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a b s t r a c t 

Sepsis remains a major challenge internationally for healthcare systems. Its incidence is rising due to poor public 

awareness and delays in its recognition and subsequent management. In sepsis, mortality increases with every 

hour left untreated. Artificial intelligence (AI) is transforming worldwide healthcare delivery at present. This re- 

view has outlined how AI can augment strategies to address this global disease burden. AI and machine learning 

(ML) algorithms can analyze vast quantities of increasingly complex clinical datasets from electronic medical 

records to assist clinicians in diagnosing and treating sepsis earlier than traditional methods. Our review high- 

lights how these models can predict the risk of sepsis and organ failure even before it occurs. This gives providers 

additional time to plan and execute treatment plans, thereby avoiding increasing complications associated with 

delayed diagnosis of sepsis. The potential for cost savings with AI implementation is also discussed, including im- 

proving workflow efficiencies, reducing administrative costs, and improving healthcare outcomes. Despite these 

advantages, clinicians have been slow to adopt AI into clinical practice. Some of the limitations posed by AI 

solutions include the lack of diverse data sets for model building so that they are widely applicable for routine 

clinical use. Furthermore, the subsequent algorithms are often based on complex mathematics leading to clinician 

hesitancy to embrace such technologies. Finally, we highlight the need for robust political and regulatory frame- 

works in this area to achieve the trust and approval of clinicians and patients to implement this transformational 

technology. 
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Sepsis is a major concern worldwide due to its high morbid-

ty, mortality, and financial cost to health systems. [1] Globally,

here are an estimated 30 million sepsis cases yearly, resulting

n more than 6 million deaths. Sepsis causes one death every

–4 seconds. [2] 

Recent large-scale epidemiological studies showed that the

ortality rate from sepsis has decreased. However, despite this,

he incidence of sepsis continues to increase and is likely to

e underestimated. [3] The lack of public awareness surrounding

epsis and the serious consequences of delays in its recognition

nd treatment significantly contribute to the alarming annual

ncrease of 8%–13% in sepsis cases over the last decade. [4] 

Sepsis is heterogeneous, with varying etiologies, pathogene-

es, and clinical manifestations, making fundamental research,

linical translation, and precision medicine in sepsis more chal-

enging. [5] Government funding is the primary contributor to
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esearch and development in sepsis, focusing on developing in-

ovative strategies for diagnosing and managing sepsis while

ddressing international public health needs. Reasonable and

orward-looking funding frameworks will accelerate medical re-

earch progress in sepsis and greatly promote human health. [6] 

 major difference in recent years has been that sepsis has been

ecognized as a disease with organ failure. [7] This is likely a mis-

nterpretation due to post hoc analysis or retrospective evalua-

ion of large databases where sepsis is already known. Future

esearch developments will aim to detect sepsis in patients be-

ore organ failure occurs. 

During the past decade, the National Institute of Health (NIH)

as invested the most in the sepsis field, with 1435 projects and

76.9 million US dollars in funding. The National Natural Sci-

nce Foundation of China was in second place, with 47.7 million

S dollars awarded to 581 projects. The total allocation for sep-
edicine, Multidisciplinary Intensive Care Research Organization (MICRO), St 
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is research by the National Grants-in-Aid for Scientific Research

JSPS KAKENHI) Program in Japan was the lowest, with 429

rojects and funding of 23.8 million US dollars. [8] Differences in

he health care budget for sepsis in various institutions world-

ide can also be evaluated. In many countries, there is no record

f sepsis-funded projects. [8] Approximately 200 studies con-

aining sepsis-related research were published in the Medline

atabase from 2011 to 2015 by the USA, the European Union’s

8 member states, and China. Notably, more than half of these

tudies were published by authors from the USA, with more than

alf having a university or government/state funding source.

espite these advantages, sepsis funding remains challenging,

nd many industry-based companies are current sponsors of ma-

or sepsis organizations such as the Surviving Sepsis Campaign

SSC). [9] 

When considering future research in sepsis, [10] different re-

earch groups proposed several pathways to improving sepsis

anagement. It has been previously discussed for years the need

or better design of drug targets (e.g., endothelial cell function).

et, most of the discussion of the role of artificial intelligence

AI) in sepsis and how we can integrate computer-simulated

odels. Still, the key element is related to clinical trial design

mprovements. Personalized medicine needs the identification

f specific patient populations that would benefit from each

dentified intervention. A suggested framework for character-

zing a patient with sepsis is PIRO (predisposition, infection,

esponse, and organ dysfunction). To better enrich the selec-

ion of the patient population instead of using single biomarker

alues, it provides a better selection enrichment with multiple

iomarkers. For that rationale, we need advanced tools based

n complex computational analysis. 

This manuscript aimed to introduce some key concepts on

he basics of AI in sepsis. We give an overview of AI and its

pplications in the intensive care unit (ICU), including how AI

as played and will play a major role in future research in sepsis.

e also outline potential strategic solutions to the challenge of

mplementing AI into clinical practice. 

n Overview of AI and Machine Learning 

AI is a broad field of computer science that focuses on de-

eloping intelligent machines that can perform tasks that typ-

cally require human intelligence, such as visual perception,

peech recognition, decision-making, and language translation.

he term artificial intelligence is both difficult to define and

ver-changing and was coined in 1956 by John McCarthy fol-

owing the eponymous “Turing ” test. Broadly speaking, it is

onsidered the ability of machines to exhibit intelligent behav-

or in the manner of human thinking, reasoning, and problem-

olving. [11] 

The core of AI aimed to determine whether a machine could

xhibit intelligent behavior to convince a human interrogator

t was, in fact, a human when in reality, it was a machine. [12] 

I involves various subfields, including machine learning (ML),

eep learning, natural language processing (NLP), and robotics.

I has the potential to revolutionize medicine by improving di-

gnosis, treatment, and patient outcomes. One key area where

I is applied is in medical imaging, such as X-rays, computer to-

ography scans, and magnetic resonance imaging scans. [13] ML

lgorithms can be trained to identify patterns in medical images
35 
nd help radiologists diagnose diseases such as cancer and heart

isease faster and more accurately. [14] 

AI is also used in patient monitoring and personalized

edicine, such as sepsis. [15] Wearable devices equipped with AI

lgorithms can collect and analyze data on vital signs, such as

eart rate, blood pressure, and oxygen levels. It can provide real-

ime feedback to the doctor and help identify potential clinical

omplications before they become clinically apparent. [16] By an-

lyzing vast amounts of data, researchers can identify potential

ew drug candidates more quickly and efficiently than tradi-

ional methods. [17] 

ML is a subset of AI that involves using algorithms and statis-

ical models to enable machines to improve their performance

n a task by learning from data without being explicitly pro-

rammed. [18] In medicine, ML algorithms can be applied to var-

ous tasks, such as diagnosis, prediction, and personalized treat-

ent. The methods by which this is achieved can be subdivided

nto two categories: supervised learning and unsupervised learn-

ng. [19] 

Generally, supervised learning involves ML from input data,

.g., patient characteristics, vital signs, and lab results. [20] These

ata have been labeled, e.g., “sepsis ” or “not sepsis, ” to pre-

ict a known outcome, e.g., sepsis in the future in unforeseen

ata. [21 , 22] Thus, supervised learning is concerned with the abil-

ty to predict outcomes in the future based on what it has learned

rom the labeled training data with which it was originally pre-

ented. [23] 

In contrast, unsupervised learning involves ML from unla-

eled data to find hidden patterns and structures within the

ata. This could potentially highlight homogeneous pheno-

ypes in sepsis, allowing for more individualized therapy ap-

roaches. [21] Data in healthcare can be classified as structured,

.g., vital signs and lab values, and unstructured, e.g., free

ext clinical notes in electronic medical records and radiolog-

cal images. Most AI in healthcare has focused on structured

ata, although 80% of healthcare data in electronic health-

are records is unstructured. [24] This reflects the complexity and

omputational power required to analyze these data. [25] Re-

ent advances in ML and computational power have allowed

or unstructured data to be analyzed by a method known as

LP. NLP extracts concepts and meanings from a clinical text

ote. [26] 

NLP is the branch of AI that allows machines to read, under-

tand, and derive meaning from human languages. Where text-

ased data exist on the internet (e.g., social media reviews of

ealthcare providers), it is technically possible to capture these

sing a process called web-scraping. [27] Web-scraping software

an be programmed to detect and download specific text from a

ebsite (e.g., comments on patient forums), and store these in

atabases, ready for analysis. [27] 

The text is broken down into constituent sentences and words

ith NLP. The words then are tokenized, with each word being

 token, for example, by matching the words “love, ” “favorite, ”

nd “respect ” to a “positive ” sentiment and the words “hate, ”

pain, ” and “anguish ” to a “negative ” sentiment. By quantifying

he ratio of positive to negative sentiments in a sentence, for

xample, it is possible to start to understand the sentence’s sen-

iment overall. Unsupervised ML can identify common themes

ithin the text by clustering words or sentiments that frequently

ppear together, e.g., “topic modeling ”. [27] Supervised ML algo-
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ithms have been combined with NLP to extract patient-centered

utcomes from unstructured medical records. [27] 

A recently developed AI algorithm, sepsis early risk as-

essment (SERA) algorithm used structured data and unstruc-

ured clinical notes to predict and diagnose sepsis. Their model

howed high predictive accuracy 12 h before the onset of

epsis (area under the curve [AUC] = 0.94, sensitivity = 0.87,

nd specificity = 0.87). [28] Compared with clinicians’ assessment

lone, this algorithm increased the early detection of sepsis by

p to 32% and reduced false positives by up to 17%. NLP of

nstructured clinical notes improved the algorithm’s accuracy

ompared to using only clinical measures alone, providing 12–

8 h warning before the onset of sepsis. [28] 

Other work by Horng et al. [29] also demonstrated the incre-

ental benefit of using free text data and vital signs and demo-

raphic data to identify patients with suspected infection in the

mergency department (ED). The best-performing model they

ound was the model that used all of the free text. They con-

luded that free text drastically improved the discriminatory

bility (increase in AUC from 0.67 to 0.86) of identifying infec-

ion compared to previous work that only used structured data

uch as vital signs and demographic information. [29] 

Large language model uses more advanced technology and

lgorithms to generate sophisticated human text. [30] These sys-

ems use neural network models that leverage deep learning

ethods to train from text-based datasets from articles, books,

nd other internet-based content. Through this method, Large

anguage models (LLMs) learn how words are used with each

ther in language and can apply these learned patterns to com-

lete NLP tasks. [31] ChatGPT (OpenAI, San Francisco, USA) has

rown increasingly larger from its inception in 2018 with Chat-

PT1. With its most advanced update ChatGPT-4, it now has

ore data from many billions more books, articles, and conver-

ations across the internet and increased computation. [31] 

However, such large language models have big problems as

egards reliability. Currently, legitimate concerns exist about

linical information quality, evidence level, reliability, or sup-

orting evidence for any LLM model. [32] LLMs reassemble what

as been most repeatedly written by humans trained from

nchecked datasets and often quote a fabricated resource for

eferencing. [32] 

As a result, these tools currently would not achieve regula-

ion under EU or US law as medical devices, having a limit-

ess range of inputs and outputs, making them almost impossi-

le to control fully. [32] However, this has not stopped their use

ecause they are experimental rather than actual AI tools for

linical use. [32] This is concerning because it has been demon-

trated that LLMs can provide profoundly dangerous informa-

ion when prompted with medical questions. [32] Scientific jour-

als have not allowed accreditation of ChatGPT as an author,

uggesting that the technology cannot provide the accountabil-

ty required for authorship. [31] Tools are currently being de-

eloped to detect AI-generated language, but their accuracy is

oor. [31] 

Future models, however, promise more supervised learning

pproaches from reputable content, which will improve accu-

acy and safety. [30–32] Perhaps then they can play an assistive

ole to the modern clinician rather than an autonomous role

ue to inherent concerns regarding their safety. [31] This may

ntail clinical note-taking, administrative letter writing, and
36 
ummarizing clinical information from dense patient medical

ecords. [30] It could also play a valuable role in clinical research,

.g., summarizing results and rewriting passages to suit specified

eaderships, thereby reducing the workload of critical appraisal,

esearch reporting, and peer review. [31] 

arly Detection: Diagnosing Sepsis on the Ward, in the ED 

nd in the ICU 

When discussing AI and its application in patients with sepsis

n the ICU and hospital at large, areas to consider include the

arly detection and accurate diagnosis of sepsis and its subse-

uent treatment. 

Rawson et al. [33] developed a supervised machine learning

SML) algorithm for diagnosing infection on presentation to the

ospital. Microbiological data records and blood test parame-

ers (e.g., C-reactive protein, white cell count, etc.) were used

o train the SML algorithm. A support vector machine (SVM) bi-

ary classifier algorithm was subsequently developed. Many in-

ividual patient profiles containing biochemistry and full blood

ount variables trained and tested the diagnostic ability of the

VM algorithm. A clinical decision support system (CDSS) con-

ains ML modules designed to support antimicrobial selection

nd dose optimization tools, and a patient engagement module

as implemented. They then studied patients admitted to the

ospital over 6 months and prospectively inputted them into

he SML algorithm. 

One out of three patients was diagnosed with infection within

2 h of admission. Almost half individuals had microbiological

nvestigations performed. Treatment was prescribed for most in-

ected individuals and only 6% of those with no identifiable bac-

erial infection. Mean standard deviation (SD) likelihood esti-

ates for those with and without infection differed significantly.

he area under the receiver operating characteristic (AUROC)

as 0.84 (95% CI: 0.76 to 0.91). The study demonstrated that

linicians performed well at diagnosing bacterial infection in

atients admitted to the hospital, and only less than 10% were

ot appropriately treated. Moreover, a few individuals did not

ave evidence of bacterial infection but received antimicrobial

herapy regardless (6%). 

Another validated ML algorithm used vital signs taken di-

ectly from the Electronic health record (EHR), for the detec-

ion and prediction of sepsis, severe sepsis, and septic shock

n a mixed-ward population, which included patients from the

D and floor units as well as the ICU. [34] This ML algorithm,

alled “InSight scores, ” took data from six clinical vital signs;

lood pressure, systolic and diastolic, heart rate, respiratory

ate, peripheral capillary oxygen saturation, and temperature.

hey used gradient tree boosting to construct this ML algorithm.

he patient’s risk score was generated based on their path along

he decision tree. They then compared “InSight ” predictions for

hree common scoring systems: Systemic inflammatory response

yndrome (SIRS), Sequential Organ Failure Assessment (SOFA),

nd Maternal Early Warning Score (MEWS). “InSight ” outper-

ormed SIRS, MEWS, and SOFA for screening sepsis, severe sep-

is, and septic shock and provided predictive capabilities before

epsis onset, aided by analyzing trends and correlations between

ital sign measurements. 

A third study, in 2017, analyzed how sepsis is diagnosed in

he ED. They conducted a retrospective, observational cohort
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tudy to trigger clinical decision support at ED triage for sepsis.

hese data included patient demographics, vital signs, free text

hief complaint, and free text nursing assessment (also called

he triage note) to trigger a protocol. [29 , 35] They subsequently

rained ML algorithms to predict the International Classifica-

ion of Diseases, Ninth Revision, Clinical Modification (ICD-

-CM) defined infection using incrementally larger subsets of

eatures. They built four models to predict infection with an

VM to build the model. The best-performing model was the

odel that utilized the free text as well as vital signs and de-

ographics. [29] Vital sign abnormalities and laboratory results

ften trigger decision support for sepsis and might have impor-

ant implications for ED workflow where additional blood work

ay not have yet become available for admitting physicians to

eview. 

Early detection and prompt intervention play a key role in

ptimizing the outcome of sepsis patients. Positive outcomes

re highly related to effective management in EDs and ward

ettings since successful treatment is time-dependent. [36] Un-

ortunately, transferring patients from the ED or ward to an

CU is often ineffective. [36] A recent meta-analysis of 28 pa-

ers looking at ML for predicting sepsis found that diagnos-

ic test accuracy when assessed using AUROC was 0.68–0.99

n the ICU, 0.96–0.98 in the hospital, and 0.87–0.97 in the

D. [37] 

Models for predicting sepsis ahead of time can be catego-

ized into right-aligned or left-aligned. Left-aligned models pre-

ict the likelihood of sepsis following a fixed time point, e.g.,

dmission or pre-operatively. [37] An envisaged case use of a left-

ided model would be the identification by the left-sided model

f a patient ahead of time likely to develop sepsis ahead of the

roposed surgery. Surgery could be postponed, optimizing mod-

fiable risk factors if the patient is identified as likely to develop

epsis. If there is surgery could not wait, a strategy to minimize

hese risks could be used, such as prolonged peri ‑operative pro-

hylactic antibiotics or planned post-operative admission to a

igher level of care (High dependency unit [HDU]/ICU) than

ould ordinarily be used for the specific surgery and or patient,

hus mitigating the risk. 

Right-aligned models utilize EHRs to continuously sample an

ndividual patient’s data in real-time, comparing this against

etrospective databases of patients to predict sepsis ahead of

ime. [37] Again, using a patient in the ICU as an example, could

e used to change therapies such as antibiotics or place invasive

ines in a proactive rather than a reactive manner, thus mini-

izing the time a patient is at risk of end-organ damage due to

ypotension or impaired renal function. 

Clinicians are often challenged in differentiating sepsis from

ther acute conditions due to similar signs or symptoms for

ther common diseases. AI has the potential to deliver timely

nd accurate sepsis detection on the ward and in the ED, po-

entially outperforming current clinical warning scores, which

re not based on sophisticated mathematical models. [36] This

echnology can facilitate treating patients promptly to prevent

omplications arising from delayed treatment, e.g., multi-organ

ailure and shock. 

To that effect, ML-based early warning systems have been

hown to predict circulatory failure with very high accuracy.

yland et al. [38] constructed two early warning systems, named

ircEWS (Circulatory Early Warning Score) and circEWS-lite,
37 
hat were of differing complexity. They alerted clinicians to pa-

ients at risk of circulatory failure within an 8-hour time frame.

hey used publicly available data from a patient database from

 large multidisciplinary ICU, which contained data from more

han 54,000 ICU admissions. These data were then used to

rain their early warning systems. These ML-based early warning

ystems predicted circulatory failure with very high accuracy.

hese early warning systems could assist ICU staff in identify-

ng patients with sepsis earlier who are at risk for developing

irculatory failure. 

Furthermore, patients with a much lower false alarm rate

hould be identified than conventional alert systems. These tra-

itional alert systems have previously been demonstrated to

ause inherent alarm fatigue for staff. This can lead to cognitive

ias and the potential for missed or late diagnosis of patients

ho are critically ill. [38 , 39] 

Another model predicting model is “Haemodynamic stability

ndex (HSI) ” which aims to determine circulatory failure. [40] It

s a multiparameter ML model used to provide an early warning

f hemodynamic compromise and the need for the initiation of

emodynamic supports. It has been trained by learning from

housands of clinicians’ actions, such as the commencement

f vasoactive medications, fluids, and blood administration. [40] 

SI has demonstrated generalizability across patient popula-

ions, apart from the neurosurgical population, and shown bet-

er accuracy in predicting instability than single parameters like

ystolic blood pressure and shock index. [40] It is one step closer

o delivering individualized patient care and is a useful decision-

upport tool for managing circulatory shock in critical care in

he future. [41] 

Due to advancements in monitoring, we now have vast

mounts of data available as clinical decision-support tools in

CUs. However, modeling all these data is challenging due to its

igh density and heterogeneous nature and the requirement for

t to be easily interpretable by clinical decision-makers on the

round. 

A proposed solution is the “Recurrent Attentive And Inten-

ive Model (RAIM)" for analyzing continuous physiological data

e.g. Electrocardiograms, telemetry waveforms, vital signs) and

rregular clinical data (lab values, clinical interventions) in tan-

em. [42] This is a type of model that is easily interpretable for

linicians. With the data obtained, “RAIM ” generates a guidance

atrix to predict dynamic outputs such as the risk of physiolog-

cal decompensation and/or hospital length of stay. Using eval-

ations from the Medical Information Mart for Intensive Care

II (MIMICIII) Waveform Database Matched Subset, “RAIM ” ob-

ained over 90% AUC-ROC scores for predicting physiological

ecompensation with quite a high accuracy (86.82%) for fore-

asting length of stay. 

Heretofore the use of AI has mainly focused on irregular clin-

cal events and discrete data. The interpretation of physiological

aveforms by AI is a novel field that shows much promise. One

uch example is a physiology-based model which uses wave-

orms independent of other data in the EHR. Using waveforms

nd a closed-loop cardiovascular model the system was able to

redict sepsis within the first hour of admission with a high

egree of success (AUROC = 0.92, Area under precision-recall

urve = 0.90). [43] 

Other published papers have shown tools to optimize clinical

anagement, such as fluid and vasopressor support. [44] These
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ools utilized reinforced learning, to optimize the management

f fluids and vasopressors in sepsis to minimize mortality. The

odel learned the optimal dosing regimen from a large training

et of data on patients with sepsis in the ICU. Then, the mod-

ls were tested against unseen data and compared to the per-

ormance of human clinicians. Real doctors would have given

ore fluids when the AI tool recommended more vasopressors.

his has enormous implications as the deviation from the “AI

linician ” strategy was associated with an increase in mortality

n a dose-dependent fashion. 

While AI may not be a panacea for sepsis, clinicians could use

t as an aide memoire in their decision-making processes. [45] Ex-

eptions to AI-derived strategy will always exist, and clinicians

hould continue to make treatment decisions with this in mind.

his will enable clinicians to optimize the management of sepsis

o reduce the associated morbidity and mortality. 

riaging and Prioritizing Patients for ICU Admission 

AI algorithms can also stratify and help to predict which pa-

ients are at risk of developing organ failure or sepsis. This can

elp clinicians allocate resources more effectively, such as iden-

ifying earlier patients with acute kidney injury (AKI) who need

enal replacement therapy. [46] Another role AI could play in the

uture is triage and patient selection for intensive care. A “field

rtificial intelligence triage ” tool showed the accuracy of the

eed for ICU admission and mechanical ventilation predicted by

UROC were 84.8 ± 0.5 and 86.8 ± 0.5 for patients with gunshot

ounds. [47] 

Resource utilization remains a key concern in intensive care

edicine. The effects of limited resources on the delivery of in-

ensive care medicine were brought sharply into focus during

he COVID-19 pandemic. 

Using data gathered during this time, an AI tool was devel-

ped to identify patients likely to require ICU-level care with

7% accuracy and rank these patients based on an “analytical hi-

rarchical process (AHP) ”. [48] The AHP was deemed to be “close

o experienced clinicians’ decisions for determining the priority

f patients that need to be admitted to the ICU . ” The proposed

se of the AHP in the future is to answer the question of “Which

atient positive with COVID-19 will use the ICU first in an emer-

ency or limited resource situation? ”

The use of AI for answering such a “life or death ” question is

raught with ethical and practical concerns, not least the ques-

ion of bias. Vinay et al. [49] consider both sides of the discussion,

oting that AI could partially unburden healthcare professionals

rom this moral challenge while conceding that AI is vulnerable

o bias and discrimination. One important question stemming

rom this discussion is how to integrate AI tools for decision-

aking. 

While it could be expected that physicians would have a

rounding in the AI tools they would use, it may not be fea-

ible or even possible for a single physician to understand or

now the weighing of the variables within every AI tool they

se. Some AI tools use more than 40 variables, which will only

ncrease as the tools evolve. The greatest obstacle to implement-

ng AI tools in medicine in a prospective manner will not be that

f a logistical or practical manner but rather the broader ethical

uestions that wider society must answer. 
38 
redictive Algorithms on the Pathogen and Antimicrobial 

rescribing 

ML algorithms have the potential to help predict and diag-

ose causative pathogens in sepsis earlier than traditional meth-

ds. One such study looked at acute respiratory failure (ARF) in

hildhood. [50] Due to the significant overlap in signs and symp-

oms in both bacterial and viral etiology, clinical diagnosis is

hallenging. This often leads to inappropriate treatment with

ntibiotics by clinicians. Tools to automatically determine the

ause of ARIs could help with early diagnostic accuracy, thus

mproving healthcare delivery. This study aimed to diagnose

ommon respiratory pathogens in pediatric patients. Clinical

eatures were collected within 24 h of admission to construct

he models. They looked at six common respiratory pathogens,

ncluding adenovirus, influenza virus types A and B, parain-

uenza virus , respiratory syncytial virus, and Mycoplasma

neumoniae . 

Their subsequent models were trained with nine features

age, event pattern, fever, C-reactive protein, white blood cell

ount, platelet count, lymphocyte ratio, peak temperature, and

eak heart rate). 

Using their model, pathogen prediction was automatically

roduced with each step, and the prediction performance in-

reased when more information was obtained. This study out-

ined how AI has the potential to enable earlier and more accu-

ate diagnosis of ARF in children, thus helping reduce unneces-

ary diagnostic tests and medical costs. 

However, not all studies in this field have been as positive.

 study by Lhommet et al. [51] predicting the microbial cause

f community-acquired pneumonia (CAP) in the adult popula-

ion is one such study. Like upper respiratory infections in the

ediatric population, CAP’s causative pathogen is generally un-

nown before the clinician begins treatment. This study eval-

ated the abilities of experienced physicians and AI to decide

n admission if the pneumonia was viral or bacterial. They in-

luded patients hospitalized for CAP and recorded all data avail-

ble in the first 3-h admission periods, including clinical, biolog-

cal, and radiological information. These authors implemented

n ML model using all collected data and tested the pathogen

rediction performance against a panel of three clinical experts

ompared to the AI algorithm. The results showed an AUC of

.84, which on interpretation, reveals that neither experts nor

n ML algorithm could accurately predict the microbial etiology

f severe CAP within the first 3-h of admission. 

Strategies like rapid molecular respiratory panel assays are

ore likely to provide optimal treatment options for acute res-

iratory infections. However conducting more studies to assess

f an AI system integrated with point-of-care rapid molecular

espiratory panel assays, as the authors suggest, would be in-

ormative. [51] The development of systems biology tools, such

s metabolomics, has enabled key insights into the change of

hemical environment in sepsis. Exploring such concepts allows

s to identify causative pathogens in sepsis accurately. [52] In

he field of metabolomics, fundamental differences in the host

esponse to infection have been identified, e.g., an increase in

lycolytic intermediates and decreased flux through the tricar-

oxylic acid cycle with elevated multiple inflammatory mark-

rs. Indeed, differing responses have also been seen depend-
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ng on which causative pathogen is involved. Mouse models

ave shown that Streptococcus pneumoniae and Staphylococcus

ureus pneumonia induce distinct metabolic responses. [52] Re-

earch suggests that through exploring plasma pathogen-specific

etabolomic biosignatures, a method to develop fast and reli-

ble microorganism identification of sepsis cases may ensue. [52] 

his study investigated the value of metabolomic biosignatures

o identify the causative pathogen among sepsis patients. This

pproach is in agreement to help with the identification of

athogens. Their results showed that the biosignatures selected

y ML algorithms could have diagnostic value in identifying in-

ected patients and Gram-positive from Gram-negative bacteria.

Once a clinical infection is already being diagnosed, AI also

as a potential role in prescribing appropriate therapies. Most

ospital infections are managed by non-experts in infectious dis-

ases who follow local antimicrobial guidelines and policies.

ase-based reasoning (CBR) is a type of AI that is an experience-

ased approach to solving new problems by adapting previously

uccessful solutions to similar problems. In CBR, the reuse of

nowledge from previously solved problems relies on the fact

hat the more similar the two problems are, the more similar

heir solutions will be. It offers incremental sustained learning

n that each time a problem is solved, a new experience is re-

ained and can be applied to future problems. 

This technique has helped develop a CDSS for antimicrobial

rescribing, which was subsequently integrated into the elec-

ronic health record. [53] In the study, prescribing recommen-

ations by a CBR algorithm were compared to decisions made

y clinicians on the ground. Results from this study revealed

hat the ML CDSS made antibiotic selection at a similar level

f appropriateness to individual clinicians but with a narrower

pectrum of activity. This study showed how ML techniques and

DSS can provide an individualized approach to prescribing and

nhanced patient care as a result. Other examples of AI used

n antimicrobial prescribing include the TREAT system, a CDSS

sing causal probabilistic networks. TREAT demonstrated a 9%

mprovement in the appropriateness of prescribing and a trend

oward improved patient survival using this type of system. [54] 

REAT requires the development of highly complex decision

aps making the systems challenging to develop, and they re-

uire large amounts of data sets. Advocates of CBR claim the

ystem is simpler and, therefore, easier to implement into clin-

cal practice. [55] Regardless of which system is used, utilizing

hem helps avoid issues of accurate recall for busy clinicians

nd gives access to learnings equivalent to years of clinical ex-

erience through this technology. 

recision Medicine 

Genomics and precision medicine is a growing area in science

nd medicine. Many treatments we use in medicine are designed

or the average patient but as experience shows successful treat-

ent for one patient does not equate to successful treatment for

nother, despite the same pathology. Precision medicine is an

nnovative approach taken from the field of oncology, where the

oal is to tailorize treatments to a more individualized approach

onsidering one’s genes, lifestyle, and environment. AI and pre-

ision medicine combined have the potential to transform how

ealthcare is delivered in the future. [56] 
39 
Sepsis is a clinically and biologically heterogeneous disease

ith a variable clinical course and includes varying pheno-

ypes. [57 , 58] Clinically heterogeneity is seen due to differences

n age, associated co-morbidities, causative organisms as well

s origins of septic foci. Biologically, heterogeneity is seen in

iffering endotypes and phenotypes in septic patients, indistin-

uishable from the bedside. Despite this heterogeneity, all sep-

is patients receive antibiotics, source control, fluid resuscita-

ion, and organ support if required. It is therefore unsurprising

hat not all patients respond equally to this therapy and despite

mprovement in recent decades, mortality from sepsis remains

igh. Targeted therapeutics and precision medicine approaches

ould be the solution to this cohort of patients. [57 , 58] 

The pathophysiology of sepsis is varied in patients. Different

enetic polymorphisms have been identified in individuals that

ncode pro-inflammatory and anti-inflammatory cytokines. This

s also the case for cytokine receptors, cell signaling pathways,

nd hemostasis pathways. [57 , 58] 

These all influence the severity and ultimately the mortality

n patients with sepsis. The inflammatory stage in sepsis occurs

n two phases for all patients. There is the pro-inflammatory

hase and an anti-inflammatory phase and depending on which

tage the patient is in will influence how they respond to certain

reatments. The sequence and duration of these phases are likely

enetically pre-programmed, explaining the varied responses

een to immunomodulating treatment like steroids, cytokines,

nd anti-cytokine antibodies in sepsis. Currently, there is no

edside approach that can identify where in the inflammatory

ascade the patients lie in that moment in time. However, if

e could rapidly immunophenotype patients, targeted pharma-

otherapies could be applied and potentially lives saved as a

esult. [57 , 58] 

Certainly, bioinformatics and genetics in medicine is a vast

eld. For example, many factors can alter gene expression with-

ut changing the DNA sequence, e.g., DNA methylation, non-

oding RNAs, histone variants, and histone post-translational

odifications. [58] These epigenetic changes can react to envi-

onmental factors by activating or inhibiting gene transcription.

or example, septic patients who were shown to have undergone

hanges in the methylome of their circulating monocytes had

ubsequently high levels of Interleukin 6 and Interleukin 10 and

 high degree of organ dysfunction. [58] Furthermore, by analyz-

ng gene transcription and messenger RNA, there have also been

ifferent subtypes in septic patients identified. For example, one

uch subtype of messenger RNA has been characterized by a sig-

ificantly increased expression of genes involved in inflamma-

ory and Toll-like receptor-mediated signaling pathways. This

rofile was found to be associated with a higher prevalence of

epsis. [58] 

Biomarkers like procalcitonin, lysophosphatidylcholine, and

roadrenomedullin, also have a role to play in sepsis patients, as

oes pathogen-associated molecular patterns, e.g., endotoxin, a

ipopolysaccharide present in the outer cell membrane of Gram-

egative bacteria. [58] 

Nevertheless, there is some work to be done before we can

ully embrace precision medicine in the management of sepsis.

his includes further clinical research, investment in rapid as-

ays and point-of-care testing as well as the ability to combine

linical, biological, and genetic data on each patient and ex-
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ract actionable insights from it for the management of septic

atients. [57] 

AI may be the bridge that is needed to do just that. [57] The use

f multimodal AI and big data analytics could thoroughly phe-

otype an individual, thereby providing physicians with all the

nformation to accurately diagnose, manage, and predict disease

rajectory in these patients using a targeted, most up-to-date,

nd scientific approach. [57] 

I-Driven Mechanical Ventilation 

Another area of promise concerning AI and sepsis is the de-

elopment of AI-driven mechanical ventilation strategies. A re-

ent systemic review of AI for mechanical ventilation identified

he four most common predictions algorithms set out to predict:

eaning success, the need for the commencement of mechanical

entilation, complications in ventilated patients, and detecting

atient-ventilator asynchrony. [55] 

A new reinforced learning algorithm called “VentAI ” has

een developed and validated using the MIMIC-III data to pre-

ict optimal Positive end-expiratory pressure (PEEP), fraction of

nspired oxygen (FiO2 ), and tidal volume settings. The VentAI al-

orithm outperformed physicians’ standard care in the outcomes

f in-hospital mortality or 90-day mortality. This was achieved

y VentAI choosing ventilation regimes with lower tidal vol-

mes (5–7.5 mL/kg), avoiding high ( > 55%) FiO2 , and recom-

ending PEEP levels of both 5–7 cmH2 O and 7–9 cmH2 O more

requently than physicians. [59] 

One clear caveat to this algorithm and, in fact, any algorithm

hat is not validated in vivo is that while a physician may know

hat ventilation strategy is not optimal for a patient, they are

onstrained by the real-world physics of ventilation. While a

odel can predict from data what may occur against the best

vailable data, a physician may try the same strategy in vivo

nd find that the same ventilation strategy is not possible in re-

lity and may have to revert to the “best possible real ventilation

trategy ” for each patient given the unique circumstances, thus

reating a larger perceived outcome different between an algo-

ithm and a physician. As highlighted by this systematic review,

hat is needed is more prospective and external validation of al-

orithms. [60] 

Few randomized controlled trials (RCTs) exist regarding AI

nd mechanical ventilation. However, one RCT that should offer

ope for the future of AI and physician integration and shared

ecision-making is that of Hsu et al. [55] This RCT compared ven-

ilator weaning success rates with physician decision-making

ombined with an AI-derived CDSS vs. physician decision-

aking alone. The combined arm showed a sensitivity of 87.7%

s. 61.4% in the physician-only decision-making arm. This

quated to 5 days less mechanical ventilation (43.69 vs . 38.41).

dentifying New Clinical Phenotypes 

ML clustering techniques aim to improve the identification of

ew clinical phenotypes in sepsis. [61] There is a well-known het-

rogeneity of the host response to sepsis. Due to problems in the

epsis definition, we may fail to identify the clustering of distinct

linical and biological features in differing patient cohorts. Not

urprisingly, patients’ phenotypes respond differently to treat-

ents and have a different overall mortality risk. [61] Some re-
40 
earch groups used unsupervised learning protocols as an ML

lgorithm to gather inferences from data sets consisting of input

ata without labeled responses. The data analyzed was limited

o mostly vital signs and laboratory tests, collected within the

nitial 6 h following hospital presentation. Four different sep-

is phenotypes were described, which were derived, validated,

nd shown to correlate with biomarkers and mortality. This

nformation could be combined with even more clinical data,

.g., other manifestations of sepsis as measured by systems biol-

gy and novel gene expression patterns. [62] Then, more targeted

mmunotherapeutic interventions for these subsets of patients

ould be developed. 

However, as outlined, this will require both expansion of the

atient electronic record and access to it so that ML algorithms

an analyze the vast arrays of data it is designed to do. [62] This

ould include past medical histories and patient co-morbidities,

ot just lab values and vital signs. [61] However, such data access

s severely limited. This security and privacy issue regarding

ata access is a huge barrier curtailing the proper implemen-

ation of AI in healthcare. 

I in Clinical Trials and the Role of Personalized Medicine 

AI has the potential to improve the success, generalizabil-

ty, and efficiency of clinical trials. Developing new drugs is a

engthy arduous expensive process and AI can help expedite the

rocess and contribute to more drugs achieving regulatory ap-

roval, which is less than 20% with traditional avenues. [17 , 63] It

an help at all stages of drug development from the preclinical

tages right through to release to market. [17] 

By leveraging huge datasets, it can both identify and predict

olecular targets for drugs. [17 , 55] It can also predict the bioavail-

bility of compounds as well as drug toxicity and can replace the

raditional pre-clinical phases frequently done on animal or in

itro studies. [17] It can help at the human clinical phase by devis-

ng trial protocols and applying simulation techniques to large

ata sets highlighting quickly potential stumbling blocks to the

rial design which may prevent successful trial completion. [17 , 56] 

t can help with participant selection and match patients quicker

han traditional methods by analyzing combined demographic,

ab, and imaging data and verifying suitability for inclusion in

he trial. [64 , 65] 

Through access to large datasets, it can overcome previous

eographic, sociocultural, and economic disparities when in-

luding participants which previously has led to the underrep-

esentation of certain groups in research. [56] The conduct of

he trial can also be influenced by AI technologies with the

se of wearable devices which can be combined with other

ata streams, enhancing the information obtained by study par-

icipants thereby increasing the quality of the research con-

ucted. [56] These data can also help monitor remotely for ad-

erse events as well as study outcomes. [56] 

With the vast amount of data generated in ICUs, including pa-

ient vitals, laboratory results, imaging data, and historical med-

cal records, AI technologies can analyze these data efficiently

nd provide personalized insights and predictions. 

There are some areas such as early “disease detection ” (real-

ime patient data to lead to early intervention, potentially pre-

enting the progression of diseases), “predictive analytics ” (ML

odels), drug discovery (AI-driven platforms to identify poten-
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ial drug candidates and predict their efficacy), clinical deci-

ion support (evidence-based recommendations), image anal-

sis (early detection of diseases and improving the overall

ccuracy of diagnoses), resource optimization (staff schedul-

ng, bed management, and equipment utilization), and reduc-

ng medical errors to improves the overall safety of patient

are. [66] 

There has also been interest in using AI/external data to cre-

te a control arm in studies. [56] The United States Food and Drug

dministration has already approved drugs based on historic

ontrols so it is conceivable that AI could be used to generate

ynthetic control arms in time. [56] AI tools can also be used to

tatistically analyze trial results giving better insights into drug

evelopers in the pharmaceutical industry. [17] 

Outside of drug development, there has been an explosion in

I algorithms proposed for clinical practice pertaining to hos-

ital admission and triage, diagnosis, prognosis, and decision

upport tools as well as treatment planning. [63] There have been

oncerns raised however from clinicians, the public, and poli-

ymakers at large about the robustness of some of this research

n the literature. Unfortunately, recent meta-analyses and sys-

ematic reviews of AI medical imaging studies confirmed that

ess than 1% of the 20,000 imaging studies included in these

eviews were of sufficient quality to evaluate the use of these

lgorithms in the real-life clinical environment. [63 , 67] Similarly,

 high degree of bias was also found in the studies. [63] This is

espite much of this research being published in reputable sci-

ntific journals. 

The Enhancing the Quality and Transparency of Health Re-

earch (EQUATOR) Network is an international initiative that

eeks to improve the quality of healthcare research by promot-

ng the development and use of robust reporting guidelines. [63] 

his network provides toolkits for researchers to assist in the

evelopment, selection, and use of reporting guidelines when

onducting clinical research in AI. [63] 

Research in AI should still use established methodology in-

luding good study design, delivery, and reporting. This is re-

uired to ensure transparency, reproducibility, and validity of

ny AI intervention before it is approved for use. [63 , 67] 

Using such reporting guidelines, e.g., Consolidated Standards

f Reporting Trials (CONSORT) AI, Standard Protocol Items:

ecommendations for Interventional Trials (SPIRIT) AI, and De-

elopmental and Exploratory Clinical Investigations of Decision

upport systems driven by Artificial Intelligence (DECIDE AI)

llows researchers to utilize tools in their research which have

n explicit methodology and specify the minimum information

equired when reporting a study. [63 , 67 , 68] 

This ensures that their research will be of high quality, is

ully understood by readers, and can be replicated by other re-

earchers in the scientific community. Ultimately, it can then be

onfidently used by clinicians for patients in the era of AI. [63] 

airness and Equity of AI in Healthcare 

Unfortunately, the presumption that AI algorithms are ob-

ective and free from biases is highly erroneous. Indeed, due to

he mass scales utilized in AI algorithms, inherent biases can be

mplified by these systems. Academics and governments have

ighlighted concerns over racial and gender biases in AI tech-

ologies. [69] 
41 
Much of this bias is introduced in the data generation process

rom which these algorithms are trained. These are largely his-

orically based datasets that can display systemic racism or sex-

sm, pervasive in society generally notwithstanding in health-

are. Race or Gender inserted into diagnostic algorithms that

orrect based on race or sex can lead to clinical decision-making

hat may direct more attention and or resources to, e.g., white

ale patients. [70] 

Specific examples of biases from data in medicine can be seen

n cardiovascular risk prediction algorithms. These algorithms

ave been trained predominantly on data from male patients

eading to inaccuracies in subsequent risk assessment of female

atients who present differently and have additional risk fac-

ors for cardiovascular disease to men. Algorithms trained on

ender imbalanced data will often be inaccurate for the oppos-

ng gender which may contribute to poorer health outcomes and

elayed diagnoses in these groups as a result. [71] 

There are some ML algorithms that use data from portable

evices like Fitbit and other wearable monitoring devices. How-

ver, these devices have been found to not accurately track heart

ates across all races. If data are used from this technology for

he purposes of AI, the resulting algorithms will be inaccurate

ince the measurements used are intrinsically biased. So even if

n equal number of patients from all racial demographics are

ncluded in the datasets, the results will be skewed. [72] 

Biases can also be introduced during the learning of the al-

orithm itself. An example of this can be seen in a case where

n algorithm was shown to be discriminating against black peo-

le over white people in a model designed to refer patients to

rograms for sick patients with complex needs in the US. This

as due to the design of the model which used cost as a proxy

or healthcare needs leading to an underestimation of the needs

f black patients compared to white patients. [71 , 73] 

So, it is clear that AI can perpetuate bias especially when the

lgorithms use data that is generated through a biased process.

onsequentially, the output will also be biased. Aside from data

ias and algorithmic bias, there is also the danger of automation

ias. This is where clinicians may be more likely to trust deci-

ion support systems and discount potentially relevant informa-

ion from non-automated systems. Indeed, many non-medical

actors can influence clinicians’ management, e.g., clinical situ-

tions with a high cognitive load or decision-making at the end

f the working day where clinicians may over-rely on automated

ystems. [69] It is therefore vital that clinicians are educated on

he biases inherent in some AI models so that they can avoid

n overreliance on AI-generated solutions and instead use AI

s an adjunct and not a replacement for their clinical decision-

aking. 

We can overcome such biases if we develop and promote un-

iased AI systems in healthcare that provide accurate diagnoses

nd treatments for all patients regardless of their gender, race, or

thnicity. [71] This starts with using data from unbiased sources

hich is representative of the target population the algorithm is

rained to operate on. This requires transparency during model

evelopment which can help developers, clinicians, and poli-

ymakers to determine the applicability of the model to their

atient population. This also includes highlighting the model’s

imitations including potential biases so it can be implemented

afely and reliably to the targeted patient population. Develop-

rs can also implement sensitivity tools that can track predic-
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ions to ensure the models’ accuracy as well as potential adjust-

ents that may be required to mitigate model degradation over

ime. [69] Thereby instead of propagating biases, AI can be used

o mitigate bias and help improve fairness in AI. [69 , 71] 

Regular audits on AI systems by external organizations will

lso safeguard objectivity and aid transparency. This process

ill help in detecting any biases and will also ensure the al-

orithms are updated protecting them from model degradation

ver time. [71] 

Addressing the challenges of performance drift over time and

xternal validity in ICU-related AI applications requires an inte-

rative approach. In the healthcare domain, patterns can change

ver time due to various factors, such as changes in patient

emographics, treatment protocols, or the introduction of new

edications or technologies. 

AI models trained on historical data may face difficulties

hen these patterns change, leading to what is known as con-

ept drift. A potential solution based on continuous monitor-

ng and periodic retraining of AI models is essential to adapt to

hanging patterns in ICU data. Regular updates based on recent

ata ensure that the AI system remains accurate and relevant as

atient populations and medical practices evolve. 

AI models trained on data from a specific ICU may not per-

orm as well when applied to a different ICU with protocols,

atient populations, or equipment variations. Ensuring external

alidity requires a diverse and representative dataset during the

raining phase. Including data from various ICUs with differ-

nt demographics and practices is crucial. Also, models should

e rigorously validated in multiple real-world settings to assess

heir generalizability accurately. [41] 

arriers to AI Implementation 

We are approaching a time when the deployment of AI mod-

ls in sepsis in a prospective manner will need to be considered.

e have highlighted multiple retrospective trials that suggest

hat AI could revolutionize the management of sepsis. 

While it may initially appear that implementation of prospec-

ive AI models in sepsis across multiple domains at once may

eem attractive, the manner in which this is approached in the

rst instance and the ongoing revalidation of their use is of great

mportance. We would advocate for a “start small and move

lowly ” approach due to the multiple potential stumbling blocks

nd setbacks that may occur with a speedy rollout of such mod-

ls. What is required is multiple well-designed RCTs comparing

I models plus physicians vs. physician-only care. Only when we

ave demonstrated improved outcomes in a prospective manner

nd thence revalidated these findings should we look to more

roadly implement AI models in sepsis. 

Implementing AI in medicine requires careful consideration

f various political, financial, ethical, and medicine-specific fac-

ors. [74–76] Addressing these barriers will require collaboration

etween healthcare providers, policymakers, and technology

evelopers to ensure that AI is used responsibly and effectively

o improve patient outcomes. [74 , 75] 

Political and regulatory barriers include laws and regulations

hat restrict AI use in healthcare settings, a lack of government

unding, and privacy concerns related to patient data. [74 , 75] 

here may be concerns about the security and confidentiality

f patient data if AI algorithms are used to analyze medical
42 
ecords. [75] Personal medical information is among the most

egally protected data, and there are understandable concerns

egarding the exposure of highly sensitive clinical information,

hich goes against the rights of citizens and the repurposing

f data for non-medical gains. [75 , 77] Informed consent is funda-

ental to this process. Still, with a limited understanding of how

ome algorithms operate, it is increasingly difficult for patients

o understand the full extent of how their data are shared and

eused. 

Notwithstanding, there is also the risk of data breaches in cy-

erattacks like what the Ireland Health Service Executive faced

n 2021, which cost hundreds of millions of euros in recovery

fforts. Regulatory frameworks must be built to address these

ybersecurity issues and protect citizens from data breaches and

epurposing. [75] 

Regulatory frameworks for AI in medicine are also funda-

entally important to give clinicians the confidence to deploy

his technology into clinical practice. [78] The United States FDA

as recently begun developing such frameworks. For example,

mplementing AI systems could be problematic because of un-

ertainties regarding when an AI algorithm is valid enough to

e a part of a standardized care process. The European AI Strat-

gy 2021 proposes that an AI product should meet general re-

uirements, including its intended purpose, its accuracy, and

onfirming that the training data is reliable, representative, and

sed sufficiently. However, this may exclude new models devel-

ped by innovative but smaller companies that do not have the

esources to succeed in bringing their products or services to im-

lementation in standardized care processes. [79] The EU strategy

lso recommends traceability tools for monitoring AI algorithms

nce deployed so that they can be audited and monitored for er-

ors or performance degradation over time. [75] 

Implementing AI in medicine requires significant financial in-

estment, including the cost of purchasing and maintaining AI

ystems, hiring trained personnel, and developing and testing

lgorithms. [80] In some cases, health systems may not have the

nancial resources to invest in AI technologies. [81] Cost–benefit

nalysis must be undertaken before any implementation pro-

ess evaluating original expenditure and ongoing costs against

 comparison to alternative technology. [82] This will be a solid

asis for making decisions about AI installations before any im-

lementation process. [82] 

There may be ethical concerns around the use of AI in

edicine, particularly related to bias and fairness issues. [75] For

xample, if AI algorithms are trained on biased data, they may

erpetuate existing inequalities in healthcare. [75] There may also

e concerns about the role of AI in decision-making, particu-

arly in cases where decisions have life-or-death implications. [83] 

edicine-specific barriers include technical challenges related

o integrating AI with existing medical systems and practices

nd resistance to change among healthcare providers. [79] 

It is widely recognized that clinicians involved from the start

f the development of AI processes will have an enhanced un-

erstanding of the technology and are more likely to integrate

t into their clinical practice. [75] Healthcare staff will need the

kill set to navigate this new digitized environment, and curricu-

um updates in medical schools will also need to facilitate and

eflect this digitized expansion. New data analytics could be in-

egrated into traditional medical education and professional de-

elopment programs for current practitioners. Indeed, all staff
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orking in the healthcare environment will need the skillset to

avigate this digitalized environment, and whole staff training

ill be needed to facilitate this expansion. [84 , 85] This emerging

eed to understand AI among clinicians is contiguous with the

ver-important need for good communication skills and empa-

hy from clinicians. [86] It is important that doctors maintain and

ultivate emotional intelligence and compassion when relaying

esults and recommending interventions from sophisticated AI

odels to patients who want to make informed decisions regard-

ng their healthcare. [86] 

Regarding acceptance into routine practice, stakeholders are

lso concerned that AI may lead to the automation of jobs with

ubsequent job losses, which has drawn a lot of attention. [82] 

esearch conducted by Deloitte and the Oxford Martin Institute

emonstrated that AI may be responsible for losing 35% of jobs

n the United Kingdom within the next 10–20 years. [82] How-

ver, the loss of employment may be mitigated by several ex-

ernal factors other than technology. Conversely, there is also

he opportunity for new employment to be generated to work

ith and improve AI technologies. These factors may keep the

umber of jobs lost to 5% or fewer. [82] However, implementing

I will be challenging because of these beliefs. Therefore, it is

mportant to emphasize to those working with this new technol-

gy that AI systems will not replace human clinicians but will

upplement their efforts to care for patients and benefit them

s a result. Indeed, humans may eventually shift toward activi-

ies and job designs that require distinctly human skills, such as

mpathy, persuasion, and big-picture integration. [82] How this

volution will impact hospital settings and workflows is still un-

nown. Healthcare workers will also need to see that integrating

I is based on sound coherent thinking and is of value to the pa-

ient, the staff, and the organization. [87] This will require staff

raining and education in AI technology. [79] Ultimately, success-

ul change will require financial investment in resources, infras-

ructure, and time. [79] 

onclusions 

AI can potentially revolutionize sepsis detection, diagnosis,

nd treatment in critical care settings. AI algorithms can help

dentify patients at high risk of developing sepsis, allowing

ealthcare providers to intervene earlier and prevent the con-

ition’s progression. AI improves the accuracy and speed of

epsis diagnosis. It can be used to personalize sepsis treatment

lans based on individual patient characteristics and responses

o therapy. In addition, AI can also be used to monitor patients

ith sepsis in real-time, alerting healthcare providers to the pa-

ient’s clinical condition and ensuring an appropriate and timely

reatment response. 

AI’s challenges include the fact that clinicians are not com-

utational experts. These complex technologies may be diffi-

ult to comprehend fully, and therefore clinicians are, rightly or

rongly, reluctant to adopt them. To overcome this, AI should

e viewed as an assistive tool for clinicians rather than au-

onomous machines. Clinicians are still part of the workflow,

hich minimizes the potential for harm to the patient. 

In conclusion, using AI in healthcare requires careful consid-

ration of ethical, legal, and regulatory issues to ensure that it is

sed responsibly and effectively to benefit patients. Regulatory

uthorities for AI in some medical specialties, such as intensive
43 
are medicine, require an in-depth understanding of the relevant

echnology and embrace discussion among key stakeholders of

I in healthcare. Only then will clinicians be confident to de-

loy this incredible technology into clinical practice. The future

s now. 
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