
BioMed CentralBMC Genomics

ss
Open AcceResearch article
Transcriptome analysis of the venom gland of the scorpion 
Scorpiops jendeki: implication for the evolution of the scorpion 
venom arsenal
Yibao Ma†, Ruiming Zhao†, Yawen He, Songryong Li, Jun Liu, Yingliang Wu, 
Zhijian Cao* and Wenxin Li*

Address: State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, PR China

Email: Yibao Ma - mayibao@163.com; Ruiming Zhao - ruiming_oscar@163.com; Yawen He - hesunrise@sohu.com; 
Songryong Li - lisongryong@163.com; Jun Liu - snailliujun@gmail.com; Yingliang Wu - ylwu@whu.edu.cn; Zhijian Cao* - zjcao@whu.edu.cn; 
Wenxin Li* - liwxlab@whu.edu.cn

* Corresponding authors    †Equal contributors

Abstract
Background: The family Euscorpiidae, which covers Europe, Asia, Africa, and America, is one of
the most widely distributed scorpion groups. However, no studies have been conducted on the
venom of a Euscorpiidae species yet. In this work, we performed a transcriptomic approach for
characterizing the venom components from a Euscorpiidae scorpion, Scorpiops jendeki.

Results: There are ten known types of venom peptides and proteins obtained from Scorpiops
jendeki. Great diversity is observed in primary sequences of most highly expressed types. The most
highly expressed types are cytolytic peptides and serine proteases. Neurotoxins specific for sodium
channels, which are major groups of venom components from Buthidae scorpions, are not
detected in this study. In addition to those known types of venom peptides and proteins, we also
obtain nine atypical types of venom molecules which haven't been observed in any other scorpion
species studied to date.

Conclusion: This work provides the first set of cDNAs from Scorpiops jendeki, and one of the few
transcriptomic analyses from a scorpion. This allows the characterization of a large number of
venom molecules, belonging to either known or atypical types of scorpion venom peptides and
proteins. Besides, our work could provide some clues to the evolution of the scorpion venom
arsenal by comparison with venom data from other scorpion lineages.

Background
Based on cladistic morphological analysis, the extant scor-
pions can be phylogenetically divided into 14 families[1].
All scorpions possess a homologous venom apparatus
which consists of the vesicle holding a pair of venom
glands and the hypodermic aculeus used to inject the
venom[2]. Scorpion venom is a combinatorial library of

peptides and proteins which could cause toxicological
responses and can be candidates for drug design and
development[3]. The general compositions of scorpion
venoms vary among different families. For instance, in a
comparative LC/MS analysis of two scorpion species from
the families Buthidae and Ischnuridae, vast abundance
difference was observed in venom components with
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molecular size from 5000 to 10,000 Da[4]. Furthermore,
such differences in venom compositions could also be
observed from genus to genus, and even between different
species within a genus[5,6].

Hundreds of venom peptides and proteins have been
characterized from various scorpion species[7]. It is note-
worthy that most of these venom molecules are obtained
by either bioassay-guided fractionation or PCR-based
methods conducted with cDNA libraries. Due to their
medical importance, most research performed to date has
focused on Buthidae scorpions. Buthid venoms mainly
consist of four different families of neurotoxins which
specifically target ion channels, including sodium chan-
nels, potassium channels, chloride channels, and calcium
channels [8-10]. However, in contrary to buthids, little
attention has been paid to the other thirteen non-Buthi-
dae families. As several classes of venom peptides and pro-
teins from non-Buthidae scorpions were shown to possess
unique primary sequences and biological activity, it is
worth exploring the venom compositions of non-Buthi-
dae scorpions[4].

The scorpion Scorpiops jendeki is distributed in Yunnan
province, Southwest China[11]. It was once considered to
be a member of the family Scorpiopidae, but now it is
classified into the family Euscorpiidae after a very thor-
ough phylogenetic analysis[1]. The Euscorpiidae family is
among the most widely distributed groups of extant scor-
pions, and it covers Europe, Asia, Africa, and America[1].
Euscorpiids are considered to be harmless scorpions
which possess no threat to human health. So far, eus-
corpiid venoms haven't been studied yet.

Different from bioassay-guided isolation, an "-ome"
approach such as transcriptomic or proteomic analysis
could help uncover the real diversity of scorpion venom
components. Not only known types of venom peptides
and proteins but also atypical venom molecules could be
obtained by such an approach. Until now, proteomic
studies have been employed in assessing the diversity of
venom compositions from several scorpion species[12].
Only one transcriptomic analysis has been conducted on
the venom gland of a scorpion[13]. An extensive knowl-
edge of venom compositions from different scorpion spe-
cies is helpful in understanding the envenomation and
providing candidate molecules for drug development.
Furthermore, comparative analysis of venom constituents
from different scorpion lineages could also provide a clue
to the evolutionary track of scorpion venom arsenal, as
illustrated in the snake venom systems [14-16].

In this work, we carried an EST approach to overview the
transcriptome of the Scorpiops jendeki venom gland. A
great number of venom peptides and proteins, belonging

to known and atypical toxin types, were identified
through the first transcriptome study on the venom gland
of a Euscorpiidae scorpion. Besides, venom data compar-
ison among different scorpion lineages provides some
clues to the evolutionary track of the scorpion venom
arsenal.

Results
EST sequencing and clustering
The titer of the non-amplified cDNA library is 3.5 × 106

cfu/ml with more than 98% recombination efficiency.
The random sequencing of this library gave readable
sequences for a total of 871 clones. After being processed
as described in the "Materials and Methods" section, the
high quality EST sequences were submitted into the
dbEST (accession numbers: GH547439–GH548309). The
average length of these processed sequences was 546 bp.
After being grouped with stringent parameters, the ESTs
formed 293 clusters of unique sequences, including 199
singletons and 94 contigs consisting of two or more ESTs
(Figure 1). In this study, the terms "contig" and "single-
ton" were used as the same meaning as described in Egas-
sembler[17].

To attempt a functional classification of these unique
sequences, we compared the consensual cluster sequences
against SWISS-PROT and GenBank NCBI databases by
BLAST algorithms. 208 clusters (644 ESTs) provided sig-
nificant hits (Expect value < e-4), whereas the other 85
clusters (227 ESTs) hadn't good matches (Table 1).
Among the matched clones, 59 clusters (445 ESTs) are
deduced to be secretory peptides and proteins. For the
non-match set, the longest ORFs from each cluster were
predicted and screened for possible signal peptides.
Among the non-matched clones, 39 clusters (175 ESTs)
are supposed to possess a signal peptide, and 26 clusters
(27 ESTs) haven't ORF found. Since the cDNA library was
not amplified, the clone number was expected to reflect
the actual prevalence of a given transcript in the original
biological sample. So transcripts related to secretory pro-
teins, including venom peptides and other physiological
proteins, make up more than 70% of total ESTs of the
Scorpiops jendeki venom gland.

Known toxin types
10 known toxin types have been characterized from the
scorpion Scorpiops jendeki. They are encoded by 359 ESTs
(33 clusters), accounting for approximately 40% of the
total venom gland transcripts (Table 1).

a-KTx
a-KTxs have a wide phylogenetic distribution, and have
been obtained from almost all scorpion species studied so
far[8]. The newly identified a-KTxs are encoded by seven
clusters (six contigs and one singleton, 45 ESTs). Among
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them, three clusters (SJE076C, SJE093C and SJE094C)
code for a-KTxs contrained by 3 disulfide bridges, whereas
the other clusters for a-KTxs with four disulfide bridges
(Figure 2). For some toxins, the fourth disulfide bridge is
of great importance in reaching the correct bioactive con-
formation[18]. They share the Toxin_2 domain (Pfam:
PF00451) with other previously characterized scorpion
short-chain toxins which could act on shaker-related chan-
nels or Ca2+-activated K+-channels[8].

It is noteworthy that SJE042C consists of two almost iden-
tical ESTs differing by only a few nucleotides. The trans-
lated sequences are named SJE042C.1 and SJE042C.2,
respectively. Similar phenomenon has also been exten-

sively observed in other types of venom peptides and pro-
teins discussed followingly. The possibility that these
minor differences are derived in the course of cDNA
library construction and sequencing could be excluded, as
the phenomenon can hardly be observed in the clusters
encoding common cellular proteins[19]. Such subtle dif-
ferences in EST sequences reflect the polymorphism of
scorpion venom peptide genes[20].

Interestingly, although SJE009C have four disulfide
bridges, it shows closer relationship with SJE093C and
SJE094C, the a-KTxs with three disulfide bridges. This
highlights the evolutionary relationship between a-KTxs

ESTs distribution by cluster sizeFigure 1
ESTs distribution by cluster size. For instance, there are 6 clusters of size 6, accounting for a sum of 36 ESTs.
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Table 1: Distribution of 293 clusers assembled from the scorpion Scorpiops jendeki

Category Secretory (clusters/ESTs) Non-Secretory
(clusters/ESTs)

Non ORF
(clusters/ESTs)

Matching sequences
Similar to venom peptide transcripts 33 (359)
Not similar to venom peptide transcripts 26 (86) 149 (199)

Non-matching sequences 39 (175) 20 (25) 26 (27)

Total 98 (620) 169 (224) 26 (27)
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with 3 disulfide bridges and those with 4 disulfide
bridges.

Scorpine-like peptide
Due to poor knowledge of their functions, scorpine-like
peptides were once classified into "orphan" venom com-
ponents[21]. Several recent studies have demonstrated
that scorpines possess anti-malaria and antimicrobial
activities[22,23]. Besides, they can also function as K+

channel blockers[24]. Two clusters of scorpine-like pep-
tides, SJE005C and SJE056C, were identified in this work
(Figure 3A). They show great similarity with scorpine-like
peptides obtained from other scorpion species, such as
Heterometrus laoticus and Hadrurus gertschi[13,25].

Scorpine-like peptides show obvious sequence similarity
to b-family of KTxs. But distinct to b-KTxs, they don't pos-
sess a putative short pro-sequence following the signal
peptide[21]. Until now, all scorpine-like peptides are
exclusively obtained from non-Buthidae scorpions,
whereas all b-KTxs are from Buthidae scorpions (Figure
3B). The Scorpine-like peptide Tco 41.46-2, which is iso-
lated from Tityus costatus (Buthidae), should be classified
into b-KTxs, based on sequence similarity and the pres-
ence of a pro-peptide[24]. As scorpion neurotoxins are
paralogous genes of defensins, scorpion defensins were
used to root the phylogeny tree[26,27]. The reconstructed
phylogeny relationship strongly suggests that b-KTxs and
scorpine-like peptides share a common ancestor before
the lineage split between Buthidae and the non-Buthidae
families. After the lineage split, b-KTxs and scorpine-like
peptides evolve independently in different scorpion fami-
lies.

Calcine
Calcines can act against ryanodine receptors, a type of
intracellular endoplasmic/SR (sarcoplasmic reticulum)

calcium release channels distributed in cardiac and skele-
tal muscle[28,29]. They penetrate into the cell via interac-
tion with membrane lipids[30]. Structurally, they are
characterized to harbor an inhibitor cystine knot fold,
which is shared by a large number of polypeptides from
diverse animal species[31,32]. Based on their cell-pene-
trating ability, calcines have been used as a non-toxic drug
carrier to overcomes drug resistance in cancer therapy[33].
In this study, one cluster (SJE010C, 51 ESTs) were identi-
fied to encode calcines (Figure 4). There are five variants
(SJE010C.1-SJE010C.5) with subtle differences. Interest-
ingly, the cysteine pattern has been changed in SJE010C.1.
These newly identified calcines also harbor the Toxin_27
domain (Pfam: PF08099).

Cytolytic peptide
The first cytolytic linear peptide, named IsCT, was got
from the scorpion Opisthacanthus madagascariensis, a
member of the family Scorpionidae[34,35]. Then this
type of venom peptides were later found in the scorpion
Mesobuthus martensii (Buthidae)[36]. Their precursors
consist of a signal peptide, a mature peptide and a C-ter-
minal propeptide rich in acidic amino acids. Cytolytic
peptides possess broad activity spectra against microbes
and hemolytic activity. They are suggested to lyse cell
membranes via pore formation or destabilization of
membrane phospholipid packing, based on their
amphiphilic a-helical structures[37].

In the transcriptome of the Scorpiops jendeki venom gland,
cytolytic peptide precursors are the most highly expressed
venom peptide transcripts. There are nine clusters (eight
contigs and one singleton, 88 ESTs), representing approx-
imately 10% of venom gland mRNAs. In contrast, in our
previous investigation of Mesobuthus martensii venom,
cytolytic peptides were observed at a rather low expression
level (data not shown). Based on sequence similarity, the

Sequence alignment of a-KTxsFigure 2
Sequence alignment of a-KTxs. SJEs are clusters from this work. The others are Q6XLL5 (alpha-KTx 6.10, Opistophthalmus 
carinatus), and A9QLM3 (LmKTx8, Lychas mucronatus).
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cytolytic peptides obtained in this study are divided into
two clades: SJE020C, SJE063C and SJE122S form one
clade; while the other clade consists of SJE007C, SJE026C,
SJE046C, SJE048C, SJE072C and SJE086C(Figure 5).
Translated sequences from each clade are almost identical
in the signal peptide region, but rather variable in mature
peptide and propeptide regions.

Trypsin inhibitor like (TIL) peptide
A trypsin inhibitor like venom peptide, BmKAPi, has pre-
viously been characterized from the scorpion Mesobuthus
martensii[38]. The trypsin inhibitor like domain (Pfam:
PF01826) contains ten cysteine residues that form five
disulphide bonds[39]. However, the exact function of
trypsin inhibitor like peptides from scorpion venoms

ScorpinesFigure 3
Scorpines. (A) Sequence alignment of scorpines. SJEs are clusters from this work. The others are P56972 (Scorpine, Pandinus 
imperator), P0C2F4 (Heteroscorpine-1, Heterometrus laoticus), and Q5WR01 (Opiscorpine-2, Opistophthalmus carinatus). (B) 
Phylogeny analysis of b-KTxs and scorpines from scorpion venoms. To minimize confusions, all proteins from previous work 
are represented by their SWISS-PROT accession numbers. Scorpion defensins are used to root the phylogeny tree.
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hasn't been clarified[40]. Four clusters (three contigs and
one singleton, 15 ESTs) were identified to encode trypsin
inhibitor like peptides (Figure 6).

Of note, SJE017C is almost identical to SJE037C, except
for a 72 bp insertion into the former. Which molecular
mechanism causes this phenomenon would depend on
uncovering their genomic organizations and structures.
Interestingly, a nonsense mutation in the 72 bp insertion
of SJE017C results in a premature stop codon. Three ESTs
in SJE017C represent different transcripts of the same
gene, as they are not completely identical. So the possibil-
ity of an error in the sequencing is excluded. Resequencing
these three clones further supports the nonsense muta-
tion. So the cluster SJE017C may represent a pseudogene.

Secretory peptides with trypsin inhibitor like domain can
also be found in the venom glands of mosquito[41-43].
They function as serine protease inhibitors or antimicro-
bial peptides[44,45]. So convergent evolution has repeat-
edly selected genes coding for proteins containing the
trypsin inhibitor like cysteine rich domain as templates
for venom molecules[46].

Lysozyme
The known lysozymes within the animal phyla are classi-
fied into 3 different types: chicken type (c-type), inverte-
brate type (i-type), goose-type (g-type)[47]. A c-type
lysozyme has previously been partially sequenced in a
proteomic analysis of the venom from the scorpion Tityus
stigmurus[5]. In this work, one cluster (SJE022C, 9 ESTs)

Sequence alignment of calcinesFigure 4
Sequence alignment of calcines. SJEs are clusters from this work. The others are P60252 (Opicalcin-1, Opistophthalmus car-
inatu), P60254 (Maurocalcin, Scorpio maurus palmatus), and Q8I6X9 (BmCa-1, Mesobuthus martensii).

Sequence alignment of cytolytic peptidesFigure 5
Sequence alignment of cytolytic peptides. SJEs are clusters from this work. Q8MMJ7 is cytotoxic linear peptide IsCT 
from the scorpion Opisthacanthus madagascariensis, and Q6JQN2 is BmKn2 from Mesobuthus martensii.
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was identified to code c-type lysozymes (Figure 7). They
are greatly homologous to c-type lysozymes from other
sources. Generally, lysozymes play an important defense
role in the innate immunity. The exact biological role of
lysozymes from scorpion venoms remains to be explored,
as they have a relatively high expression level. As demon-
strated in a previous report, lysozyme can also function as
the termite egg recognition pheromone[48].

La1-like peptides
La1 is the most abundant venom peptide obtained from
the scorpion Liocheles australasiae[4], which was once con-
sidered to be a member of the family Hemiscorpiidae, but
now has been classified into the family Ischnuridae[1].
Acturally, this type of venom peptides was firstly charac-
terized from the scorpion Mesobuthus martensii at the tran-
script level. Until now, there have been no clues to their

Sequence alignment of trypsin inhibitor like (TIL) peptidesFigure 6
Sequence alignment of trypsin inhibitor like (TIL) peptides. SJEs are clusters from this work. The others are Q17PK3 
(Cysteine-rich venom protein, Aedes aegypti), Q1HRK9 (TIL domain-containing cysteine-rich salivary secreted peptide, Aedes 
aegypti), and Q86RQ7 (Venom peptide BmKAPi, Mesobuthus martensii).

Sequence alignment of lysozymesFigure 7
Sequence alignment of lysozymes. SJEs are clusters from this work. The others are Q86QP2 (Lysozyme, Branchiostoma 
belcheri tsingtauense), Q6IUF5 (Lysozyme C, Branchiostoma belcheri tsingtauense), Q95V68 (Lysozyme, Ornithodoros moubata), 
and Q7YZS5 (Lysozyme, Triatoma infestans).
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biological function. This work revealed six clusters of La1-
like peptides, including four contigs and two singletons
(Figure 8). In terms of primary sequence similarity and the
position of eight cysteines, they are homologous to sev-
eral known peptides, including secretory peptides from
the salivary gland of Ixodes scapularis ticks[49]. This dem-
onstrates that La1-like peptides have an ancient ori-
gin[50].

Opistoporin like peptide
The cluster SJE051C is identified to encode an antimicro-
bial peptide which shares the Antimicrobial_7 domain
(Pfam: PF08102) with opistoporins and pandinin (Figure
9). Opistoporins are antimicrobial peptides isolated from
the venom of the South-African scorpion Opistophtalmus
carinatus, whereas pandinin is from the scorpion Pandinus
imperator[51,52]. These peptides form essentially amphip-
athic helical structures and demonstrate high antimicro-
bial efficiency against Gram-negative and Gram-positive

bacteria. Besides, it is also homologous to BmKbpp,
which is a bradykinin-potentiating peptide obtained from
the Chinese scorpion Mesobuthus martensii[53].

Anionic peptide
Anionic peptides have previously been characterized from
Mesobuthus martensii and Tityus costatus, two scorpion spe-
cies from the family Buthidae[36,54]. As the name sug-
gests, this type of venom peptides are rich in acidic amino
acid residues (aspartic acid and glutamic acid). A cluster
(SJE089C, 2 ESTs) was identified to encode anionic pep-
tides (Figure 10). It is not clear what their biological role
is. As the vast majority of scorpion venom peptides are
basic, anionic peptides are suggested to play a part in bal-
ancing the pH value of scorpion venom liquid[36].

SPSVs (serine proteases from scorpion venoms)
To date, most studies performed on scorpion venoms
have focused on isolation and characterization of neuro-

Sequence alignment of La1 like peptidesFigure 8
Sequence alignment of La1 like peptides. SJEs are clusters from this work. The others are P0C5F3 (Venom peptide La1, 
Liocheles australasiae), Q4PMM0 (Putative secreted salivary protein, Ixodes scapularis), and Q95P92(TXLP1, Mesobuthus marten-
sii).
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toxins and antimicrobial peptides. Although proteolytic
enzyme activities have been detected in the venom of sev-
eral scorpion species for a long time[55,56], the first ser-
ine proteinase-like protein has recently been purified and
partially sequenced in a screen for drug candidates target-
ing cancer cells[57]. Two clusters (SJE003C and SJE030C,
78 ESTs) were identified to encode serine proteases from
scorpion venoms, here named SPSVs (Figure 11). As their
precursors are composed of more than 200 amino acid
residues, they represent important parts of the venom pro-
teins with high molecular weight (>20 KDa). SPSVs may
be involved in post-translational processing of other
venom peptides, and can also function as "spreading fac-
tors" in order to facilitate the spread of other venom pep-
tides[56].

The atypical possible toxin types
In addition to those known types of venom peptides and
proteins as described above, there are also several clusters
supposed to encode novel venom peptide types, base on
their high expression level and the presence of the signal
peptide.

A highly expressed type of venom peptides was identified
to be encoded by clusters SJE002C and SJE021C contain-
ing 37 and 22 ESTs each (Figure 12). Here we named them
jendins. They have no hit found against any public data-
base, indicating that jendins are an atypical peptide types
from scorpion venoms. Jendin precursors consist of a sig-

nal sequence of 23 residues and a premature peptide of 37
residues. The premature peptide has a typical processing
signal (Gly-Lys-Arg) at positions 14–16[36]. It remains to
be explored whether jendins have a similar post-transla-
tional processing as cytolytic peptides[34,58]. Further-
more, their biological function remains to be investigated.

Besides, there are several medium-abundant clusters
which are deduced to encode eight novel types of scor-
pion venom peptides [see Additional file 1]. They are
either cysteine-free or cysteine-rich. Similar to jendins,
they have not homologs found from public database. The
presence of atypical venom peptides and proteins indi-
cates that scorpion venoms are a rather complex pool, and
multiple currently unkown types of venom peptides and
proteins remain to be characterized from different scor-
pion lineages.

Common cellular protein ESTs
The scorpion venom gland is a specialized organ for syn-
thesizing and secreting venom components. As demon-
strated in Scorpiops jendeki, transcripts for different types of
venom peptides and proteins account for more than 50%
of the full transcriptome. So it is interesting to overview
the physiological state of the venom gland when it highly
expresses venom peptides and proteins.

Among the matched non-toxin transcripts, 153 clusters
(260 ESTs) have their physiological function found (Fig-

Sequence alignment of Opistoporin like peptidesFigure 9
Sequence alignment of Opistoporin like peptides. SJEs are clusters from this work. The others are P83313 (Opistop-
orin-1, Opistophthalmus carinatus), Q5VJS9 (Opistoporin4, Opistophthalmus carinatus), Q9Y0X4 (Bradykinin-potentiating peptide 
BmK3, Mesobuthus martensii), P83314 (Opistoporin-2, Opistophthalmus carinatus), and P83239 (Pandinin-1, Pandinus imperator).

Sequence alignment of anionic peptidesFigure 10
Sequence alignment of anionic peptides. SJEs are clusters from this work. Q5G8B2, Q5G8A9, Q5G8B1, and Q5G8B0 
are different anionic peptides from the scorpion Tityus costatus.
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ure 13). Most of these clusters consist of only one or a few
ESTs. Although the limited sequencing data of this study
is far from the complete description of Scorpiops jendeki
venom gland, it could be used to roughly estimate the
ralative redundance of each category. Genes, which are
involved in RNA transcription and especially protein
metabolism, are highly expressed in the Scorpiops jendeki
venom gland. The molecules related to protein metabo-
lism are mainly diverse kinds of ribosomal proteins

responsible for protein synthesis. Besides, protein synthe-
sis and other metabolic process are highly energy-con-
suming, and protein processing and transporting is also
intense for the newly-synthesized venom peptides.
Accordingly, high expression levels are also observed in
the gene sets within the transport category which are
mainly responsible for the energy generation and protein
sorting.

N-terminal sequence alignment of SPSVs (serine proteases from scorpion venoms)Figure 11
N-terminal sequence alignment of SPSVs (serine proteases from scorpion venoms). SJEs are clusters from this 
work. P0C8M2 is BMK-CBP obtained from the scorpion Mesobuthus martensii.

Sequence alignment of jendinsFigure 12
Sequence alignment of jendins. SJEs are clusters from this work. The boxed "GKR" part of the translated sequences rep-
resents typical processing signal.
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Discussion
During more than 400 million years of evolution, scorpi-
ons have developed an efficient venom arsenal, composed
of extremely diverse active components, to prey captures
and deter competitors. The venom molecules are able to
induce both toxicological and immunological responses,
and also offer a tremendous resource for use in drug devel-
opment. Usually transcriptome or proteome approach is
employed to explore the complexity of venom compo-
nents. Several recent studies performed on many venom-
ous species demonstrate that venom proteome and
transcriptome depart in their relative abundances of dif-
ferent toxin families[59,60]. However, the ESTs-based
transcriptome strategy has been shown to be effective in
uncovering the real diversity of venom composi-
tions[13,61]. Not only sequences of known toxin types
but also atypical venom molecules could be characterized
by such a transcriptomic approach.

In this work, we have employed a transcriptomic
approach to investigate possible venom components
from the scorpion Scorpiops jendeki. Before RNA extrac-
tion, the scorpion specimens are milked by electrical stim-
ulation. So the gene expression profiling obtained in this

work represents the activated-state transcription of the
venom glands. The transcripts for possible venom consti-
tutes make up approximately 50% of the Scorpiops jendeki
transcirptome. It is much higher than that observed for
the scorpion Hadrurus gertschi (approximately 30%)[13].
Such difference may be attributed to genetic varia-
tions[12]. This work could be used in comparative studies
of gene expression profiling among different scorpion
species.

Among different scorpion venoms, there are great varia-
bility in proportion of different types of venom peptides
and proteins. A previous study conducted a comparative
proteomic analysis of scorpion venom components with
the method of mass finger print comparison among three
different Tityus venoms[12]. It shows that the proportion
of molecular weight distribution is rather variable among
Tityus cambridgei, Tityus costatus and Tityus discrepans. Until
now, there is only one transcriptome study of scorpion
venom glands[13]. In the transcriptome of the Hadrurus
gertschi venom gland, a-KTxs and scorpine-like peptides
are most highly expressed, accounting 17.7% of the total
ESTs. However, the most prevalent types of venom pep-
tides and proteins are cytolytic peptides and SPSVs in Scor-

Functional characterization of ESTs and assembled clusters from the Scorpiops jendeki venom glandFigure 13
Functional characterization of ESTs and assembled clusters from the Scorpiops jendeki venom gland. The verti-
cal axis shows the number of ESTs or clusters.
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piops jendeki. Approximately 19% of the total ESTs encode
for the precursors of these two types of molecules. It is
noteworthy that the four types (SPSVs, La1-like peptides,
calcines, and jendins), with a high expression level in Scor-
piops jendeki, were not detected in Hadrurus gertschi at all.
Although different types of venom molecules couldn't
arise in proteins at the same level of their mRNAs, we
could definitely conclude that there is great difference in
venom compositions between Scorpiops jendeki and
Hadrurus gertschi. Furthermore, the venom compositions
of Scorpiops jendeki must be different from that of Buthidae
scorpions, whose major groups of venom constitutes are
neurotoxins affecting Na+ channels (NaScTxs) and K+

channels (KTxs).

Great diversity has also been observed in primary
sequences of most highly expressed venom peptides and
proteins. We can exclude the possibility that such diversity
is caused by the artifact in cDNA library construction or
DNA sequencing. A negative control is that 31 ESTs from
SJE009C encode one identical translated sequence. Such
diversity may mainly be attributed to variations in scor-
pion population, as the cDNA library was constructed
with the RNA extracted from about 50 specimens. How-
ever, a previous study demonstrates that such polymor-
phism could also arise at the level of individual
scorpion[20]. Whatever, such diversity extensively
observed in different types of venom peptides and pro-
teins reflects the dynamic process of diversification. It is
beneficial for the survival of scorpions, as the more and
more complex venom arsenal could meet their demands
for interaction with their prey, predators, and competi-
tors[62].

The most striking observation of this study is the absence
of NaScTxs in Scorpiops jendeki. This phenomenon has also
been observed in the non-Buthidae scorpion Hadrurus
gertschi (Caraboctonidae), on which a transcriptomic
analysis has been conducted[13]. NaScTxs are peptides of
58–76 residues in length and characterized to possess a
structure core, named Cysteine-Stabilized a/b motif (CS-
ab), tightly packed by three conserved disulfide
bridges[9]. They are a major group of venom components
from Buthidae scorpions. NaScTxs and KTxs are suggested
to evolve from a common progenitor, based their similar-
ities in gene organizations, intron features and structure
cores[20]. But their evolutionary history is difficult to
reconstruct, due to high diversity of each toxin
types[63,64]. Similar to NaScTxs, KTxs are also defined by
the presence of the conserved CS-ab motif[8]. Distinct to
NaScTxs, KTxs have been obtained from most scorpion
species, both Buthidae and non-Buthidae, currently under
investigated. The difference between the phylogeny distri-
bution of NaScTxs and KTxs could provide some clues to
their evolutionary relationship.

Until now, many types of venom peptides and proteins
have been obtained from diverse scorpion species. Some
types are found to be widely distributed among scorpion
species from different families, in case of a-KTxs. How-
ever, some other types appear to be restricted to particular
scorpion lineages. For instance, jendins haven't been
detected in other scorpion species. Scorpine-like peptides
have not been obtained from Buthidae scorpions,
although some Buthidae scorpion species have been
extensively studied. So far transcriptome studies are lack-
ing even for the medically imprtant Buthidae scorpions.
However, this work implies that the presence of addi-
tional, atypical toxin types in many scorpion lineages is
most likely. The presence of these common and uncom-
mon venom molecules among different lineages reflects
the dynamic evolutionary process of the scorpion venom
arsenal. In order to depict such a process, extensive studies
should be conducted on diverse scorpion species, espe-
cially from the non-Buthidae families.

Conclusion
In conclusion, we conducted a transcriptomic analysis of
Scorpiops jendeki venom gland. Scorpiops jendeki belong to
the family Euscorpiidae whose venoms have never been
investigated. So our work greatly expanded the current
knowledge of scorpion venoms. We obtained ten known
types and nine atypical types of venom peptides and pro-
teins. These molecules provide a rich hitherto unexplored
resource for drugdevelopment. Besides, some clues can be
provided into the evolution of scorpion venom arsenal by
comparing the presence of common and umcomon types
of venom peptides and proteins among different scorpion
lineages.

Methods
cDNA library construction
50 specimens of Scorpiops jendeki were collected in Yun-
nan province, Southwest China. They were milked 2 days
before RNA isolation as described previously[65]. Total
RNA was extracted with TRIZOL Reagent (Invitrogen,
Carlsbad, CA, USA), and then mRNA was purified with
FastTrack 2.0 mRNA Isolation Kit(Invitrogen). The cDNA
library was constructed from 5 mg of mRNA using the Cre-
ator SMART cDNA Library Construction Kit (Clontech
Laboratories, Palo Alto, CA). cDNA inserts were direction-
ally cloned into the plasmids pDNR-LIB digested by
restriction enzymes Sfi IA and Sfi IB. The recombinant
plasmids were transformed into electrocompenent
Escherichia coli DH10B (Invitrogen).

Sequencing
To obtain an unbiased overview of the venom gland tran-
scriptome, random colonies were selected and cultured in
appropriate Luria Broth culture medium containing 30
mg/ml of chloramphenicol. After overnight culture, plas-
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mid DNA was isolated using alkaline lysis method. Puri-
fied plasmids were single-pass sequenced on an ABI
3730xl sequencer using the standard M13 forward primer
and BigDye terminator v3.1 cycle sequencing kit (Applied
Biosystems, Foster City, CA, USA).

Bioinformatics analysis
The trace files of sequenced clones were subjected to
Phred program, the cutoff Phred score was set to 40[66].
After these sequences were strictly trimmed, the got high-
quality sequences were processed on the website EGas-
sembler http://egassembler.hgc.jp/ with the default
parameter[17]. Vector and adaptor sequences were
removed using the program Cross_Match. After removing
the PolyA tail, we discarded those sequences shorter than
100 bp. The resulted sequences were deposited into the
dbEST, and then assembled into clusters with the program
CAP3.

Each cluster was annotated by being searched against
SWISS-PROT http://www.expasy.org/tools/blast/ and
GenBank NCBI database http://www.ncbi.nlm.nih.gov/
blast with BLAST algorithms. After BLAST search, the
unmatched clusters were further identified for open read-
ing frames using the ORFfinder http://
www.ncbi.nlm.nih.gov/projects/gorf/. Considering the
extreme diversity of scorpion toxins, those clusters puta-
tive to encode venom peptides was reexamined manually
to pick out individual different isoforms.

All clusters were checked for the existence of signal pep-
tides using the SignalP 3.0 program http://
www.cbs.dtu.dk/services/SignalP/. All types of venom
peptides and proteins are annotated by searching against
Pfam protein families database http://pfam.sanger.ac.uk/.

Alignment and phylogeny analysis
The sequences used for alignment and phylogeny analysis
were retrieved from SWISS-PROT databsae http://
www.expasy.org/tools/blast/. The alignment was per-
formed by Clustal_X 1.83 software followed by manual
adjustment[67], and viewed by the software Jalview[68].
Phylogeny analysis was carried out with Neighbor joining
method implemented in MEGA3.1[69].
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