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Abstract

The resilience and vulnerability of airport networks are significant challenges during the

COVID-19 global pandemic. Previous studies considered node failure of networks under

natural disasters and extreme weather. Herein, we propose a complex network methodol-

ogy combined with data-driven to assess the resilience of airport networks toward global-

scale disturbance using the Chinese airport network (CAN) and the European airport net-

work (EAN) as a case study. The assessment framework includes vulnerability and resil-

ience analyses from the network- and node-level perspectives. Subsequently, we apply the

framework to analyze the airport networks in China and Europe. Specifically, real air traffic

data for 232 airports in China and 82 airports in Europe are selected to form the CAN and

EAN, respectively. The complex network analysis reveals that the CAN and the EAN are

scale-free small-world networks, that are resilient to random attacks. However, the connec-

tivity and vulnerability of the CAN are inferior to those of the EAN. In addition, we select the

passenger throughput from the top-50 airports in China and Europe to perform a compara-

tive analysis. By comparing the resilience evaluation of individual airports, we discovered

that the factors of resilience assessment of an airport network for global disturbance consid-

ers the network metrics and the effect of government policy in actual operations. Addition-

ally, this study also proves that a country’s emergency response-ability towards the COVID-

19 has a significantly affectes the recovery of its airport network.

1. Introduction

Large-scale disruptive events, which include unfavorable weather, failures of certain network

components, industrial actions of air transport staff, natural disasters, terrorist threats/attacks,

and traffic incidents/accidents, can jeopardize the resilience and vulnerability of an air trans-

port network [1]. An air transport network comprising airports and airline flights scheduled

can be affected by the abovementioned disruptive events. Resulting in extended airline flight

delays and cancellations. To reduce social and economic losses caused by disruptive events,
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the resilience and vulnerability of the air transport network must be investigated, such that the

network can recover rapidly and efficiently recover to normality after a disruptive event. Resil-

ience refers to a system’s intrinsic ability to adjust its functioning before, during, or after

changes and disturbances [2]. The current COVID-19 pandemic demonstrated that disruptive

events can affect transportation networks, particularly air traffic, in terms of the safety and

security of airlines, airports, and air traffic control departments. As compared with business

pre-COVID-19, a loss of 64.6% (6121 million people) in terms the number of international

and domestic passengers and 65% in airport revenues (approximately USD 125 billion) have

been record in 2020 based on data from Airports Council International (ACI) data [3].

Numerous studies pertaining to resilience have been conducted for different fields. Holling

proposed the resilience concept in ecological systems [4]. Subsequently, the concept of resil-

ience developed in disciplines such as ecology, psychology, organization, social, and engineer-

ing was classified into four categories: resilience as rebound, resilience as robustness, resilience

as gracefully extensibility, and resilience as sustained adaptability [5]. Compared with other

terms, such as robustness, reliability, survivability, and flexibility, resilience focuses on perfor-

mance degradation and recovery after inevitable disruptions [6]. In recent decades, most stud-

ies pertaining to qualitative resilience assessment approaches included conceptual frameworks

and semiquantitative indices [7]. Resilience has been extensively investigated in transportation

systems, such as railway networks, road networks, and air transport networks [8–10], where

natural hazards or extreme weather are typically involved [11, 12]. Research pertaining to the

resilience of the air transport system focuses primarily on the air traffic management (ATM)

system and airport network [13, 14]. Cook proposed a cost resilience metric for ATM during

disturbance [15]. Faturechi introduced an exact solution methodology based on the integer L-

shaped decomposition to assess and maximize the resilience of an airport’s runway and taxi-

way network under multiple potential damage-meteorological scenarios [16]. Additionally,

Wang employed a simulation model that considered structural and dynamical factors to inves-

tigate the resilience of airport networks [17]. Zhou developed a resilience metric to measure

airport resilience post severe weather [18]. Several researchers have recently adopted a network

science approach to analyze the degree of synchronization between the number of cases in cer-

tain countries and their reactions to air transportation operations [19, 20]. The authors of [21]

investigated the resilience of the Chinese airport network (CAN) affected by global public

health events based on historical data and assessed the recovery of Chinese and European air-

ports based on different control strategies.

Fig 1 shows that the curve for COVID-19 confirmed cases is inversely proportional to the

flight volume curve. In the first half of 2020, the number of aircraft movements at airports in

Fig 1. Evolution of air traffic and COVID-19 confirmed cases in Europe and China.

https://doi.org/10.1371/journal.pone.0260940.g001
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China’s mainland decreased by75% as compared with the previous year. However, after imple-

menting effective prevention and control measures, the number of aircraft movements in June

resumed to the level of 2016. Meanwhile, the number of flights in EUROCONTROL member

states declined to 54.8% compared with the same period in 2019. Traffic in some European

states began declining again following the resurgence of COVID-19 since the beginning of

September 2020 (see the blue line in Fig 1A). Confirmed cases of the COVID-19 in Europe

continued to increase in the past year (see the red line in Fig 1A). By contrast, the red line in

Fig 1B shows that confirmed cases of the COVID-19 in China peaked in February and declined

to an extremely low level in May. However, the resilience of airport networks affected by the

COVID-19 pandemic is yet to be assessed. Previous studies regarding network resilience pri-

marity focused on the vulnerability and robustness of the network. Therefore, we aim to

model the characteristics of airport networks during the pandemic and assess their resilience

during the global COVID-19 pandemic globally.

In this study, we focused on the effect of a global-scale disruption on the resilience of air-

port networks. Nonetheless, the results and insights are also applicable to the effect of com-

bined disruptions (such as epidemics and natural disasters) on airport networks. From a

complex network perspective, we analyzed the topological structures of the CAN and Euro-

pean airport network (EAN) and compared vulnerability of the airport network in different

countries and regions based on different attack strategies. In addition, from a node perspective,

the resilience of individual airports in China and Europe were evaluated, and some improve-

ment strategies to mitigate the disruptions due to the COVID-19 were proposed.

The remainder of this paper is orgazized as follows: Section 2 introduces the method of

resilience assessment framework for airport network. Section 3 presents a case study pertain-

ing to the resilience assessment of the CAN and EAN. Finally, Section 4 provides the conclu-

sions and future work.

2. Methods

This section introduces a method of the resilience assessment framework for airport networks,

including network- and node-level analyses. At the network level, we primarily discuss the vul-

nerability analysis and the recovery strategy for airport networks. Subsequently, we discuss the

resilience metric of individual airports at the node level (see Fig 2).

2.1 Airport network modeling

Complex network theory provides effective tools for understanding the structure and dynam-

ics of an airport network system [22]. The airport network is a complex network comprising

airports as nodes and the correlations between airport traffic flow as edges; it is widely vesti-

gated at both the international and domestic levels. The air transport networks of some coun-

tries such as China, India, Italy, and Australia are small-world networks [23–27]. The metrics

for weighting the importance of network nodes include degree, betweenness, and closeness.

The heterogeneous structures of airport networks result in different airports possessing differ-

ent extents of importance. Additionally, the traffic flow distribution is vital to airports. Li [28]

combined an airport network’s topological and functional features to evaluate the airport’s

importance, based the degree, betweenness, and traffic metrics.

In this study, actual airline data for 232 domestic airports in mainland China and 82 air-

ports in Europe for 2019 were used to form the CAN and the EAN. The key metrics used to

characterize the airport network, based on previous studies [22, 25, 28], were used in this

study, as shown in Table 1.

PLOS ONE Quantitative method for resilience assessment framework of airport network during COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0260940 December 3, 2021 3 / 13

https://doi.org/10.1371/journal.pone.0260940


We considered airport networks as directed and weights and regarded the number of air-

craft movements between two airports as weights to calculate the critical metrics. The CAN in

2019 included 232 nodes and 2932 undirected edges (the total degree was 5863). The average

degree was 25.06, and the network efficiency was 52.08%. The top 8 airports with the highest

degrees were Xi’an, Chongqing, Chengdu, Beijing, Kunming, Shenzhen, Shanghai Pudong,

and Guangzhou. Compared with the CAN structure presented in [29], the average clustering

Fig 2. Resilience assessment framework for airport network.

https://doi.org/10.1371/journal.pone.0260940.g002

Table 1. Network metrics.

Parameter Equation General Implication

Non-weighted Degree
ki ¼

Xv

j¼1

aij

ki refers to the total number of connections node cc has with

other nodes in the network. aij represents the presence of a link

between nodes i and j,
Weight Degree

si ¼
XN

j¼1

aijwij

In an airport network, si the number of aircraft movements

associated with the node represents airport pairs’ edge weight.

Degree distribution pðkÞ ¼ nk
n For a network with n nodes, nk is the number of degrees k.

Weighted clustering

coefficient
Cw

i ¼
1

Giðki � 1Þ

X

j;h

wijþwih
2

ajh
Gi and ki is the node weight and node degree of note i,
respectively.

The average shortest

path length
L ¼ 1

1
2
N�ðN� 1Þ

X

i�j

dij
dij is the shortest path length from between nodes i and j

Betweenness centrality BðiÞ ¼
X

j6¼h

sjhðiÞ
sjh

σjh is the total number of shortest paths from node j to node h.

Network efficiency
E ¼ 1

N�ðN� 1Þ

XN

i6¼j

1

dij

The greater the E value, the better the network connectivity. This

is global efficiency.

https://doi.org/10.1371/journal.pone.0260940.t001
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coefficient decreased, where the number of nodes and average degree increased. In addition,

the EAN in 2019 included 82 nodes and 3778 edges (the total degree was 3854). The average

degree was 47, the network efficiency was 78.98%, and the average clustering coefficient was

78.38%. Hence, The CAN and EAN are typical small-world networks.

2.2 Resilience analysis of airport network

In the transportation system, resilience, vulnerability, and robustness are the most relevant and

representative concepts. These concepts are investigated from different perspectives, including

network security and system integrity perspectives [9]. The resilience of complex networks is

interpreted as the ability to retain performance during and after disruptions and resume to the

normal state of operation promptly after disturbances. The properties of social system resilience

include robustness, redundancy, resourcefulness, and rapidity. From a system perspective, resil-

ience analysis involves three aspects: the system can resist interferences, absorb interferences,

and resume to normality after being disturpted. From a network structure perspective, vulnera-

bility primarily refers to the network’s sensitivity to emergencies [9, 30].

2.2.1 Vulnerability. The perturbation of complex networks include node/link removal,

weight reduction, or any of their combination. In this study, the following strategies were

adopted to investigate the resilience and invulnerability of an airport network:

2.2.1.1 Removing nodes randomly. We randomly selected 5% of nodes in an airport network

in each step, removed them, and then analyzed the network’s invulnerability when multiple

nodes were attacked simultaneously. Hence, the airport network affected synchronously by

different disruptive events (e.g., health emergencies, aviation accidents, and extreme weather)

can be simulated.

2.2.1.2 Removing highest weight nodes. Nodes were removed based on different weight indi-

cators. We removed nodes in the order of decreasing node degree, betweenness centrality, and

node strength [31].

2.2.2 Recovery strategies. From a complex system perspective, the strategies for network

recovery after a disruption include using subgraph, degree, path shorten, and random recovery

[31]. To simulate the airport network, we applied degree and node strength recovery strategies

to manage network attacks, which recovered the nodes in the order of decreasing degree and

the node throughput.

From a system operation perspective, the COVID-19 as a global-scale disruptive event;

therefore, the recovery strategies and response speed of complex systems are crucial to resume

the expected level of the system. Therefore, the strict mobility restrictions and quarantine poli-

cies were enforced by countries, which resulted in many flight cancellations and reduced air

passenger demand. However, the ongoing vaccination process has resulted in more resilient

domestic passenger traffic as compared with international passenger traffic [32]. Based on the

current anti-epidemic measures of countries worldwide, we selected two recovery policies to

analyze the effect of the COVID-19 on airport networks [33].

2.2.2.1 Recovery strategy-I. This strategy involves a unified set of preventive and control pol-

icies and strict regulations pertaining to the COVID-19 for supporting airlines and airports

recovery. Examples include vaccination, strict quarantine requirements, the lock-down of cit-

ies, social distancing, wearing of face mask, mobility constraints, proactive testing, isolation of

suspected and confirmed cases, promotion of personal hygiene, and development of an effec-

tive contact tracing system.

2.2.2.2 Recovery strategy-II. This strategy involves a series of anti-epidemic measures but

takes a less strict enforcement policy. Examples include curfews, quarantines, and certain regu-

lations such as stay-at-home orders, shelter-in-place orders, and lock-downs.
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2.2.3 Resilience model of airport network. Based on previous studies, resilience is associ-

ated with a system withstanding disturbances, adapting to the disruptions, and recovering

from the state of deteriorated performance. The analysis of airport network resilience is funda-

mental for understanding its sustainability, which affects the network operation efficiency

[28]. The resilience of the network structures can be quantified in terms of throughput and

connectivity or compactness. The deterioration of the nominal performance of airports by the

effect of the COVID-19 can reflect their resilience. This paper focuses on the domestic airport

network in different countries/regions, where airports and their direct flights. are represented

by nodes and links, respectively. The operational resilience of an airport network can be ana-

lyzed using resilience metrics [17]. However, the resilience metric of airport network nodes

can be assessed based on the traffic volume (node’s strength). The resilience metrics for an air-

port network’s nodes can be expressed as follows [21].

GMKPI ¼ f ðRKPI;RAPIDP
KPI;RAPIRP

KPI;TAPLKPI; RAKPIÞ

¼ RKPI �
RAPIRP

KPI

RAPIDP
KPI

� �

� ðTAPLKPIÞ
� 1
� RAKPI

ð1Þ

where RKPI is the minimum measurement of the key performance indicator (KPI) of airport

capacity during a disruption. RAPIDP
KPI refers to the average slope of the KPI’s decline changes

in the disruptive state, RAPIRP
KPI can be approximated by the average slope of the KPI recovering

to the new steady state, TAPLKPI is the time average loss of the KPI and RAKPI is the recovering

capacity of the KPIs.

3. Results

The data used in this study were obtained from VarFlight website, which included data from

232 airports in the mainland China and 82 airports in Europe. In this study, we selected the air-

ports in China and Europe to perform a comparison since Europe is comparable in size to

China. In addition, we obtained the flights data of Chinese and European airports for 12

months, from January 2020 to December 2020. The data pertaining to Chinese airports used in

this study were obtained from the Civil Aviation Administration of China (CAAC), whereas

those pertaining to European airports were obtained from the EUROCONTROL website. It is

noteworthy the aircraft movements data contained cargo flight data. Additionally, 11 airports

were selected from 30 million airports in China, and the top-8 airports in Europe were selected

from the world’s top 50 airports in term of throughput in 2019. The top-8 airports in Europe

represent major national hubs with a significant level of pan-regional and international traffic.

Data of confirmed cases of COVID-19 in China and Europe were obtained from the Center for

System Science and Engineering at Johns Hopkins University. We primarily obtained the data

for mainland China, France, Germany, Netherlands, Spain, and the United Kingdom in 2020.

3.1 Vulnerability assessment of airport network

Fig 3 shows the response of the CAN and EAN to node removal based on four attack strategies:

degree removal, betweenness removal, throughput removal, and random removal. As shown

from Fig 3, when the network efficiency began to decline, the decline speed of the random-

removal strategy in the CAN was slower than those of three attack strategies. For centrality-

based attacks (degree and betweenness) and strength (throughput) attacks, the CAN’s effi-

ciency decreased abruptly initially and then declined to zero after 40% of the highly connected

or central nodes were removed (see Fig 3(A)–3(C)). However, Fig 3(E)–3(G) show that after

approximately 90% of the high degree, high betweenness, or high throughput nodes were
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removed, the EAN’s efficiency is reduced to zero. This implies that the connectivity of the

EAN was greater than that of the CAN; as such, it is more robust and tends to have fewer fail-

ures when and disruption occurs. The authors of [34] proposed airport networks that are

inherently resilient to random nodes or edge failures. In those networks, even when a signifi-

cant number of nodes are removed, all integrity measures decreased only slightly and did not

reach a sharp threshold, subsequently, the networks were completely destroyed. Fig 3(D) and 3

(H) show that the CAN and EAN exhibited favorable invulnerability toward random removal

attacks; however, it appeared that they were relatively vulnerable to selective attacks. However,

we re-emphsize that this study focuses on the method of resilience assessment for airport net-

works subjected to global-scale hazards. It is noteworthly that although selective attacks can

result in a higher collapse rate, two network metrics can be used to measure the degree and

betweenness. In addition, we used selective attacks to trigger the collapse of global-scale dis-

ruptive events because pandemics, such as the COVID-19, affect the hub airports/facilities

first. In general, the analysis results based on attack strategies showed that the CAN’s vulnera-

bility was relatively low.

3.2 Comparison of different recovery strategies

From a complex network perspective, we simulated the attack-recovery process to analyze the

effects of the CAN and EAN node recovery on the network efficiency. We selected degree and

node strength as the recovery strategies for the recoveries after attack 1, 3, 5, 7, and 9 nodes,

respectively. Fig 4(A)–4(D) show that the recovery time of failure nodes in the network directly

affected the network efficiency. In addition, the path to optimal recovery is vital to the network

resilience and should be investigated in future research.

From the view of actual operation data, Fig 4(E) and 4(F) present the actual recovery effects

of the CAN and EAN during the COVID-19 pandemic. China and Europe have undergone

the most significant changes in aircraft movements in 2020. We observed that the operation of

domestic airports in China resumed to the pre-epidemic level because the Chinese authorities

Fig 3. Efficiency comparison between Chinese and European airport networks based on different attack strategies.

https://doi.org/10.1371/journal.pone.0260940.g003
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adopted strict epidemic prevention policies (recovery strategy I). However, the air traffic of

European airports was less than half of that prior to the epidemic. This shows that the wider

variation and associated fragmentation of national response actions in terms of travel restric-

tions and lock-downs imposed a more substantial effect on the operation of airport networks.

China demonstrated a higher level of recovery as a single country under a single policy.

Fig 5 shows the CAN and EAN on selected dates before and throughout the COVID-19 pan-

demic. These images show the connectivity patterns between airports, where the links represent

the direct flights between them. As shown, the domestic air traffic in China in October 2020 did

not changed significantly compared with the same period in 2019; the average degree centrality

and average weighted degree of the CAN in 2020 increased by 2.265% and 5.9% compared with

those in 2019, respectively. Most of the domestic airports in China have mostly recovered to

their original connectivity, which may due to the strict epidemic prevention policy(Recovery

strategy I). By contrast, the European air traffic in October 2020 changed significantly compared

with the same period in 2019, and the connectively of the EAN was relatively sparse in October

2020. The average degree centrality and average weighted degree of the EAN in 2020 are

reduced by 20.9% and 63.7% compared with those in 2019. Therefore, from a complex-network

perspective, the variation in approaches across different European countries to contain the

spread of the COVID-19 and the associated travel constraints affected the European network.

The images presented above show that a specific reason contributing to the transportation net-

work’s targeted attacks (restrictions on air passengers’ mobility) is difficult to identify. However,

the proactive epidemic prevention and control policy (recovery strategy I) of a country/region

can significantly affect its airport recovery. However, the less strict epidemic control policy

(recovery strategy II) did not significantly affect the recovery rate of the airports.

Fig 4. Comparison of network efficiency based on different recovery strategies. (a)–(d) show the recovery process of the CAN and EAN based on degree and

node strength recovery strategies; the red box and blue box in (e) and (f) represent variation in air traffic of airports in China and Europe in 2019 and 2020,

respectively.

https://doi.org/10.1371/journal.pone.0260940.g004
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3.3 Resilience assessment

In this section, we present results obtained from the node-level perspective. This paper selected

a resilience metric to assess the operational resilience of individual airports during the

COVID-19 epidemic.

Fig 6 shows the resilience value for selected airports from the CAN and EAN in the first

seven months and the entire years of 2020 during the epidemic. In the first wave of the

COVID-19, China has adopted active prevention policies (Recovery strategy I) to curb the

spread of the epidemic. A comparison with other airports in the mainland China indicated

Fig 6. Resilience index of airports during COVID-19 pandemic. Orange and green bar represent the resilience

metrics of the first seven months of 2020 and entire year of 2020, respectively.

https://doi.org/10.1371/journal.pone.0260940.g006

Fig 5. Comparison between CAN and EAN on October 1st to 31st before and during the COVID-19 pandemic.

https://doi.org/10.1371/journal.pone.0260940.g005
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that the resilience metric of the Shanghai Pudong International Airport(ZSPD) aircraft move-

ments was the highest during the first seven months of 2020. Owing to cases from abroad in

the second half of 2020, the average value of resilience metric in the selected Chinese airports

decreased from 2.69 to 1.49 (see Table 2 and Fig 6A). However, for the European airports that

adopted recovery strategy II and travel ban restrictions between countries, the resilience metric

was lower during the first seven months of 2020 compared with that of China. For instance,

the Paris International Airport (LFPG) performed relatively well in terms of recovery among

the selected European airports. In addition, the operation of European airports has been

severely affected by the second wave of the epidemic in the second half of 2020. Hence, the

resilience of aircraft movements in Europe decreased significantly. The average resilience

value was only 0.25 (see Table 2 and Fig 6B). This shows that the recovery of network- and air-

port-level demands in China and Europe differed significantly. The air transport lock-down

execution time in different countries/regions was not synchronized, different epidemic pre-

vention strategies were used, and the strategic perspective on the recovery of air traffic world-

wide varied.

3.4 Resilience improvement path of airport network

The implementation of various traffic mode and travel policies has recovered domestic

travel in many countries; however international traffic remains restricted. The wider vari-

ation and associated fragmentation of national response actions have significantly affected

the recovery of operational efficiency of the airport network. In addition, the current air-

port networks are highly structured and regulated; hence, the resilience improvement of

airport networks affected by an epidemic should be considered from a system perspective.

First, industry–government collaborations should be strengthened, such as the introduc-

tion of global vaccination passports [35]. Next, a global governance system for the aviation

industry should be established to manage a worldwide emergencies. Finally, national civil

aviation departments should enhance worldwide cooperation and establish an emergency

management synergy mechanism to manage global-scale disruptive events. Methods to

improve the resilience of airport networks should be furtther analyzed and investigated in

future studies.

Table 2. Comparison of resilience metrics in China and Europe during COVID-19 epidemic.

Recovery Strategy I Recovery Strategy II

Airport GM1 GM2 Airport GM1 GM2

Beijing (ZBAA) 1.5188 2.5212 Heathrow (EGLL) 0.5386 0.2314

Pudong (ZSPD) 3.7932 0.9294 Paris (LFPG) 1.2667 0.2944

Hongqiao (ZSSS) 2.9686 1.5914 Amsterdam (EHAM) 1.0211 0.3767

Shenzhen (ZGSZ) 3.6086 1.9516 Frankfurt (EDDF) 0.9164 0.2529

Chengdu (ZUUU) 3.4847 1.0221 Madrid (LEMD) 0.6618 0.2950

Kunming (ZPPP) 1.9877 1.1724 Barcelona (LEBL) 0.9103 0.2229

Guangzhou (ZGGG) 2.1367 1.5741 Munich (EDDM) 0.6674 0.1137

Chongqing (ZUCK) 2.9576 1.6206 Gatwick (EGKK) 0.8848 0.2374

Hangzhou (ZSHC) 2.9096 1.6997

Nanjing (ZSNJ) 2.0976 1.2365

Xian (ZLXY) 2.0776 1.1161

Note: GM1 and GM2 represent aircraft movements’ resilience metrics in airports during the first seven-month and the whole year of 2020, respectively.

https://doi.org/10.1371/journal.pone.0260940.t002
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4. Conclusion and discussion

In this study, we proposed and tested a framework to assess the resilience of the airport net-

work. The assessment framework contained the indicators shown in Fig 2. First, we assessed

the vulnerability of airport networks based on different attack strategies from a complex net-

work-level perspective. Subsequently, different recovery strategies used for airport networks

were evaluated. Next, from a node-level perspective, based on the resilience metric, the opera-

tional resilience of crucial nodes in airport networks was evaluated. Finally, we compared the

vulnerability of the CAN and EAN, and then assessed the resilience of the crucial nodes. It was

discovered that the connectivity and vulnerability of the CAN during selective attacks were

lower than those of the EAN, indicating that the EAN was highly robust and continued to

operate effectively. By contrast, the CAN’s efficiency decreased significantly to 50% after 10%

of the nodes were removed. The design and development of the CAN should be analyzed at

the network level. However, the CAN during the COVID-19 epidemic was sighnificantly more

active as compared with the EAN, and its network efficiency was higher. Therefore, the CAN

may benefit from a single country under a single policy. Moreover, from a local airport per-

spective, we use data to evaluate the resilience of crucial airports in China and Europe during

the epidemic. The domestic airports in China recovered at a much higer rate than those in

Europe. The results showed that although the network indicators were vital to the resilience

assessment of an airport network affected by global disturbance and that the policy in actual

operations should be considered.

In this study, a resilience assessment framework for the airport networks was construced. It

provides new insights to decision-makers for strengthening infrastructure resilience, e.g., air-

port network response to global disruptive events and improved emergency response. Com-

pared with the conventional network structure approach, the proposed evaluation approach is

based on operational data, instead of assumptions, rendering the results more meaningful for

real-world airport network operations. However, one should note that this study also has sev-

eral limitations, which should be improved in future research. For example, our current analy-

sis neither involve changes in the networks of other countries (e.g., the US airport network)

before and after the pandemic nor the effects of node strength changes on a complex network.

In this study, airport nodes’ aircraft movements were disregarded in the analysis, where con-

nectivity measures were emphasized. More factors should be considered in future studies to

analyze an airport network’s resilience improvement strategies for a large-scale emergencies.

Supporting information

S1 File.

(RAR)

Acknowledgments

The authors would like to thank the anonymous reviewers whose comments helped improve

the paper’s presentation.

Author Contributions

Conceptualization: Jiuxia Guo.

Data curation: Jiuxia Guo, Yang Li.

Formal analysis: Jiuxia Guo.

Funding acquisition: Jiuxia Guo.

PLOS ONE Quantitative method for resilience assessment framework of airport network during COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0260940 December 3, 2021 11 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0260940.s001
https://doi.org/10.1371/journal.pone.0260940


Investigation: Jiuxia Guo, Xinping Zhu.

Methodology: Jiuxia Guo.

Project administration: Jiuxia Guo.

Resources: Jiuxia Guo, Yang Li, Xinping Zhu.

Software: Jiuxia Guo, Zongxin Yang.

Supervision: Jiuxia Guo.

Validation: Jiuxia Guo.

Visualization: Jiuxia Guo.

Writing – original draft: Jiuxia Guo.

References
1. JanićM. Reprint of “Modelling the resilience, friability and costs of an air tran-sport network affected by

a large-scale disruptive event”. Transportation Research Part A: Policy and Practice. 2015; 81: 77–92.

https://doi.org/10.1016/j.tra.2014.10.023

2. Hollnagel E, Woods DD, Leveson N. Resilience engineering: concepts and prece-pts. Ashgate Publish-

ing, Ltd. 2006.

3. Air Transport Bureau. Effects of Novel Coronavirus (COVID-19) on Civil Aviat-ion: Economic Impact

Analysis.2021.

4. Holling CS. Resilience and stability of ecological systems. Annual review of ecol-ogy and systematics.

1973; 4(1): 1–23.

5. Woods DD. Four concepts for resilience and the implications for the future of resilience engineering.

Reliability Engineering & System Safety. 2015; 141: 5–9. https://doi.org/https%3A//doi.org/10.1016/j.

ress.2015.03.018

6. Zhou Y, Wang J, Yang H. Resilience of transportation systems: concepts and co-mprehensive review.

IEEE Transactions on Intelligent Transportation Systems. 2019; 20(12):4262–4276. https://doi.org/10.

1109/TITS.2018.2883766

7. Hosseini S, Barker K, Ramirez-Marquez JE. A review of definitions and measures of system resilience.

Reliability Engineering & System Safety. 2016; 145: 47–61. https://doi.org/https%3A//doi.org/10.1016/

j.ress.2015.08.006

8. Murray-Tuite PM. A comparison of transportation network resilience under simu-lated system optimum

and user equilibrium conditions. Proceeding of the 2006 Winter Simulation Conference IEEE.

2006:1398–1405.

9. Pan S, Yan H, He J, et al. Vulnerability and resilience of transportation syst-ems: a recent literature

review. Physica A: Statistical Mechanics and its App-lications. 2021:126235. https://doi.org/10.1016/j.

physa.2021.126235

10. Chen X, Lu J, Zhao J, et al. Traffic flow prediction at varied time scalesvi-a ensemble empirical mode

decomposition and artificial neural network. Su-stainability. 2020; 12(9): 3678. https://doi.org/10.3390/

su12093678

11. Muriel-Villegas JE, Alvarez-Uribe KC, Patiño-Rodrı́guez CE, et al. Analysis of transportation networks

subject to natural hazards—insights from a Colombian case. Reliability Engineering & System Safety.

2016; 152: 151–165. https://doi.org/10.1016/j.ress.2016.03.006

12. Markolf SA, Hoehne C, Fraser A, et al. Transportation resilience to climate ch-ange and extreme

weather events–Beyond risk and robustness. Transport policy. 2019; 74:174–186. https://doi.org/https

%3A//doi.org/10.1016/j.tranpol.2018.11.003

13. Filippone E, Gargiulo F, Errico A, et al. Resilience management problem in ATM systems as a shortest

path problem. Journal of Air Transport Management. 2016; 56:57–65, https://doi.org/10.1016/j.

jairtraman.2016.03.014

14. Cook A, Blom HAP, Lillo F, et al. Applying complexity science to air traffic management. Journal of Air

Transport Management. 2015; 42: 149–158. https://doi.org/10.1016/j.jairtraman.2014.09.011

15. Cook A, Delgado L, Tanner G, et al. Measuring the cost of resilience. Journ-al of Air Transport Manage-

ment. 2016; 56: 38–47 https://doi.org/10.1016/j.jairtraman.2016.02.007

PLOS ONE Quantitative method for resilience assessment framework of airport network during COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0260940 December 3, 2021 12 / 13

https://doi.org/10.1016/j.tra.2014.10.023
https://doi.org/https%3A//doi.org/10.1016/j.ress.2015.03.018
https://doi.org/https%3A//doi.org/10.1016/j.ress.2015.03.018
https://doi.org/10.1109/TITS.2018.2883766
https://doi.org/10.1109/TITS.2018.2883766
https://doi.org/https%3A//doi.org/10.1016/j.ress.2015.08.006
https://doi.org/https%3A//doi.org/10.1016/j.ress.2015.08.006
https://doi.org/10.1016/j.physa.2021.126235
https://doi.org/10.1016/j.physa.2021.126235
https://doi.org/10.3390/su12093678
https://doi.org/10.3390/su12093678
https://doi.org/10.1016/j.ress.2016.03.006
https://doi.org/https%3A//doi.org/10.1016/j.tranpol.2018.11.003
https://doi.org/https%3A//doi.org/10.1016/j.tranpol.2018.11.003
https://doi.org/10.1016/j.jairtraman.2016.03.014
https://doi.org/10.1016/j.jairtraman.2016.03.014
https://doi.org/10.1016/j.jairtraman.2014.09.011
https://doi.org/10.1016/j.jairtraman.2016.02.007
https://doi.org/10.1371/journal.pone.0260940


16. Faturechi R, Levenberg E, Miller-Hooks E. Evaluating and optimizing resilie-nce of airport pavement

networks. Computers & Operations Research. 2014; 43: 335–348. https://doi.org/10.1016/j.cor.2013.

10.009

17. Wang Y, Zhan J, Xu X, et al. Measuring the resilience of an airport network. Chinese Journal of Aero-

nautics. 2019; 32(12): 2694–2705. https://doi.org/10.1016/j.cja.2019.08.023

18. Zhou L, Chen Z. Measuring the performance of airport resilience to severe weat-her events. Transporta-

tion research Part D: transpport and environment. 2020; 83:102362. https://doi.org/10.1016/j.trd.2020.

102362

19. Sun X, Wandelt S, Zhang A. How did COVID-19 impact air transportation? A first peek through the lens

of complex networks. Journal of Air Transport Manag-ement. 2020; 89: 101928. https://doi.org/10.

1016/j.jairtraman.2020.101928 PMID: 32952320

20. Sun X, Wandelt S, Zhang A. On the degree of synchronization between air tran-sport connectivity and

COVID-19 cases at worldwide level. Transport Policy. 2021; 105: 115–123. https://doi.org/10.1016/j.

tranpol.2021.03.005 PMID: 33776252

21. Guo J, Zhu X, Liu C, et al. Resilience modeling method of airport network affe-cted by global public

health events. Mathematical Problems in Engineering. 2021; 2021. https://doi.org/10.1155/2021/

6622031

22. Newman MEJ. The structure and function of complex networks. SIAM review. 2003; 45(2): 167–256.

https://doi.org/10.1137/S003614450342480

23. Li W, Cai X. Statistical analysis of airport network of China. Physical Review E. 2004; 69(4):046106.

https://doi.org/10.1103/PhysRevE.69.046106

24. Cong W, Hu M, Dong B, et al. Empirical analysis of airport network and critic-al airports. Chinese Jour-

nal of Aeronautics. 2016; 29(2):512–519. https://doi.org/10.1016/j.cja.2016.01.010

25. Hossain MM, Alam S. A complex network approach towards modeling and anal-ysis of the Australian

airport network. Journal of Air Transport Management. 2017; 60: 1–9. https://doi.org/10.1016/j.

jairtraman.2016.12.008

26. Bagler G. Analysis of the airport network of India as a complex weighted netwo-rk. Physica A: Statistical

Mechanics and its Applications. 2008; 387(12): 2972–2980. https://doi.org/10.1016/j.physa.2008.01.

077

27. GuimeràR, Mossa S, Turtschi A, et al. The worldwide air transportation netwo-rk: Anomalous centrality,

community structure, and cities’ global roles. Proceedi-ng of the National Academy of Sciences. 2005;

102(22): 7794–7799. https://doi.org/10.1073/pnas.0407994102

28. Li S, Xu X. Vulnerability analysis for airport networks based on fuzzy soft sets: from the structural and

functional perspective. Chinese Journal of Aeronautics. 2015; 28(3):780–788. https://doi.org/10.1016/j.

cja.2015.04.002

29. Zeng XZ, Tang XX, Jiang KS. Empirical study of Chinese airline network struc-ture based on complex

network theory. Journal of Transportation Systems Engineering and Information Technology. 2011; 11

(6):175–181. https://doi.org/10.1016/S1570-6672(10)60157-2

30. Ren F, Zhao T, Jiao J, et al. Resilience optimization for complex engineered systems based on the

multi-dimensional resilience concept. IEEE Access. 2017; 5:19352–19362. https://doi.org/10.1109/

ACCESS.2017.2755043

31. Pan X, Wang H. Resilience of and recovery strategies for weighted networks. PloS one. 2018; 13(9):

e0203894. https://doi.org/10.1371/journal.pone.0203894 PMID: 30204786

32. Air Transport Bureau. Effect of novel coronavirus (COVID-19) on civil aviation: economic impact analy-

sis. ICAO, Montreal, Canada, June 29th, 2021

33. Czerny AI, Fu X, Lei Z, et al. Post pandemic aviation market recovery: Exper-ience and lessons from

China. Journal of Air Transport Management. 2021; 90: 101971. https://doi.org/10.1016/j.jairtraman.

2020.101971
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