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Biological dinitrogen (N2) fixation is performed solely by specialized bacteria and archaea 
termed diazotrophs, introducing new reactive nitrogen into aquatic environments. 
Conventionally, phototrophic cyanobacteria are considered the major diazotrophs in 
aquatic environments. However, accumulating evidence indicates that diverse 
non-cyanobacterial diazotrophs (NCDs) inhabit a wide range of aquatic ecosystems, 
including temperate and polar latitudes, coastal environments and the deep ocean. 
NCDs are thus suspected to impact global nitrogen cycling decisively, yet their ecological 
and quantitative importance remain unknown. Here we review recent molecular and 
biogeochemical evidence demonstrating that pelagic NCDs inhabit and thrive especially 
on aggregates in diverse aquatic ecosystems. Aggregates are characterized by 
reduced-oxygen microzones, high C:N ratio (above Redfield) and high availability of 
labile carbon as compared to the ambient water. We argue that planktonic aggregates 
are important loci for energetically-expensive N2 fixation by NCDs and propose a 
conceptual framework for aggregate-associated N2 fixation. Future studies on 
aggregate-associated diazotrophy, using novel methodological approaches, are 
encouraged to address the ecological relevance of NCDs for nitrogen cycling in 
aquatic environments.
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INTRODUCTION

Biological dinitrogen (N2) fixation, the conversion of dissolved N2 into ammonia, can 
represent a critical import of reactive nitrogen to the pelagic environment (Karl et  al., 
2002). This process is carried out by specialized prokaryotic microorganisms termed 
diazotrophs (Zehr and Turner, 2001). Aquatic studies have traditionally focused on 
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photoautotrophic cyanobacterial diazotrophs inhabiting 
oligotrophic and sunlit environments where energy is made 
available via photosynthetic carbon fixation (Zehr, 2011). 
However, during the last decade it has become evident 
that non-cyanobacterial diazotrophs (NCDs; see Box 1) have 
an almost ubiquitous distribution in pelagic environments 
(Farnelid et  al., 2011; Langlois et  al., 2015; Geisler et  al., 
2020; Hallstrøm et  al., 2021; Messer et  al., 2021). For 
instance, the presence and/or expression of the nitrogenase 
gene (nifH) by NCDs has been reported from low latitude 
open oceans (Halm et  al., 2011; Moisander et  al., 2014; 
Langlois et al., 2015) to environments previously not regarded 
as suitable for N2 fixation such as eutrophic rivers, estuaries 
and coastal waters (Mulholland et  al., 2012; Bentzon-Tilia 
et  al., 2015; Geisler et  al., 2020; Hallstrøm et  al., 2021), 
the aphotic deep sea (Rahav et  al., 2013; Benavides et  al., 
2015), and nutrient-rich arctic waters (Harding et al., 2018). 
A recent study suggested that some nifH genes are not 
functional (Mise et  al., 2021). Yet, these genes relate to 
obligate anaerobic bacteria and their prevalence in the 
marine pelagic environment is likely minor. The activity 
of NCDs has been indirectly inferred by experimental 
manipulations that inhibit photoautotrophic activity (Rahav 
et  al., 2016; Benavides et  al., 2018b; Geisler et  al., 2019, 
2020) and from environments putatively void of cyanobacteria 
such as aphotic waters (Hamersley et  al., 2011; Rahav et al., 
2013; Benavides et  al., 2015). Still, these methods cannot 
measure NCD-specific N2 fixation rates unambiguously. 
Thus, despite of the widespread distribution and activity 
of NCDs, their contribution to aquatic nitrogen cycling 
remains elusive (see reviews: Riemann et  al., 2010; Bombar 
et  al., 2016; Moisander et  al., 2017; Benavides et  al., 2018a; 
Marcarelli et  al., 2022).

The marine water column is generally well oxygenated (except 
for oxygen minimum zones) and poor in labile organic matter 
(Arrieta et  al., 2015; Santinelli, 2015), whereas the aphotic 

zone is rich in reactive nitrogen (e.g., Cavender-Bares et  al., 
2001). Therefore, the wide distribution of NCDs in these habitats 
with apparent unfavorable conditions for diazotrophy represents 
a lingering enigma. In this mini-review, we  compile recent 
reports related to NCDs and focus on those associated with 
aggregates. We  argue that the plot thickens [sensu (Azam, 
1998)], and that compelling evidence supports the idea of 
planktonic aggregates as important microenvironments suitable 
for NCD N2 fixation. We  emphasize the need for direct in 
situ measurements of aggregate-associated, NCD-specific N2 
fixation, and provide guidelines for how these can be  obtained 
in future studies. We  note that this review paper focuses on 
marine and estuarine environments, as most data are available 
from such environments, but acknowledge that NCDs are also 
found in freshwater ecosystems (Coyne et  al., 2020; Fernandez 
et  al., 2020; Geisler et  al., 2020).

THE PLOT THICKENS: PREVIOUS AND 
NEW INSIGHTS ON AGGREGATE- 
ASSOCIATED N2 FIXATION

Aggregates are ubiquitous throughout marine and freshwater 
environments (Alldredge and Gotschalk, 1988; Waite et  al., 
2000). They are formed by the coagulation of live and dead 
plankton material (Smith et  al., 1992; Grossart and Ploug, 
2000; Piontek et  al., 2009; Daly et  al., 2016). The elevated 
micronutrient and macronutrient concentration relative to the 
surrounding waters fosters colonization by dense communities 
of prokaryotes (del Giorgio and Cole 1998; Simon et  al., 2002; 
Bar-Zeev and Rahav 2015), making aggregates ‘hot spots’ of 
intense microbial activity (Azam and Long, 2001). More than 
three decades ago, Hans Paerl and co-workers (Paerl, 1985; 
Paerl and Prufert, 1987) suggested that NCD N2 fixation may 
take place in low oxygen microzones within aggregates. This 
idea was reiterated in several later studies (Riemann et  al., 
2010; Sohm et  al., 2011; Bombar et  al., 2016), but has been 
substantiated only most recently (see below).

In the past, and especially during the last decade, evidence 
has accumulated for the association of NCDs with aquatic 
organisms and aggregates. NCDs have been isolated from 
copepods (Proctor, 1997) and nifH genes have been amplified 
and sequenced from copepods and euphausiids (Braun et  al., 
1999; Scavotto et  al., 2015), and dinoflagellates (Farnelid et  al., 
2010). Moreover, individual and bulk aggregates collected with 
sediment traps deployed at 150 m depth in the open ocean 
contained nifH gene sequences of diverse NCDs (Farnelid et al., 
2018). The prevalence of NCDs on aggregates has also been 
reported using metagenomics sequencing. In the Tara oceans 
dataset, representing 197 globally distributed pelagic oceanic 
metagenomes, the putative heterotrophic Planctomyces and 
Proteobacteria accounted for ~25% of the nifH reads obtained 
from the 180 to 2,000 μm size-fraction (Karlusich et  al., 2021). 
Moreover, metagenome assembled genomes representing NCDs 
occurred in the 5–2,000 μm planktonic size-fractions (Delmont 
et al., 2021). Finally, one of the most widely distributed NCDs, 

BOX 1 | Key term definitions.

Non-cyanobacterial diazotrophs (NCDs): From a phylogenetic, rather 
than a metabolic, point of view, diazotrophs can be  divided into 
cyanobacteria and non-cyanobacteria. The term NCDs has therefore been 
widely used in the literature. NCDs are a diverse group of prokaryotes with 
potentially diverse metabolic pathways (see definition below). In the context 
of bacterial growth and N2 fixation associated with aggregates, we consider 
degradation and uptake of organic matter (heterotrophy) the prevailing 
functionality. However, the reader should be  aware that other metabolic 
strategies such as mixotrophy, photoheterotrophy or chemolithoautotrophy 
may also be present in NCDs.
Heterotrophic diazotrophs: Archaeal and bacterial N2-fixing 
microorganisms that require organic matter from external sources.
Metabolism: The combination of energy sources (light, chemical, and 
organic matter), electron flow and carbon (CO2 or organic matter) used by a 
microorganism to catalyze catabolic or anabolic processes.
Aggregates: Particles comprising live, dead and/or dormant cells, detritus 
and minerals that are held together by organic scaffolds. These particles are 
formed by the aggregation of organic material suspended in seawater. 
Aggregates are often rich in labile carbon and nutrients, and are therefore 
hotspots of microbial activity.
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Gamma-A, showed a ubiquitous presence in nifH genes across 
the North Atlantic Ocean quantified by qPCR in the >3 μm 
fraction (Benavides et al., 2016). This Gamma-A was also found 
in metatranscriptomes from the 3 to 2,000 μm size-fraction in 
the Tara oceans dataset, suggesting a filamentous or aggregate-
attached lifestyle for this putative heterotrophic bacterium 
(Cornejo-Castillo and Zehr, 2020). Hence, both PCR-dependent 
and -independent approaches suggest the presence and/or 
activity of NCDs on aggregates.

Experimental data also suggest aggregate-associated N2 fixation 
by NCDs. In an early study from the Chesapeake Bay, 
United  States, experiments by Guerinot and Colwell (1985) 
suggested that isolated strains of NCDs could fix N2 in the 
presence of plankton and particulate matter. In an experiment 
with aggregates from the Southern Indian Ocean, nifH  
genes related to Deltaproteobacteria were enriched in 
metatranscriptomes from experimental incubations with 
aggregates relative to controls without aggregates (Debeljak 
et  al., 2021). Similarly, N2 fixation was stimulated in seawater 
from a Danish nutrient rich estuary and the Mediterranean 
Sea by amendment with natural aggregates (Pedersen et  al., 
2018) or a transparent exopolymer aggregate analog 
(gum-xanthan; Rahav et  al., 2016), respectively. Hence, the 
presence of aggregates appears to stimulate N2 fixation by 
NCDs. Finally, presence of NCDs was recently documented 
on aggregates by immunolabeling of the nitrogenase enzyme 
while at the same time superimposing the aggregate matrix, 
total bacteria and cyanobacteria (Figure  1A). Collectively, the 
above-mentioned findings suggest that NCDs benefit from 
colonizing aggregates. Yet, our mechanistic understanding of 
how aggregates support N2 fixation by NCDs is still rather limited.

HOW CAN AGGREGATES SUPPORT 
HETEROTROPHIC DIAZOTROPHY?

Theoretical considerations as well as experimental and field 
observations indicate that aggregates provide several conditions, 
which at least ephemerally, can support N2 fixation by NCDs: 
(1) Low oxygen conditions: Nitrogenase, a central enzyme for 
N2 fixation, is irreversibly damaged by molecular oxygen 
(Goldberg et al., 1987); however, aerobic respiration by bacteria 
that colonize the aggregate combined with slow diffusion rates 
(depending on the size and density of the particle) leads to 
local reduction in oxygen concentrations (Alldredge and Cohen, 
1987; Paerl and Prufert, 1987; Ploug et  al., 1997; Simon et  al., 
2002; Klawonn et  al., 2015). The low oxygen levels in some 
parts of the aggregate vary from 50% to 90% air-saturation 
to anaerobic conditions on some occasions inside compact 
and large (few mm) aggregates (Ploug et  al., 1997; Ploug, 
2001; Klawonn et  al., 2015). Consequently, low-oxygen 
microzones within aggregates likely provide loci where the 
nitrogenase enzyme is protected from oxygen (Figure  1B). (2) 
Metabolic energy: Aggregates are characterized by elevated levels 
of labile organic carbon relative to the surrounding waters 
and rapidly become colonized by diverse bacteria. Enzymatic 
hydrolysis of the aggregate matrix allows ample carbon and 

nutrient supply and extensive microbial growth (Ploug and 
Grossart, 2000). This organic-rich microenvironment can, 
therefore, support the high energy requirements associated with 
diazotrophy by NCDs. (3) Reactive nitrogen availability: The 
high C:N ratio of aggregates (Figure  1C), and the consequent 
reduction in nitrogen availability due to microbial growth, may 
provide NCDs a competitive edge over other bacteria unable 
to fix N2. (4) Trace metal and phosphorus availability: Diazotrophy 
requires trace metals such as iron (Berman-Frank et  al., 2001) 
and molybdenum (Marino et al., 2003). Since aggregates usually 
contain higher concentrations of trace metals than ambient 
water (Jackson and Burd, 1998; Engel et  al., 2004), inhabiting 
diazotrophs may gain efficient access to these nutrients, in 
particular in the presence of increased microbial activity. Based 
on these observations, it may be  surmised that aggregates can 
provide conditions that are beneficial for N2 fixation by NCDs.

NCDs ASSOCIATED WITH 
AGGREGATES: TOWARDS A 
CONCEPTUAL FRAMEWORK

Aggregates may provide favorable conditions for NCDs under 
various conditions in marine and freshwater environments. Yet, 
how these conceivably ephemeral conditions develop on 
aggregates and how NCDs exploit them is currently unclear. 
Based on the overall emerging picture outlined above, and 
recent experimental (Martínez-Pérez et  al., 2018; Paerl et  al., 
2018) and modeling work (Chakraborty et al., 2021), we suggest 
a conceptual framework for N2 fixation by NCDs associated 
with aggregates (Figure  1D).

In the photic, well-oxidized zone, newly formed aggregates 
are sparsely colonized by microorganisms, thus limited respiration 
is expected. At that time, diffusion of oxygen from the 
surrounding water, and potential photosynthesis by associated 
phototrophs, will keep the aggregates well oxidized. If N2 
fixation takes place, it is likely carried out mostly by associated 
cyanobacterial diazotrophs (Farnelid et al., 2018; Klawonn et al., 
2019). It may be  speculated that aggregate associated 
cyanobacterial diazotrophs can switch to mixotrophic metabolism 
to sustain N2 fixation as they sink to aphotic layers and 
photosynthesis is impaired (e.g., Rahav et al., 2013). Over time, 
aggregate-associated heterotrophic bacteria will proliferate, while 
preferentially exploiting labile nitrogen-rich organic compounds 
(Smith et  al., 1992; Schneider et  al., 2003), growing to cell 
concentrations commonly several orders of magnitude higher 
than in the surrounding water (Grossart and Simon, 1993; 
Turley and Mackie, 1994). This raises the C:N values of the 
aggregate over the Redfield ratio, gradually generating local 
nitrogen limitation (Figure  1C). At the same time extensive 
bacterial respiration exceeds the influx of oxygen diffusing from 
the surrounding water and causes formation of low oxygen 
microzones within the aggregate (Figure  1B). There is now a 
window of opportunity for N2 fixation by NCDs fueled by 
aerobic respiration. The low oxygen microzones may become 
anoxic if extensive bacterial respiration continues and exceeds 
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the diffusive oxygen flux into the particle from the surrounding 
environment. NCDs may then switch to anaerobic respiration 
using nitrate or sulfate as alternative electron acceptors to meet 

their energetic requirements, as has been described for other 
aggregate-associated microbial processes (Wright et  al., 2012; 
Bianchi et al., 2018) and recently modeled for NCDs (Chakraborty 

A

B

C

D

FIGURE 1 | The association of NCDs with planktonic aggregates. (A) Enlarged confocal images of diazotrophs associated with aggregates after staining (red) the 
polysaccharide matrix by concanavalin A (Geisler et al., 2022). Enlarged images within the aggregate were captured to differentiate between three distinct channels 
(from left to right): total bacteria (stained by DAPI, blue); total cyanobacteria by autofluorescence of the phycoerythrin pigment (orange/white), and diazotrophs by 
immunolabeling nitrogenase enzyme. The white square on the aggregate shows the magnified location (scale bar of 10 μm). (B) Micro-sensor image showing the 
oxygen levels within a large (> 0.5 mm) planktonic aggregate (Klawonn et al., 2015). (C) Carbon to nitrogen ratio relative to aggregate size (Alldredge and Silver, 
1988; Grossart and Ploug, 2001). (D) Conceptual figure illustrating time-course changes in conditions on an aggregate as it sinks in the water column, of key 
relevance for N2 fixation by associated NCDs. See text for explanation.
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et  al., 2021). The usual inhibition of N2 fixation by nitrate 
can be  outweighed by enhanced diazotroph growth under low 
N:P ratio conditions (i.e., phosphate in excess; Knapp, 2012). 
However, it is unknown whether the high nitrate levels in 
deep waters may affect aggregate-associated NCD activity. It 
has been suggested that due to the high energetic costs associated 
with nitrate reduction, bacteria designed for diazotrophy may 
have few ecological reasons to use nitrate as a nitrogen source 
(Sprent and Sprent, 1990). In addition that high cell concentration 
near the surface of the aggregate may exhaust the supply of 
nitrate to the aggregate interior, supporting prevalence of sulfate 
over nitrate respiration within the aggregate (Chakraborty et al., 
2021). Eventually, most of the labile carbon is consumed and 
heterotrophic respiration decreases. At that time, oxygen levels 
in the aggregate increase as oxygen consumption is exceeded 
by its diffusion from the surrounding water leading to significant 
reduction in N2 fixation rates by NCDs.

This conceptual framework for the interaction between 
NCDs and the dynamic environment on aggregates was recently 
modeled and yielded N2 fixation rates comparable to bulk 
rates measured in aphotic waters (Chakraborty et  al., 2021), 
and agrees with field observations (Rahav et  al., 2013, 2015; 
Benavides et  al., 2016). Factors such as the level and type 
of substrate within the aggregate, the size of the aggregate, 
and its sinking speed may regulate the extent of aggregate 
associated N2 fixation both directly or indirectly, as they 
modulate the placement of the aggregate within the vertical 
gradients of nitrate, oxygen and carbon in the water column 
(Klawonn et  al., 2015; Bianchi et  al., 2018; Chakraborty 
et  al., 2021).

NEW APPROACHES AND METHODS

How Much N2 Do NCDs Fix on 
Aggregates?
N2 fixation rates in aquatic environments are most commonly 
measured by 15N2 stable isotope labeling. Methodological 
challenges such as incomplete gas dissolution during incubations 
(Mohr et  al., 2010) or contaminated gas stocks (Dabundo 
et  al., 2014) causing under- or over-estimates of N2 fixation 
appear resolved (White et  al., 2020). NCD-specific N2 fixation 
rates measurements have, however, remained elusive due to 
the coexistence of NCDs with cyanobacterial diazotrophs 
(Moisander et  al., 2017). Approaches to distinguish the NCD 
N2 fixation signal from bulk rates have included dark incubations 
(Singh et al., 2021) and the addition of photosynthesis blocking 
agents (Rahav et  al., 2016; Benavides et  al., 2018b; Geisler 
et  al., 2020). Unfortunately, these approaches cannot 
unambiguously measure NCD-specific N2 fixation rates since 
NCDs may be  photoheterotrophic (Riemann et  al., 2010). 
Moreover, blocking photosynthesis may not halt cyanobacterial 
N2 fixation at the expense of carbon storage, and alter the 
natural oxygen concentrations in incubation bottles (Table  1). 
Sample enrichment with 15N2 followed by nanoscale secondary 
ion mass spectrometry (nanoSIMS) yields cell-specific N2 
fixation rates (Angel et  al., 2018; Martínez-Pérez et  al., 2018). 

The combination of nanoSIMS with phylogenetic or functional 
identity methods provides phylogenetic-specific N2 fixation 
rates (Musat et  al., 2012), but hybridization preparations can 
dilute isotope signals impacting detectability when N2 fixation 
rates are low (Musat et  al., 2014; Meyer et  al., 2020; Table  1). 
Alternatives to circumvent this issue include correlation 
microscopy approaches and non-halogenated probes (gold-ISH; 
Kubota et  al., 2014; Jiang et  al., 2016; Table  1). In addition 
to the above, tagging the aggregate itself, while maintaining 
its structure during sample preparation for NanoSIMS or any 
other electron-based microscopy is highly challenging and 
calls for the development of dedicated sample preparation 
and imaging approaches.

What is the Distribution and Spatial 
Organization of NCDs on and Within 
Aggregates?
NCDs may be  localized on single aggregates using various 
tagging methods. Immunolabeling of the nitrogenase enzyme 
is a universal method to detect active nitrogenases (Geisler 
et  al., 2019). The localization of diazotrophs on the particle 
could be  achieved by tagging the aggregate matrix and 
immunolabeling the diazotrophs (Geisler et al., 2019). Moreover, 
NCDs can be  differentiated from cyanobacteria by 
superimposing nitrogenase immunolabeling and phycoerythrin 
fluorescence images (Geisler et al., 2019). This approach does, 
however, not provide phylogenetic information. Yet, the 
biochemical heterogeneity and chemical gradients within 
aggregates (Ploug, 2001; Klawonn et  al., 2015) likely regulate 
the distribution of phylogenetically and functionally distinct 
microbes (Wright et al., 2012). This implies that the colonizing 
architecture of NCDs on aggregates needs to be  considered 
from a 3D perspective. This may be  partially approached by 
laser scanning confocal microscopy (Geisler et al., 2019, 2020) 
and/or other approaches such as resin embedding followed 
by microtome slicing and 3D image reconstruction to investigate 
the internal aggregate structure (Flintrop et  al., 2018; Rogge 
et  al., 2018).

Who Are the NCDs That Colonize 
Aggregates?
Barcoding, genomic and transcriptomic analyses have been 
applied on concentrated aggregate samples such as sediment 
trap material (Farnelid et al., 2018; Boeuf et al., 2019; Baumas 
et  al., 2021). Such bulk approaches do, however, not allow 
visualizing the distribution of individual taxa at the single 
aggregate level. This would require specific methods such as 
rRNA oligonucleotide probes (catalyzed reporter deposition 
fluorescent in situ hybridization or CARD-FISH, e.g., 
(Thompson et  al., 2012) and/or in combination with 
polynucleotide probes targeting specific gene fragments 
(geneFISH), which allows identifying individual phylogenetic 
groups expressing a gene of interest (Moraru et  al., 2010). 
Recently, geneFISH was successfully used to quantify Gamma-A 
heterotrophic diazotrophs on marine aggregates 
(Harding, 2021).
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How Important Is Aggregate-Associated 
N2 Fixation by NCDs for Aquatic Nitrogen 
Cycling?
Traditional approaches to sample aggregate-associated microbes 
include hand-picking by SCUBA diving (Alldredge and Gotschalk, 
1988) and size-fractionation (Mestre et  al., 2017). Given the 
heterogeneous distribution of aggregates in water columns, small 
volume sampling devices such as Niskin bottles underestimate 
aggregate abundance causing a bias towards free-living microbes 
and dissolved materials (Planquette and Sherrell, 2012; Puigcorbé 
et  al., 2020). A plethora of devices that integrate larger water 
volumes such as in situ pumps, marine snow catchers and sediment 
traps exist today (McDonnell et  al., 2015). While these provide 
a better representation of aggregate abundances and distributions 
in the water column, the downstream analyses proposed above 
to yield NCD-specific metabolic and phylogenetic information 
are mostly low throughput (Table 1). Extrapolating low throughput 
discrete measurements to large spatial and temporal scales would 
require, on top of a sufficiently representative sampling, knowledge 
on aggregate size spectra and spatiotemporal distribution (Boyd 
et  al., 2019; Giering et  al., 2020). The advent of automated 
aggregate counting and imaging methods (Stemmann et al., 2012; 
Giering et  al., 2020; Karlusich et  al., 2021) will likely improve 
the accuracy of spatiotemporal scale extrapolations in the future.

EPILOG: HETEROTROPHIC 
DIAZOTROPHS ASSOCIATED WITH 
AGGREGATES

We argue that aggregates act as dynamic loci suitable for N2 
fixation by NCDs in aquatic ecosystems. Molecular analyses and 

microscopical identification have shown that material collected 
in large size fractions and sediment trap material harbor clusters 
of NCDs. However, the phylogeny, the specific N2 fixation rates 
of NCDs on aggregates and their contribution to nitrogen cycling 
remain largely unquantified. It is, therefore, important to develop 
dedicated methods and approaches capable of isolating NCD-specific 
N2 fixation rates and to identify their phylogeny. Our 
recommendation to the scientific community is to (1) develop 
cell-specific staining methods combined with 15N2 labeling, (2) 
consider the 3D architecture of single aggregates, and (3) account 
for their heterogeneous spatiotemporal distribution in aquatic 
ecosystems. Advances in automated particle characterization and 
counting should increase the throughput of these methods in 
the future. These recommendations will inspire future research 
to unveil the ecology and quantitative relevance of aggregate-
associated NCDs in marine as well as freshwater environments.
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TABLE 1 | Proposed methods to study aggregate-associated NCDs.

Information sought Method Disadvantages/challenges References

Bulk NCDs: N2 fixation rates Dark incubations and/or photosynthesis 
inhibition, EA-IRMS

Photoheterotrophic NCDs downplayed
Oxygen concentrations can change in 
closed incubations

Rahav et al., 2016; Benavides et al., 
2018b; Singh et al., 2021

Aggregate-associated NCDs: N2 
fixation rates

Sediment trap slurry or hand-picked 
aggregate 15N2 incubations, HISH-
SIMS, correlation microscopy

Hybridization protocols cause isotope 
dilution impeding measurement of low rates
Low throughput

Kubota et al., 2014; Dekas et al., 2016; 
Jiang et al., 2016;  
Loussert-Fonta et al., 2020

Aggregate-associated NCDs: 
phylogenetic and/or functional 
identity

CARD-FISH Not optimal when phylogenetic diversity is 
high
No active N2 fixation information

Biegala and Raimbault, 2008; Agawin 
et al., 2014

Immunolabeling No phylogenetic information Geisler et al., 2019
geneFISH Combination of RNA-targeted 

oligonucleotide probes to infer cell identity 
with polynucleotide probes targeting gene 
fragments. Limited sensitivity

Moraru et al., 2010

Aggregate colonization architecture Resin embedding, microtomy Labor-intensive, compromised structure 
after dehydrating the sample, limited 
replicability and spatiotemporal extrapolation

Flintrop et al., 2018; Rogge et al., 2018

Spatial and temporal extrapolation Laser In-Situ Scattering and 
Transmissometer (LISST), Underwater 
Video Profiler (UVP), holography, 
particulate optical backscattering

Aggregates containing diazotrophs not 
differentiated from others

Stemmann et al., 2012; Briggs et al., 
2020; Walcutt et al., 2020

Note that a complete evaluation of the link between aggregates and diazotrophs using direct approaches will often also require complementary and indirect measurements.
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