedit, we visually inspected each image for over- or under-estimation of the gray/

white matter boundaries and to identify brain areas erroneously excluded during skull 

stripping.

Hippocampal subregion segmentation

After successful reconstruction of the whole hippocampus and its neighboring subcortical 

regions, we used a revised version of the automated subregion parcellation protocol 

previously described by Van Leemput and colleagues (Van Leemput et al., 2009) to segment 

specific subregions of the hippocampal formation in the QTIM, ADNI-2, NESDA and MPIP 

datasets. This revised module is compatible with FreeSurfer v5.3 (FS5.3) and will be freely 

distributed with FreeSurfer v6.0 (FS6.0) (Iglesias et al., 2015). Prior versions of the 

algorithm (FS5.1 to FS5.3) combined a single probabilistic atlas with high-resolution, T1-

weighted in-vivo manual segmentations to predict the locations of eight hippocampal 

subregions. The new version (FS6.0) predicts the location of twelve hippocampal 

subregions, using a refined probabilistic atlas built upon a combination of manual 

delineations of the hippocampal formation from 15 ultra-high resolution, ex-vivo MRI scans 

and manual annotations of the surrounding subcortical structures (e.g., amygdala, cortex) 

from an independent dataset of 39 in-vivo, T1-weighted, 1 mm resolution MRI scans 

(Iglesias et al., 2015). This revised algorithm features the following enhancements: (i) first-

hand knowledge of histological staining of the hippocampus by a neuroanatomist; (ii) a 

cytoarchitectural atlas of the hippocampal formation (Rosene and Hoesen, 1987); and (iii) 

highresolution, ex-vivo brain MRI scans (120 μm3), which show definitive borders between 

the subregions and greater consistency with manual segmentation methods (Yushkevich et 

al., 2015). Previous versions of the FreeSurfer algorithm reconstructed eight subregions per 

hemisphere, including the CA1, CA2/3, fimbria, subiculum, presubiculum, CA4/DG, 

hippocampal tail and hippocampal fissure. The new algorithm provides more anatomically 

sensitive reconstructions of these eight subregions as well as four new subregions: the 

parasubiculum, the molecular layer, granule cells in the molecular layer of the DG (GC-ML-

DG) and the hippocampal-amygdala transitional area (HATA).

Test–retest reliability analysis

Using FS6.0, we extracted volume estimates for the whole hippocampus and its twelve 

subregions from (i) the ADNI-2 and (ii) the QTIM cohorts. All QTIM and ADNI-2 images, 

including both test and re-test scans, were processed in parallel. After successful subregion 

segmentation, we used a custom-designed Matlab code to visually inspect each segmentation 

(see Fig. 1). Subregion volume estimates were exported to SPSS (for reliability analysis) and 

reformatted into phenotype covariance matrices (for heritability analysis described below).

Volume measures were imported into SPSS (IBM Corp., Version 21.0) and subjected to a 

series of two-way reliability analyses, using Cronbach’s alpha (α) (Cronbach, 1951) as a 

measure of internal consistency. Cronbach’s alpha is calculated as follows:

Whelan et al. Page 7

Neuroimage. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where N is the number of subregion volume estimates, c-bar is the average inter-subject 

covariance among these estimates and v-bar is the average variance. The resulting α, 

interpreted as the intraclass correlation coefficient (ICC), provides an estimate of how 

consistently the FreeSurfer v6.0 parcellation protocol reconstructs hippocampal subregions 

from baseline to follow-up scan. ICC ranges from 0 (indicating high variability between 

baseline and follow-up volume estimates) to 1 (denoting high reproducibility between 

baseline and follow-up estimates).

Between-version reliability analysis

We compared subregional hippocampal volumes estimates extracted using FS5.3 and FS6.0 

from three independently acquired cohorts: (i) baseline scans of the ADNI-2 cohort (N = 

163), (ii) the NESDA cohort (N = 221), and (iii) the MPIP cohort (N = 589). Volume 

measures for each subregion were bilaterally ‘averaged’ across the left and right 

hemispheres.

Volume measurements from FS6.0 are given in mm3, whereas volume measurements in 

FS5.3 are returned on the basis of 0.5 mm isotropic. Therefore, the latter set of volume 

estimates was divided by a factor of 8 in order to transform them to mm3 measurements.

Volume estimates for the eight sub-regions extracted using FS5.3 were imported into SPSS 

alongside eight of the twelve possible subregions extracted using FS6.0. Volume estimates 

for the parasubiculum, molecular layer, GC_ML_DG and HATA (extracted using FS6.0) had 

no direct corresponding subregions in FS5.3 and were not included in this between-version 

analysis. We conducted eight sets of two-way mixed reliability analyses, using the same 

statistical model applied for our prior test–retest comparison (Cronbach’s alpha). This 

produced a series of ICC values measuring the agreement between the old (FS5.3) and new 

(FS6.0) versions of the FreeSurfer subregion segmentation algorithm.

As a second measure of reproducibility and spatial overlap between FS5.3 and FS6.0, we 

employed a custom-designed Matlab code to extract a series of Dice similarity coefficients 

(DSC) for each hippocampal subregion. The DSC, first proposed by Dice (1945), provides a 

validation metric for evaluating reproducibility and has previously been used to assess 

spatial overlap between automated MRI reconstructions (Zou et al., 2006). DSC values 

range from 0 (indicating no spatial overlap between two sets of binary segmentations) to 1 

(full overlap between binary segmentations).

DSCs were calculated by dividing the sum of volumes segmented using FS5.3 and volumes 

segmented using FS6.0 by twice the volume of the intersection between these 

segmentations; i.e.

Whelan et al. Page 8

Neuroimage. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where A is the first hippocampal subregion (reconstructed using FS5.3), B is the second 

hippocampal subregion volume (reconstructed using FS6.0) and ∩ is the intersected space 

between the two subregions.

Trans-platform reliability analysis

20 pairs of T1-weighted images were acquired on a 1.5 T and a 3 T scanner system to 

investigate the stability of both FS5.3 and FS6.0 across platforms. The repositioning 

between the end of the first acquisition and the start of the second acquisition was performed 

as fast as possible, usually taking 2–3 min. Both subregional segmentation tools (FS5.3 and 

FS6.0) were employed on the 2 × 20 images. Subregional volume estimates were imported 

into SPSS (to extract ICC values) and Matlab (to estimate DSC scores) respectively. All ICC 

analyses were conducted using the same statistical models previously described for the test–

retest analysis.

Heritability of hippocampal subregion volumes

Heritability, defined here as the fraction of the phenotypic variability attributable to genetic 

variation, was calculated for each hippocampal subregion volume using a variance 

components model, as implemented in version 7.2.5 of the Sequential Oligogenic Linkage 

Analysis Routines (SOLAR) software package (http://www.nitrc.org/projects/se_linux) 

(Almasy and Blangero, 1998). Methods to estimate heritability in SOLAR are detailed 

elsewhere (Kochunov et al., 2010; Winkler et al., 2010).

Briefly, SOLAR implements a maximum likelihood variance decomposition method, 

expanding on prior algorithms developed by Amos (1994). The algorithm decomposes 

phenotypic variance (σ2
P) into a genetic  and a residual component  — the latter 

represents variation not accounted for by the genetic component (i.e., random environmental 

variation and/or experimental error). Mean volumes for the whole hippocampus and twelve 

of its subregions were extracted from all twin pairs in the QTIM sample (N = 132 MZ pairs 

and N = 232 dizygotic pairs) and reformatted into a phenotype covariance matrix. Each 

covariate matrix was adjusted to include sex, age, and age * sex interactions as covariates. 

The covariance matrix, Ω, for each pedigree of individuals was then integrated into the 

following expression:

where Ω represents covariance between one relative and another, Φ is the pair-wise kinship 

coefficient representing the relationship between these relatives (0.5 for full siblings), 

represents the additive genetic component of phenotypic variance, I is the identity matrix 

and  is residual non-genetic variation (i.e., individual-specific environmental variance).

Heritability (h2) was computed from this model by comparing the observed covariance 

matrix for phenotypic variance  with the observed covariance matrix for additive genetic 

effects , i.e.,
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Here, h2 is a value between 0 and 1 representing total additive genetic heritability, ranging 

from 0 (no genetic contributions) to 1 (all phenotypic variance reflects a genetic effect). 

Significance of heritability was estimated by computing a model in which σ2
g was 

constrained to zero, computing a second model in which σ2
g was estimated, and computing 

twice the difference between the first and second models’ log-likelihoods. For our analysis, 

we employed a polygenic model that calculated the effects of specific variables (additive 

genetic variation, and covariates including age, sex and sex * age interactions) in explaining 

each subregion’s volumetric variance within the QTIM population. Three main test statistics 

were then recorded for each subregion volume: its h2 estimate, the significance (p-value) of 

this heritability estimate and its standard error. All test statistics were compared to an 

adjusted alpha level of p ≤ 3.84 × 10−3 to reduce the probability of type 1 errors arising from 

multiple measurements (N = 13).

Results

Test–retest reliability

Test–retest reliability estimates from ADNI-2, a cohort of 163 healthy, elderly adults 

scanned three months apart at 3 T, revealed good reliability for all automatically segmented 

subregion volumes. Larger hippocampal regions (mean volume > 90 mm3) showed highest 

ICC values from baseline to follow-up session. These regions included the whole 

hippocampus (ICC ≥ 0.94), CA1 subregion (ICC ≥ 0.91), CA3 subregion (ICC ≥ 0.88), CA4 

subregion (ICC ≥ 0.9), molecular layer (ICC ≥ 0.93), subiculum (ICC ≥ 0.91), presubiculum 

(ICC ≥ 0.9), granule cells (ICC ≥ 0.91), hippocampal tail (ICC ≥ 0.93), hippocampal fissure 

(ICC ≥ 0.88) and fimbria (ICC ≥ 0.89). Automated segmentation was also stable for smaller 

subregions, including the HATA (ICC ≥ 0.78) and parasubiculum (ICC ≥ 0.75) (see Table 2).

Similarly, in the smaller QTIM sub-sample, consisting of 39 young, healthy adults scanned 

on average three months apart at 4 T, we found strong test–retest reliability for large 

subregions (mean volume > 90 mm3). These subregions included the CA1 (ICC ≥ 0.86), 

CA3 (ICC ≥ 0.78), CA4 (ICC ≥ 0.75), molecular layer (ICC ≥ 0.86), subiculum (ICC ≥ 0.8), 

granule cells (ICC ≥ 0.78), hippocampal tail (ICC ≥ 0.72), hippocampal fissure (ICC ≥ 0.7) 

and fimbria (ICC ≥ 0.8), as well as the whole hippocampus (ICC ≥ 0.85). Test–retest 

reliability of the presubiculum varied considerably from the left (ICC = 0.89) to the right 

hemisphere (ICC = 0.65). Volume estimates were moderately reproduced for the 

parasubiculum (ICC ≥ 0.68) and the HATA subregion (ICC ≥ 0.5).

Between-version agreement

In the MPIP cohort (N = 589, 3 T) we found strong agreement between versions 5.3 and 6.0 

of the FreeSurfer segmentation algorithm for the subiculum (0.857). We observed moderate 

agreement between the following subregions: (i) the hippocampal tail (ICC = 0.778), (ii) the 

fimbria (ICC = 0.78), (iii) the hippocampal fissure (ICC = 0.78) and (iv) the presubiculum 

(ICC = 0.797). Agreement between the three major sectors of the cornu ammonis (CA1, 
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CA2_3 and CA4) varied considerably; for example, the CA1 (extracted using FS6.0) showed 

strong agreement with the CA4/Dentate (extracted using FS5.3; ICC = 0.872) and CA2_3 

(extracted using FS5.3; ICC = 0.817) but only moderately correlated with its direct 

counterpart, CA1 (extracted using FS5.3; ICC = 0.645). Similarly, the CA4 subregion 

extracted using FS6.0 only moderately correlated with the combined CA4-DG from FS5.3 

(ICC = 0.66), whereas the CA3 extracted using FS6.0 correlated poorly with its closest 

counterpart in FS5.3, the CA2_3 (ICC = 0.383) (see Table 3).

The second set of ICCs, examining between-version agreement using volume estimates from 

the ADNI-2 cohort (N = 163, 3 T), revealed strong agreement between versions 5.3 and 6.0 

for (i) the hippocampal tail (ICC = 0.839), (ii) the fimbria (ICC = 0.805), (iii) the 

presubiculum (ICC = 0.825) and (iv) the subiculum (ICC = 0.833). Between-version 

agreement was moderate for the hippocampal fissure (ICC = 0.628) and the CA4 (ICC = 

0.633). The CA1 subregion (segmented using FS6.0) showed greater correspondence with 

FS5.3 reconstructions of the CA4_DG (ICC = 0.872) and CA2_3 (ICC = 0.817) than its 

direct anatomical counterpart, the CA1 (ICC = 0.645). Similarly, the CA3 (showed poor 

correlation between FS5.3 and FS6.0 (ICC = 0.344), although correlations were higher 

between the CA3 (extracted using FS6.0) and other subregions from FS5.3, including the 

CA1 (ICC = 0.523) and CA4_DG (ICC = 0.567) (see Table 4).

The third set of ICCs examined between-version agreement using values extracted from the 

NESDA cohort (N = 221, 3 T). This analysis revealed strong agreement between FS5.3 and 

FS6.0 for the subiculum (ICC = 0.815) and moderate agreement for the following 

subregions: (i) hippocampal tail (ICC = 0.778), (ii) fimbria (ICC = 0.758) and (iii) 

presubiculum (ICC = 0.783). CA1 volumes extracted using FS6.0 correlated moderately 

with CA1 volumes extracted using FS5.3 (ICC = 0.698), but correlated more highly with 

CA4_DG volumes extracted using FS5.3 (ICC = 0.856). Similarly, CA4 volumes extracted 

using FS6.0 correlated moderately with CA4_DG volumes from FS5.3 (ICC = 0.592), but 

correlated more highly with CA1 volumes from FS5.3 (ICC = 0.729). Further, the CA3 

subregion extracting using FS6.0 correlated poorly with the CA2_3 subregion extracted 

using FS5.3 (ICC = 0.334), but correlated moderately with the CA1 (0.679) and CA4_DG 

(0.545). Between-version agreement was poor for the hippocampal fissure (ICC = 0.321) 

(see Table 5).

A complementary analysis of spatial overlap and reproducibility (as measured by the Dice 

Similarity Coefficient, DSC) revealed high spatial overlap across the ADNI-2, MPIP and 

NESDA cohorts for the whole hippocampus (DSC = 0.82–0.85). Between-version 

agreement was moderate for the hippocampal tail across the three cohorts (DSC = 0.67–

0.70). Between-version agreement was poor-to-moderate for the CA4_DG (DSC = 0.49–

0.51), fimbria (DSC = 0.45–0.53), presubiculum (DSC = 0.57–0.62) and subiculum (DSC = 

0.55–0.58). Between-version agreement was poor for the CA1 (DSC = 0.39–0.4) and the 

CA2_3 (DSC = 0.28–0.30; see Table 6).

Trans-platform reliability

We conducted two sets of intraclass correlations, testing reliability across two MRI scanner 

platforms – 1.5 T and 3 T – using (i) FS5.3 and (ii) FS6.0, respectively. The subregion 
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segmentation algorithm provided as part of FS5.3 produced stable volume estimates across 

scanning platforms for the following regions: (i) the whole hippocampus (ICC = 0.855), (ii) 

the CA2_3 (ICC = 0.856), (iii) the CA4/dentate (ICC = 0.892), (iv) the presubiculum (ICC = 

0.818), (v) the subiculum (ICC = 0.866), (vi) the hippocampal tail (ICC = 0.875), (vii) the 

CA1 (ICC = 0.725) and (iix) the fimbria (ICC = 0.720). Volume estimates were not reliably 

reproduced across scanner platforms for the hippocampal fissure (ICC = 0.465) (see Table 

7).

The subregion segmentation algorithm provided as part of FS6.0 produced high ICC 

estimates for the following regions: (i) the whole hippocampus (ICC = 0.942), (ii) the 

subiculum (ICC = 0.858), (iii) the CA1 (ICC = 0.915), (iv) the presubiculum (ICC = 0.853), 

(v) the molecular layer (ICC = 0.932), (vi) the granule cells of the dentate gyrus (ICC = 

0.932), (vii) the hippocampal tail (ICC = 0.863), (iix) the CA3 (ICC = 0.827), (ix) the HATA 

(ICC = 0.801), (x) the CA4 (ICC = 0.792) and (xi) the fimbria (ICC = 0.721). Volume 

estimates were moderately correlated between scanning platforms for the parasubiculum 

(ICC = 0.659) and the hippocampal fissure (ICC = 0.575) (see Table 7).

Heritability of hippocampal subregion volumes

Fig. 2 shows the proportion of structural variance attributable to genetic factors for the 

whole hippocampus and its subregions in the QTIM sample. All regions exhibited high 

heritability, between 0.56 and 0.88. The highest heritability estimates (h2 ≥ 0.7) were 

observed for large regions with mean volumes of 220 mm3 or greater (i.e., the whole 

hippocampus, molecular layer, CA1, CA3, CA4, hippocampal tail, granule cell layer, 

subiculum and presubiculum). Smaller subregions (mean volume: 60–165 mm3) showed 

moderate-to-high heritability (0.55 < h2 < 0.7) (see Fig. 2). Table 8 shows the heritability 

estimates alongside their significance values and standard errors. Using a combination of 

FreeSurfer subregion labels and TrackVis (http://trackvis.org/), we constructed a three-

dimensional visualization of each heritability estimate, this shows how large, posterior 

subregions (i.e., the hippocampal tail) were most heritable, whereas smaller, anteromedial 

subregions (parasubiculum, presubiculum and fimbria) were less influenced by genetic 

factors (see Fig. 3).

Discussion

Here we evaluated a series of automatically segmented volumetric measures from the 

hippocampus and twelve of its major subregions as reliable, heritable quantitative 

phenotypes for future large-scale imaging genetics studies. We had four main findings. First, 

the most recent version of a widely employed FreeSurfer segmentation protocol (FS6.0) 

showed good test–retest reliability, both at3 T and 4 T in healthy young and older adults. 

Spatial overlap between segmentations produced at baseline and follow-up time points was 

moderate-to-high for all subregions, with the exception of the hippocampal fissure. Second, 

segmentations produced using FreeSurfer v6.0 showed strong reproducibility from 1.5 T to 3 

T field strengths. Third, subregional volume estimates varied between prior and revised 

versions of the FreeSurfer algorithm, with some subregions (e.g. the hippocampal tail) 

remaining stable, and others (e.g. the cornu ammonis) diverging notably from one version to 
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the next. Fourth, genetic factors significantly affected the volume of the human hippocampus 

and its twelve major subregions in a sample of healthy, adult twins. Multi-site genetic 

analysis may therefore be feasible for automatically extracted subregion measures, building 

on prior studies that detected common variants associated with overall hippocampal volume 

(Stein et al., 2012; Hibar et al., 2015).

FreeSurfer v6.0: Reliable test–retest segmentations of eleven hippocampal subregions

Automated parcellation algorithms are essential neuroimaging tools, as they facilitate the 

harmonized, time-efficient and precise reconstruction of brain regions across multiple sites. 

The automated subcortical segmentation protocol included in the FreeSurfer software 

package has been employed in several important imaging collaborations, leading to the 

discovery of genetic polymorphisms associated with subcortical and intracranial volumes 

(Hibar et al., 2015; Ikram et al., 2012; Stein et al., 2012) and the identification of robust 

subcortical alterations in large populations of people with schizophrenia (Van Erp et al., 

2015) and major depressive disorder (Schmaal et al., 2015). FreeSurfer has been validated as 

a reliable method to reconstruct and measure larger brain regions (Jovicich et al., 2006; 

Wonderlick et al., 2009), but early versions of its hippocampal subregion segmentation 

module were criticized by some as anatomically inaccurate, overly reliant on low-resolution 

images and not yet validated against manual tracing techniques (de Flores et al., 2015; Pluta 

et al., 2012; Wisse et al., 2014). Here, we found that a revised version of the FreeSurfer 

subregion segmentation tool, due to be released with FreeSurfer v6.0, produces reliable 

segmentations for eleven of the twelve hippocampal subregions at 3 T and 4 T field 

strengths. The most reliably reconstructed sub-regions included the hippocampal tail, CA1, 

CA4, presubiculum and subiculum. These subregions showed excellent test–retest reliability 

in two independent tests (ICC and DSC analysis) and in two unrelated cohorts (ADNI and 

QTIM).

Other subregions, including the dentate gyrus, CA3, fimbria, HATA and parasubiculum, 

showed strong test–retest reproducibility at 3 T field strength, but a wider range of test–

retest reproducibility at 4 T field strength. This discrepancy may be explained, in part, by the 

smaller sample size of the 4 T cohort (QTIM; N = 39) compared to the 3 T cohort (ADNI-2; 

N = 163). ICC estimates extracted from the 4 T cohort were associated with larger 

confidence intervals (CIs), many of which overlapped with CIs from the 3 T cohort (see 

Table 2). Voxel size differences between ADNI-2 (1.2 × 1.2 × 1.2 mm) and QTIM (0.94 × 

0.98 × 0.98 mm) may have also contributed towards these discrepancies: FreeSurfer 

resamples MR images to 1 mm isotropic voxel size during its automated reconstruction 

process and this interpolation procedure may produce variable resolutions in datasets that are 

‘down-sampled’ (i.e. ADNI-2) compared to those that are ‘up-sampled’ (i.e. QTIM).

Of the twelve subregions we investigated, only one – the hippocampal fissure – produced 

unreliable volume estimates between baseline and follow-up acquisitions. The hippocampal 

fissure is a vestigial sulcus located between the molecular layer of the hippocampus and the 

dentate gyrus. Several neuroanatomical and methodological variables may contribute to the 

inconsistent segmentation of this subregion. Its relatively small size and complex 

cytoarchitectural morphometry may make the subregion more susceptible to partial volume 
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effects caused by changes in the subject’s head positioning, variable tissue contrast profiles 

or even small, undetected changes in the MR signal (Morey et al., 2010). The relatively 

arbitrary boundary between the fissure and extrahippocampal cerebrospinal fluid (CSF) 

(Iglesias et al., 2015) may have also contributed towards its poor reproducibility.

Prior appraisals of the FS5.3 segmentation algorithm noted its inconsistent delineations of 

the hippocampal head and tail (Yushkevich et al., 2010). This new algorithm – FS6.0 – 

which relies upon a refined atlas built upon high-resolution ex vivo MRI data (Iglesias et al., 

2015), appears to reconstruct the hippocampal tail and parts of the hippocampal head (CA1, 

CA2/3) with a high degree of spatial overlap and test–retest reproducibility. Segmentations 

of the dentate gyrus have also been criticized in FS5.3, as they appear to mismatch with 

known anatomical boundaries (Wisse et al., 2014), In FS6.0, the dentate is reconstructed as 

three individual subregions, namely; the hilar region (CA4), the granule cells (GC-DG) and, 

partially, the molecular layer. Our study showed stable test–retest reliability in all three 

subregions.

Prior evaluations of the FS5.3 algorithm also noted that the CA1 is the smallest of the three 

cornu ammonis segmentations (CA1, CA2 & CA3), despite post-mortem studies 

contradictorily indicating that the CA1 is the largest and the CA2&3 are the smallest 

subfields (Wisse et al., 2014). This neuroanatomical inconsistency may yield misleading 

clinical interpretations: For example, FreeSurfer-based investigations of the human 

hippocampal subregions have associated neurological conditions such as MCI or 

Alzheimer’s disease with atrophy of the CA2&3 (Hanseeuw et al., 2011; Lim et al., 2012), 

whereas anatomical studies have reported the most profound atrophy in the CA1 (Simic et 

al., 1997; Rossler et al., 2002). Our findings suggest that this anatomical inconsistency 

appears to be resolved in FS6.0; the CA1 is now the largest and most reliably reconstructed 

of the three subfields (see Table 2). Future in-vivo investigations of the human hippocampal 

subregions should therefore prioritize the use of the revised algorithm, FS6.0, as our results 

show that FS6.0 reliably reproduces eleven major hippocampal subregions across two 

independent cohorts (QTIM and ADNI-2), despite differences in age, scanning interval and 

image acquisition method. Clinical findings reported using the algorithm’s predecessor, 

FS5.3, should be interpreted with caution.

Between-version agreement and trans-platform reliability: Implications for imaging 
consortia

International consortia like ENIGMA typically involve large-scale implementation of 

harmonized segmentation protocols across diverse networks of research laboratories. Many 

of these laboratories may have already processed their T1-weighted images through older 

versions (v5.1–5.3) of the FreeSurfer subregion segmentation tool, raising questions about 

the need to process their data through a new version of the algorithm. Here, we found strong 

agreement between older (v5.3) and newer (v6.0) versions of the tool for the hippocampal 

tail, presubiculum and subiculum. However, versions 5.3 and 6.0 produced variable volume 

estimates for the cornu ammonis, fimbria, and hippocampal fissure. These discrepancies 

were expected, due to the algorithm’s revised definitions of subregional borders (Iglesias et 

al., 2015). FS6.0 also produced four new subregions with no directly corresponding 
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structures in FS5.3 (the parasubiculum, molecular layer, granule cells of the dentate and 

HATA). Furthermore, version 6.0 produced slightly more consistent estimates across lower 

(1.5 T) and higher (3 T) MRI scanner field strengths. Overall, these findings suggest that the 

latest version of the FreeSurfer subregion segmentation algorithm is a more reliable, 

versatile and anatomically accurate tool than its predecessors (Iglesias et al., 2015). 

International consortia such as ENIGMA may benefit by encouraging all participating sites 

to process their imaging data with the revised segmentation tool (FS6.0). The combination 

of volume estimates acquired using previous (FS5.3) and revised (FS6.0) algorithms is not 

recommended.

Validating the human hippocampal subfields as quantitative phenotypes for genetic 
mapping

In the second part of this manuscript, we used SOLAR to calculate the heritability of all 

twelve automatically segmented hippocampal subregions. The greatest genetic effects were 

observed in larger subregions, particularly within the granule cells of the DG, molecular 

layer and the hippocampal tail (h2 = 0.74–0.91). Smaller subregions such as the 

hippocampal fissure and parasubiculum produced strong but lower heritability estimates (h2 

= 0.56–0.57). This pattern of heritability has previously been reported across the wider 

collection of subcortical structures, with larger regions (such as the thalamus) showing 

higher heritability than smaller regions (such as the amygdala) (see Hibar et al., 2015). 

These heritability fluctuations may be explained by the reduced measurement errors 

associated with larger segmentations. However, biological factors may also play a role. For 

example, the cornu ammonis is among the earliest brain regions to develop prenatally 

(Taupin, 2007), whereas the subiculum and CA2 are the first hippocampal subregions to 

mature postnatally (Jabès et al., 2011). The DG and hippocampal tail show accelerated 

patterns of neurogenesis after the first postnatal year (Insausti et al., 2010). In adult life, 

hippocampal neurons continue to proliferate from precursor cells in the DG (Kempermann et 

al., 2004). Given the early development of the CA subregions (Taupin, 2007) and 

hippocampal tail (Insausti et al., 2010) and the key memory-processing role of the DG in 

adulthood (Coras et al., 2014), it is likely that genetic factors significantly influence each 

region. Total hippocampal volume was also significantly heritable (h2 = 0.86–0.88) — 

supporting prior estimates from healthy populations; this further shows the impact of genetic 

factors on the structure as a whole (den Braber et al., 2013; Swagerman and Brouwer, 2014; 

van Erp et al., 2004; Wright et al., 2002).

Our main aim here was to identify reliable quantitative phenotypes that can be used in future 

collaborative genetic mapping efforts. A biomarker must satisfy several explicit criteria 

before it can be considered an endophenotype (Gottesman and Gould, 2003). First, it should 

be associated with illness in the population. Structural changes in the hippocampal 

subregions are implicated in a wide range of brain disorders, from Alzheimer’s disease to 

epilepsy and schizophrenia (Bartsch, 2012; Sala, 2008). Second, a useful quantitative 

endophenotype must be heritable. In this study, all major subregions of the hippocampus 

were highly influenced by additive genetic effects, with heritability estimates ranging from 

h2 = 0.56 to h2 = 0.91. All subregions, with the exception of the hippocampal fissure (which 

shows inconsistent volume estimates across image acquisition time points and field 
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strengths), could therefore be considered as reliable and robust quantitative phenotypes for 

future genetic mapping studies.

Limitations and future directions

In this collaborative investigation, we evaluated a revised version of the FreeSurfer 

subregion segmentation tool using data collected and analyzed at multiple, independent sites 

(ADNI-2, QTIM, MPIP and NESDA) at two different field strengths (3 T and 4 T) across 

large samples of healthy (QTIM, ADNI-2) and affected populations (MPIP, NESDA). We 

found that the revised algorithm produces heritable and reliable segmentations for eleven 

human hippocampal subregions, but future users should note some limitations. First, the 

algorithm has yet to be validated against manual segmentations. A recent quantitative 

comparison of 21 manual segmentation protocols, including the protocol used to generate 

manually annotated training data for the revised FreeSurfer algorithm, revealed significant 

variability among the labels used to define subregions, how boundaries were placed between 

labels, and the overall extent of the hippocampal formation that is labeled across protocols 

(Yushkevich et al., 2015). FS6.0 is already a reliable, accessible tool for automated 

subregion segmentation, but it continues to evolve alongside on-going efforts to harmonize 

hippocampal subfield protocols (The Hippocampal Subfields Group (HSG), 2014; see 

hippocampalsubfields.com). As such, it is inevitably subject to revisions as the field 

develops. Second, although the revised algorithm can segment T1-and T2-weighted images 

(and their combination; Iglesias et al., 2015), the results presented here are inferred from 

standard resolution, T1-weighted data only, which is more commonly available across large 

consortium efforts, such as ENIGMA. Test–retest reliability estimates were extracted using a 

series of 1.2 mm3 and ~0.95 mm3 isotropic images, respectively, possibly introducing 

measurement errors for smaller subregions like the fimbria (mean volume: 98.24 mm3), 

HATA (mean volume: 74.84 mm3) and parasubiculum (mean volume: 62.23 mm3) (see 

Table 2). Future versions of the FreeSurfer segmentation algorithm may yield more robust 

estimates for low resolution data (<1 mm3) by combining smaller subfields such as the 

subiculum and CA2/3. Third, while we observed good reliability between subregion 

segmentations acquired at 1.5 T and 3 T field strengths, test–retest reproducibility estimates 

were not established at 1.5 T.

Despite these limitations, the present study supports the utility of eleven automatically 

segmented hippocampal subregion volumes as quantitative endophenotypes for future 

imaging genetics collaborations. Progressing from macro-level investigations of large brain 

regions towards more fine-grained maps of specific hippocampal subregions may add more 

precise localization to GWAS effects. The ENIGMA consortium is now conducting related, 

finer-grained efforts using diffusion tensor imaging (Jahanshad et al., 2013; Kochunov et al., 

2015) and shape analysis (Thompson et al., 2014). Here, we evaluated the automated 

reconstruction of hippocampal subregion volumes as another useful intermediate biomarker 

for genome-wide association. As multi-center consortium efforts continue to discover genes 

associated with brain measures, future quantitative genetic investigations of specific 

hippocampal subregions may point to a more mechanistic understanding of these genes, and 

how they affect cognition, behavior and neurological illness.
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Conclusion

The hippocampal formation is one of the most profoundly disrupted brain regions in many 

neurological and psychiatric illnesses. As the present study illustrates, it is now possible to 

reconstruct eleven major subregions of the hippocampus using almost fully automated brain 

imaging methods, to a high degree of accuracy and reliability within and across populations. 

All eleven subregions are highly influenced by genetic factors. As the field of imaging 

genetics and large-scale imaging consortia continue to successfully identify genes associated 

with measures from the living human brain, our results may help these initiatives stratify 

their traits of interest and better understand the mechanisms of gene action.
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Fig. 1. 
Color-coded illustration of 11 hippocampal subfields in sagittal (top left), axial (bottom left) 

and coronal (top right) views. Subfield volumes for each participant were overlaid on their 

whole-brain T1-weighted image (‘nu.mgz’) and visually inspected for over- or under-

estimation of the hippocampal subfields. In the above rendering, a representative subject 

from the QTIM cohort was de-identified by blurring around the edges of the skull and face. 

The image was generated using FreeSurfer’s high-resolution visualization tool, FreeView 
(https://surfer.nmr.mgh.harvard.edu/fswiki/FreeviewGuide/).
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Fig. 2. 
Heritability of the whole hippocampus and its respective subfields in the QTIM cohort (N = 

728).
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Fig. 3. 
Three-dimensional visualization of narrow-sense heritability within twelve subfields of the 

human hippocampal formation, using the average heritability estimates calculated from the 

QTIM cohort. Heritability is represented as a heat map, with the most heritable subregions 

depicted in red (see: the hippocampal tail) and moderately heritable subfields colored in 

green/yellow (see: the hippocampal fissure and parasubiculum). The first image (on the left) 

is a full reconstruction of the hippocampal formation, showing the most lateral subfields 

including the CA1, CA3, hippocampal tail (‘hippo. tail’), fimbria and hippocampal-

amygdaloid transition area (‘HATA’). The middle image removes some lateral substructures, 

including the fimbria and CA3, in order to display mid-lying subfields including the 

hippocampal fissure (‘hippo. fissure’), molecular layer and granule cells of the DG (‘ML-
DG’) and CA4. The third image (on the right) further removes these subfields in order to 

display three remaining medial sub-regions, including the subiculum, presubiculum and 

parasubiculum. This rendering represents bilateral h2 estimates, although only the left 

hippocampus is shown here. Image generated using TrackVis (http://trackvis.org/).
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Table 7

Trans-platform reliability across 1.5 T and 3 T field strengths, using estimates extracted from using FreeSurfer 

v5.3 and v6.0 (MPIP cohort, N = 10, 3 T).

Region (bilateral) ICC (FS 5.3) ICC (FS 6.0)

Whole hippocampus 0.855 0.960

CA1 0.725 0.915

CA2 3 0.856 0.871

CA4_DG 0.892 0.792

Fimbria 0.720 0.721

Fissure 0.465 0.575

Presubiculum 0.818 0.853

Subiculum 0.866 0.858

Tail 0.875 0.863

Parasubiculum – 0.659

GC-ML-DG – 0.828

Molecular_layer_HP – 0.932

HATA – 0.801

Median cross-platform reliability ICC across values = 0.855 (FreeSurfer 5.3), 0.853 (FreeSurfer 6.0).
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Table 8

Heritability estimates for hippocampal subfield volumes, calculated using FreeSurfer v6.0 (QTIM cohort, N = 

728, 4 T).

Region QTIM

h2 Std. error p-Value

Hippocampal fissure 0.56 0.06 1.90 × 10−14

Parasubiculum 0.57 0.05 6.16 × 10−17

Fimbria 0.64 0.05 3.06 × 10−19

HATA 0.67 0.04 2.76 × 10−24

CA3 0.75 0.03 4.23 × 10−33

Subiculum 0.76 0.03 5.02 × 10−32

CA4 0.79 0.03 1.27 × 10−38

Presubiculum 0.72 0.04 6.80 × 10−30

CA1 0.84 0.02 2.54 × 10−47

Granule cells of DG 0.82 0.03 5.66 × 10−41

Molecular layer of DG 0.85 0.02 2.56 × 10−49

Whole hippocampus 0.88 0.01 1.19 × 10−54

Hippocampal tail 0.84 0.02 3.28 × 10−44
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