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Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal neoplasms of the gastrointestinal tract and are
diverse not only in their clinical behavior but also in their histologic appearance. GISTs are insensitive to conventional sarcoma
chemotherapy and radiation. However GISTs are sensitive to small-molecule tyrosine kinase inhibitors as 85–90% of GISTs have
KIT or platelet-derived growth factor receptor alpha (PDGFRA) mutations, which drive tumorigenesis. This review will briefly touch
on the clinicopathological features of GIST, while the majority of the review will focus on the clinical and treatment ramifications
of KIT and PDGFRA mutations found in GIST.

1. Background

The last twenty years have seen great advances in the under-
standing of gastrointestinal stromal tumors (GISTs), from
identifying their typical immunohistochemical phenotype
and the molecular alterations that drive these tumors to the
knowledge of their biologic potential and the use of effective
tryosine kinase inhibitor targeted therapy. GISTs are the most
common mesenchymal neoplasms of the gastrointestinal
tract, and although insensitive to conventional sarcoma che-
motherapy and radiation, they have shown dramatic clinical
response to targeted kinase therapy. Activating mutations
in KIT or platelet-derived growth factor receptor alpha
(PDGFRA) have been identified in up to 80% and 10% of
GISTs, respectively, and these mutually exclusive gain-of-
function mutations play a fundamental role in GIST devel-
opment by constitutively activating tyrosine kinase receptors
[1–6]. Imatininib mesylate (ST1571; Gleevec, Novartis, East
Hanover, NJ) is a selective tryosine kinase inhibitor that
targets KIT and PDGFRA. The original indication was for the
treatment of metastatic or unresectable GISTs with patients
showing clinical responses in up to 80% of cases [7]; current
FDA-approved labeling includes use in the adjuvant setting
following complete gross resection of GISTs [8].

GISTs may occur anywhere in the gastrointestinal tract
but are most common in the stomach and small bowel
(roughly 60% and 30%, resp.), while 10% arise in other
parts of the gastrointestinal tract (esophagus, colon, and
rectum), and a small percentage are extragastrointestinal,
arising in the mesentery, omentum, retroperitoneum, or
pelvis [9, 10]. Once thought to represent smooth muscle
neoplasms [11–13], GISTs are now known to share features
with interstitial cells of Cajal (ICC), based on ultrastructure
findings and immunophenotyping [14–19]. ICC are present
within the interstitium of the muscularis propria throughout
the gastrointestinal tract and serve a pacemaker function
by generating and propagating electrical slow waves of
depolarization, effectively coordinating peristalsis [16–18,
20, 21]. The current hypothesis is that GISTs arise from either
the ICC or from a common progenitor stem cell [22].

GISTs are heterogenous, both from a clinical and mor-
phologic stand point. Clinically, GISTs range from a small
incidental finding that is entirely benign to a larger
symptomatic neoplasm that may behave aggressively with
metastatic potential. Regardless of their clinical diversity,
GISTs share common genetic alterations. As mentioned
above, mutually exclusive mutations in KIT or PDGFRA have
been identified in up to 80% and 10% of GISTs, respec-
tively [1–5]. These mutations have been detected in small,
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incidentally identified GISTs, suggesting that they occur as
an early event in tumorigenesis [23, 24]. The majority of
these mutations are somatic; however, germline mutations
have been identified in rare families [25–30]. Approximately
5%–10% of GIST patients will lack mutations in either gene
although KIT kinase activation is identified even in the
absence of the mutation [2]. More recently, a primary V600E
BRAF mutation was found within 7% of adult GIST patients
that lacked either KIT or PDGFRA mutations [31]. Mor-
phologically, GISTs may be either spindle cell, epithelioid,
or mixed spindle and epithelioid cell types [32]. Epithelioid
and mixed cell type GISTs are most commonly encountered
in the stomach compared to other gastrointestinal sites
[33, 34]. CD117 (KIT), the product of the KIT gene, has
been identified as a sensitive immunohistochemical marker
of GISTs from all sites and is expressed in up to 95% of
GISTs with expression seen in wild-type tumors as well [35].
Approximately 5% of GISTs do not express KIT [36, 37],
and this subset of KIT-negative GISTs frequently contain a
PDGFRA mutation [3]. Roughly 70% of GISTs will express
CD34 [38, 39], 20%–30% are positive for smooth muscle
actin, 5% may express some positivity for S100 protein, and
1%-2% are positive for desmin or keratin [14, 32, 35].

2. KIT and PDGFRA

KIT and PDGFRA reside on chromosome 4q12 [40] with
both genes encoding homologous transmembrane glyco-
proteins [41, 42] that are members of a type III tyro-
sine kinase receptor family. These transmembrane proteins
contain an extracellular/ligand binding domain (EC) with
five immunoglobulin-like loops that function in ligand
binding and dimerization. This EC domain is connected
to a cytoplasmic domain by a transmembrane domain.
The cytoplasmic domain is composed of a juxtamembrane
(JM) domain and tyrosine kinase domain (TK1 and TK2)
which contains an adenosine triphosphate binding site and a
phosphotransferase region separated by a kinase insert [43].
The JM domain regulates KIT tyrosine kinase activity by
inhibiting activity in the absence of KIT ligand [44].

In the normal state, KIT and PDGFRA bind their respec-
tive ligands (stem cell factor and platelet-derived growth
factors), leading to the phosphorylation of signal transduc-
tion proteins that modulate cell proliferation and chemotaxis
and inhibit apoptosis [45, 46]. The signal transduction
pathways involved include the mitogen-activated protein
kinase (MAPK), phosphatidylinositol 3′kinase (PI3K), and
Janus kinase/signal transducers and activators of transcrip-
tion (JAK/STAT) pathways [47]. These intercellular signaling
pathways play an important role in the development and
maintenance of various cells including the interstitial cells of
Cajal, mast cells, melanocytes, and hematopoietic stem cells
[15, 48, 49].

3. Mutations as Drivers of
Tumorigenesis in GISTs

Primary mutations in KIT or PDGFRA are a driving force
for tumorigenesis and are identified prior to exposure

to a tyrosine kinase inhibitor, while secondary mutations
develop during targeted treatment with a tyrosine kinase
inhibitor and account for acquired inhibitor resistance. KIT
or PDGFRA mutations may affect either the regulatory
domain (EC or JM domains) or the enzymatic domain (TK1
and TK2) of the tyrosine kinase receptor [50]. Regardless
of either a primary or secondary mutation, KIT and
PDGFRA mutations seen within GISTs activate receptor
tyrosine kinases, leading to constitutive phosphorylation
and the subsequent continued activation of the downstream
intercellular signaling cascade.

The oncogenic role of mutational activation of KIT
or PDGFRA kinases has been supported by familial GIST
syndromes and animal studies. Familial GIST syndromes
may arise from germline mutations in exon 8, exon 11, exon
13, and exon 17 of KIT and in exon 12 of PDGFRA [27,
28, 51–57]. All of these syndromes have a high penetrance
with nearly every effected family member developing GISTs
that are typically multiple [26, 28, 51, 52, 55, 57, 58], while
other clinical findings appear to be dependent on the domain
mutated. For example, mastocytosis, urticaria pigmentosa,
and diffuse hyperplasia of ICC with progression to distinct
GISTs have been associated with mutations involving the
JM domain of KIT [25, 27], while mutations that affect the
kinase domain essentially lack mastocytosis and urticaria
pigmentosa [28–30]. Transgenic mouse models have been
developed with “knock-in” KIT mutations at either exon 11
or exon 13 wherein the mice develop ICC hyperplasia and
GISTs [59, 60]. These are similar to the mutations identified
in human sporadic and familial GISTs and supports that KIT
activation is central to the development of GISTs.

4. Genotype-Phenotype Correlations

Some important genotype-phenotype correlations have been
identified in GISTs, not only pertaining to clinical behavior
but also to the expected morphology and anatomic site of
involvement for a given mutation. As mentioned previously,
up to 80% of sporadic GISTs have mutations involving
KIT [1–3, 6, 23] with the majority (approximately 75%)
involving exon 11 of the KIT JM domain [44, 61–63]
(Figure 1). The mutations cluster at either the 3′ or 5′

end of the exon. Mutations at the 5′ end most frequently
include internal deletions [2, 64–68] and single nucleotide
substitutions [2, 64–68], while duplications most commonly
involve the 3′ end [69]. Although less common, internal
tandem duplication mutations have been identified at the 3′

end of exon 11; clinically, these patients typically have gastric
GISTs that follow an indolent course [68]. In comparison,
an aggressive clinical course with a higher risk of recurrence
and shorter survival has been noted in patients whose
GISTs harbor deletions involving exon 11 [70–72]. This
deletion has been shown to be an independent adverse
prognostic factor [71] and when compared with GISTs
that have other exon 11 mutations or are wild type, a
poor disease-free survival has been associated with exon
11 deletions that specifically involve codon 557 and 558
[73–75]. The second most common KIT mutation site has
been identified within exon 9 (distal extracellular domain);
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Figure 1: KIT and PDGFRA with locations and frequency of activating mutations in GISTs. Exons denoted with an ∗represent those most
frequently involved by secondary mutations. Modified with permission from Heinrich et al. [3]. Copyright 2003 by the American Society of
Clinical Oncology. All rights reserved.

in this site, duplications are most commonly found [6].
Exon 9 mutations have been identified in roughly 10%–
15% of sporadic GISTs and patients whose GISTs harbor this
mutation commonly have small bowel involvement and a
more clinically aggressive neoplasm [68, 75]. Mutations in
exons 13 and 17 affect the tyrosine kinase domain and are
seen in less than 5% of sporadic GISTS [6, 76]. Mutations
involving these sites typically yield a spindle cell morphology
and more frequent involvement of the small bowel than
stomach [77].

Approximately 7% of GISTs harbor a mutation in
PDGFRA [4, 5] with the majority being missense mutations
identified in exon 18 affecting the TK2 domain [78, 79].
GISTs containing this mutation most commonly involve
the stomach and have an epithelioid morphology [34, 78,
80]. PDGFRA exon 14 mutations are typically missense
mutations that have been associated with epithelioid mor-
phology, location within the stomach, and a favorable
clinical course [78]. Rarely, mutations have been identified
in the PDGFRA JM domain (exon 12), consisting predom-
inately of point mutations, deletions, or deletion insertions
[4, 78, 79]. In general, PDGFRA mutations are found
within GISTs of the stomach and omentum, typically with
epithelioid or mixed epithelioid/spindle cell morphology
[34, 80–84].

5. Treatment and Emergence of
Secondary Mutations

In regards to treatment, the main goal for a localized GIST
is complete surgical resection with negative margins and
preservation of an intact pseudocapsule. The tyrosine kinase
inhibitor imatinib mesylate initially played a pivotal role in
the management of metastatic or unresectable disease [7, 85–
87] and is now used in the adjuvant setting following com-
plete gross resection [8]. Imatinib is a small molecule tyro-
sine kinase inhibitor whose structure mimics ATP and binds
competitively to the intracellular portion of KIT, inhibiting
signaling. This molecule also targets PDGFRA. The clinical
response to imatinib has been shown to be correlative with
the particular KIT or PDGFRA mutation present. GISTs
with exon 11 KIT mutations have shown the best imatinib
response rates (up to 80% of patients with advanced disease
either had partial response or achieved stable disease), while
tumours with no KIT mutation or those with a PDGFRA
D842V mutation were less likely to have a favorable or a
sustained response to imatinib [3, 88]. Other studies have
suggested that patients with exon 9 KIT mutations may
benefit from the use of higher dose imatinib [89, 90].

Most GIST patients will develop resistance to imatinib
after initially achieving a clinical response. This resistance
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is typically via secondary mutations that involve the kinase
domain of KIT with these additional mutations found on
the same allele as the primary mutation [91–94]. Some
of these secondary kinase domain mutations are imatinib-
resistant [91]. In these resistant tumours, the alternative
kinase inhibitor sunitinib malate (SU11248 or Sutent, Pfizer,
New York, NY) is being used [95–97]. This inhibitor
targets several receptors including KIT, PDGFR, vascular
endothelial growth factor receptors, and FLT3 and has
shown clinical response in a variety of KIT and PDGFRA
mutations; however, the development of sunitinib resistance
is also an issue. Given this resistance, novel therapeutic
strategies which target different aspects of intracellular
signaling are being investigated. One strategy is to diminish
KIT expression by inhibition of heat-shock protein (HSP)-
90, a chaperone protein that aids in protein folding to
stabilize KIT from degradation. The inhibition of HSP90
prevents the stabilization of KIT and leads to its degradation
[98, 99].

6. Conclusions

GISTs are clinically and histologically heterogenous neo-
plasms that are driven by oncogenic KIT or PDGFRA
mutations. Although the majority of GISTs show an initial
clinical response to imatinib, the development of resistance
to this tyrosine kinase inhibitor as well as to the alternative
kinase inhibitor sunitinib is problematic. Future strategies
to overcome resistance will likely have to target other
intracellular signaling pathways.
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