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Abstract: Salix viminalis is a fast growing willow species with potential as a plant used for biomass
feedstock or for phytoremediation. However, few reference genes (RGs) for quantitative real-time
polymerase chain reaction (qPCR) are available in S. viminalis, thereby limiting gene expression
studies. Here, we investigated the expression stability of 14 candidate reference genes (RGs) across
various organs exposed to five abiotic stresses (cold, heat, drought, salt, and poly-metals). Four RGs
ranking algorithms, namely geNormPLUS, BestKeeper, NormFinder, and GrayNorm were applied to
analyze the qPCR data and the outputs were merged into consensus lists with RankAggreg, a rank
aggregation algorithm. In addition, the optimal RG combinations were determined with geNormPLUS

and GrayNorm. The genes that were the most stable in the roots were TIP41 and CDC2. In the
leaves, TIP41 was the most stable, followed by EF1b and ARI8, depending on the condition tested.
Conversely, GAPDH and β-TUB, two genes commonly used for qPCR data normalization were the
least stable across all organs. Nevertheless, both geNormPLUS and GrayNorm recommended the
use of a combination of genes rather than a single one. These results are valuable for research of
transcriptomic responses in different S. viminalis organs.

Keywords: real-time quantitative PCR; reference gene; BestKeeper; geNorm; GrayNorm; NormFinder;
RankAggreg; Salix; abiotic stress

1. Introduction

Perennial woody plants are present across the world and cover about 30% of the land surface [1].
Trees are a source of numerous economical products, such as timber, fuel, food, resins, and oil, but they
also provide a range of ecosystem services including carbon storage, maintenance of wildlife habitats,
and soil stabilization [2]. Unlike herbaceous plants, they usually have a longer life cycle, spanning
from decades to centuries. Therefore, they have to withstand numerous challenges throughout their
life span, under the form of both biotic and abiotic stress constraints. Abiotic stresses are the main
factors affecting plant distribution and primary production [3]. From this perspective, unravelling
stress acclimation and resistance mechanisms could help us to optimize plant primary production [4].

Basket willow (Salix viminalis L.) is a fast-growing tree species with a wide Eurasian distribution
that can be found in cool, temperate, and boreal climates. It is a pioneer species of riparian environments
with a moderate to high metal tolerance [5,6]. It is one of the most important species used in basketry
and its fast growth makes it amongst the most used species in intensive short-rotation agro-forestry
systems in northern temperate regions [7]. In addition to this, its highly developed root system and
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important evapotranspiration rate make S. viminalis highly suitable for phytoremediation, on-site metal
phytoextraction and the treatment of wastewater, sewage sludge and landfill leachate [8,9]. However,
while S. viminalis is well studied at a physiological level, it is poorly characterized at a molecular level,
making breeding programs and clone selection time consuming. For example, field trials to assess Salix
performance in soils contaminated with metals can take up to five years [10]. In addition, most of the
studies focus on the aboveground organs, which represent the most valued parts but not the primary
site of exposure to metals. Roots, which are directly exposed to soil and hence high concentrations
of metals, act as a metal filter and in most species the bulk of metal ions are sequestered in the roots,
limiting their progress into the aboveground organs via the xylem [11]. In addition, genes influencing
the root system architecture are poorly known. Nevertheless, the root system architecture plays a
primordial role in plant fitness as it determines the capacity of a plant to access mineral ions and
water [12,13]. Information about the expression patterns of genes involved in root architecture and
stress tolerance at the root level would hasten clone selection and pave the way for the development of
trees with improved capacity of metal sequestration [14].

Gene expression analysis has been applied to unravel biological mechanisms in many organisms.
Amongst the techniques available to analyze gene expression, real-time or quantitative polymerase
chain reaction (qPCR) has been an inestimable source of data, thanks to its accuracy, specificity,
high sensitivity, repeatability, and reproducibility. As such, Minimum Information for the publication
of real-time Quantitative PCR Experiments (MIQE) was written in an effort to standardize qPCR
practice and reduce the publication of incorrect qPCR data [15]. These guidelines include considerations
on nomenclature, concepts, sample preparation, and normalization. The normalization step involves
the comparison of mRNA ratios of genes of interest (GOIs) to those of reference genes (RGs). Reference
genes are genes with a stable expression level across the studied conditions and are typically genes
involved in basic cellular processes [16]. For proper gene expression normalization, more than one RG
should be used and several algorithms exist to select the most suitable ones [17]. For the moment, no
“universal reference gene” is known, necessitating the description and validation of RGs depending
on the species, organs, and conditions to which plants are exposed in a study. However, stability
validation of RGs is not systematic in plant science, resulting in poor data normalization, which can
lead to inadequate conclusions [18–20].

To our knowledge, no systematic study aiming to validate potential RGs has been conducted
for S. viminalis. Given the potential of S. viminalis in phytoremediation and energy production, it is
essential to identify stably expressed RGs in different organs and across several conditions to foster
its selection in future applications. In this work, we studied the expression pattern of 14 candidate
reference genes in the roots and leaves of S. viminalis exposed to different conditions. In addition, we
investigated the expression stability of these candidate reference genes in roots stele, roots cortex, stem
xylem, and bark under control conditions. Using different algorithms and combinations thereof, we
subsequently determined the most stable reference genes, produced a consensus list and the optimal
combination of RGs, with an emphasis on those that could be used for studies at the root level.

2. Results

2.1. Culture Condition

Plants were exposed to salt, cold, heat, and drought stress for up to 12 days or to a mixture of
metals for two months, and fine roots and leaves were sampled at different time points for RNA
extraction (Table 1). In addition to fine roots and leaves, the stele and cortex of coarse roots, stem cortex
and bark were collected from control plants on the 12th day to study the stability of the candidate
reference genes in various organs under control condition. These samples were not taken into account
when computing the stability of the candidate RGs in the roots and or the leaves.
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Relative water content of control- and drought-treated soil were measure at 0,1,4,6, and 7 days
after stress exposure for each plant sampled. Chlorophyll fluorescence of young leaves was measured
at each sampling time, and the FV/FM ratio was calculated as an easily obtainable stress marker [21].
Two different trends were observed in the chlorophyll fluorescent values (Table 1). Plants exposed to
cold stress showed an initial decrease in FV/FM, followed by a subsequent recovery. On the contrary,
the FV/FM ratio of plants exposed to drought and heat stress decreased from the start of the experiment
throughout the whole duration of the experiment. Plants rooted in metal contaminated soil for two
months had the lowest FV/FM ratio and their leaves showed signs of mild chlorosis. The precise
chlorophyll fluorescence values for all plants can be found in Table S1.

Table 1. (a) Sampling time of the different organs of 8 months old willows exposed to different abiotic
stress factors for 12 days. R: roots, L: leaves, O: other organs (roots stele, roots cortex, stem xylem and
bark). (b) Evolution of the FV/FM ratios during the time course of the experiment. Values given are the
averaged FV/FM ratios ± standard deviation of the measures made on three biological replicates. On
day 7, only one plant exposed to drought stress still had its leaves. Dark green, FV/FM ratio between
0.825 and 0.850; light green, 0.800–0.825; yellow, 0.775–0.800; orange, 0.750–0.775; red, FV/FM ratio under
0.750. (c) Evolution of the soil relative water content (RWC) in the soil of control and drought-exposed
plants. Plants exposed to salt, cold, and heat stress were watered at the same frequency as control plants.

(a)

Time Point
(Day After Stress Exposure) 0 1 4 6 7 12

Control R+L R+L R+L R+L R+L+O
Salt R+L R+L R+L

Cold R+L R+L R+L
Heat R+L R+L R+L

Drought R+L R+L R+L R+L

Two months
Control R+L
Metals R+L

(b)

Time Point
(Day After Stress Exposure) 0 1 4 6 7 12

Control 0.821 ± 0.017 0.841 ± 0.010 0.812 ± 0.021 0.837 ± 0.001 0.803 ± 0.037 0.800 ± 0.027
Salt 0.848 ± 0.004 0.836 ± 0.003 0.832 ± 0.007 0.805 ± 0.015

Cold 0.770 ± 0.038 0.824 ± 0.012 0.831 ± 0.016
Heat 0.806 ± 0.014 0.790 ± 0.013 0.759 ± 0.068

Drought 0.832 ± 0.016 0.816 ± 0.038 0.806 ± 0.024 0.817

Two months
Control 0.821 ± 0.017
Metals 0.610 ± 0.060

(c)

Time Point
(Day After Stress Exposure) 0 1 4 6 7

Control 33.14 ± 1.53 27.63 ± 4.81 49.37 ± 3.46 50.13 ± 2.39 58.87 ± 4.29
Drought 23.80 ± 1.42 3.80 ± 0.99 2.93 ± 0.52 2.43 ± 0.45

2.2. Strategy for Data Analysis

A total of 14 candidate RGs were tested, including nine genes traditionally used as RG [α-TUB
(α-tubulin), β-TUB (β-tubulin), ACT (actin), ARI8 (ubiquitin protein ligase E3), CDC2 (cyclin dependent
kinase), CYP (cyclophilin), EF1b (elongation factor 1β), eTIF5 (eukaryotic translation initiation factor
5A), GAPDH (glyceraldehyde 3-phosphate dehydrogenase), TIP41 (type 2A phosphate activator),
UCEE2 (ubiquitin conjugating enzyme E2)]; and three genes previously reported as stable in closely
related species: OTUp (OTU-like cysteine protease; Li et al. [22]), PT1 (unknown protein expressed in
the pollen tube; Pettengill et al. [23]), VHAC (vacuolar H+-ATPase subunit C; Li et al. [22])] (Table 2).
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Table 2. List of candidate reference genes used in this study. Gene abbreviation, gene description, accession number, amplicon size, primer sequence, melting
temperature (TM), primer efficiency, and coefficient of determination (r2) are given. The first three accession numbers, which correspond to S. viminalis EST, are from
GeneBank; the other accession numbers are from Phytozome and correspond to S. purpurea sequences.

Abbreviation Gene Description Accession Number Primer (F/R 5′-3′) Sequence Ampli. Size TM Efficiency r2

CDC2
Cyclin Dependent

Kinase-putative
CB185210.1

S_VIM2.A04
AGAAGATCCGTTTGGAGCAG

124 83.1 97.67 0.998TTCTCACTGTGCACCACATC

CYP Cyclophilin-putative CB185309.1
S_VIM3.B02

GGACCTGGTGTGCTATCCAT
166 84.0 94.85 0.998TTCCAGATCCAACCTTCTCG

eTIF5 Eukaryotic translation
initiation factor 5 A

CB185347.1
S_VIM3.E04

GTTTCGACCTCCAAAACTGG
124 81.2 97.36 0.997CATGGGGAACATCACAGTTG

α-TUB α-Tubulin subunit 2 SapurV1A.0598s0030.1 TGCCAAGTGACACCTCAATC
123 81.7 99.42 0.999CATCAATGACAGTGGGTTCG

β-TUB β-Tubulin SapurV1A.1459s0040.1 GTGACTCGGCTCTCCAACTC
183 83.0 88.37 0.990TACCAGCACCAGATTGACCA

ACT Actin SapurV1A.0231s0320.1 GATTGGATCTTGCTGGTCGT
150 83.3 87.09 0.996GCTCCTGCTCGTAGTCAAGG

ARI8
E3 Ubiquitin protein

ligase-putative
SapurV1A.0557s0250.1 TTACATGCACACCACCTTGC

93 81.7 95.75 0.992ATGCGTAAAAGCCACCTGTC

EF1b Elongation Factor 1-β SapurV1A.1951s0030.1 AGTTTCTCGTCGGCAAATCC
88 78.6 94.84 0.997CCAGGTTTCTCCAAAACAGC

GAPDH
Glyceraldehyde-3-posphate

dehydrogenase
SapurV1A.0266s0210.1 TGTTGACTTCCGATGCTCTG

116 81.3 91.22 0.998GGCTGTATCCCCATTCATTG

OTUp OTU-like cysteine protease SapurV1A.0615s0200.1 TCCAAGGTGGAAGGTGAAAG
80 80.5 103.90 0.994CCCATTGACAGCAACATCTG

PT1
Unknown function,

expressed in pollen tube
SapurV1A.0361s0260.1 CGCAAACAAAAACTGCAAGA

158 83.7 113.75 0.995ACTTCATCAGGCACCCAAAG

TIP41 Type 2A phosphatase
activator

SapurV1A.0019s0010.1 AACTGGCTGGAAACAAGAGG
131 82.5 97.28 0.994TACCACAATAAGGCGTCGTG

UCEE2
Ubiquitin conjugating

enzyme E2
SapurV1A.0237s0020.1 ATCATGGGTCCTCCTGATAGTC

109 81.8 83.86 0.998CCTTTGTCCTGAAAGCAACC

VHAC Vacuolar H+-ATPase
subunit C

SapurV1A.0123s0450.1 TTGATGGTGTGCCAGTTGAC
148 81.4 90.18 0.991TCAGCAACACGAACCTTGAG
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The efficiency of the primers (E) was calculated (Table 2) using serial five-fold dilutions
(cf. Materials and Methods, melting curves can be found in Figure S1). The quantification cycle
(Cq) was measured and descriptive statistics were performed on the raw data (Figure 1). Quantification
cycles were then transformed when needed. The expression stability of the candidate RGs was assessed
with four algorithms: geNormPLUS [24], BestKeeper [25], NormFinder [26], and GrayNorm [27].
We obtained a total of five lists ranking the genes by their stability and two optimal gene combinations
(from geNormPLUS and GrayNorm). Since the different algorithms produced different ranking lists,
we used RankAggreg to compute a consensus RGs list for each condition. In addition, we compared
the optimal combinations of genes computed by geNormPLUS and GrayNorm. Validation of the RGs
was performed using both the quantification cycle values and the primers efficiency.
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Figure 1. Data analysis workflow. Cycles of quantification (Cq) and PCR efficiency (E) were determined
by qPCR and then used as input for the different gene ranking algorithms. Contrary to the other
ranking algorithms, BestKeeper only used Cq as input data. The ranking list produced by the different
algorithms were then used as input data with RankAggreg to produce a consensus list. Grey boxes:
raw data and descriptive statistics, green boxes: algorithms, circles: ranking algorithms output,
round-cornered rectangles: final outputs, blue circles: Data used to rank gene stability, orange circles:
Data used to determine the optimal gene combination. Stab.: NormFinder stability value, Avg M:
Average expression stability M, Ind.: GrayNorm ranking taking only single gene combinations into
account, Comb.: GrayNorm ranking taking all gene combinations into account.

Out of the 14 candidate RGs tested, GAPDH and β-TUB displayed a huge variation in their
expression pattern (Figure 2). GAPDH is more expressed in leaves than in roots, as it has a role in the
Calvin–Benson cycle in addition to is function in glycolysis. Conversely β-TUB is on average more
expressed in the roots than in the leaves. As the presence of genes showing an important variation in
Cq can lead to incorrect rankings [25], GAPDH and β-TUB were not taken into account when analyzing
stability of RGs in all organs grouped together.

The expression level of all the candidate RGs shows a mild but non-significant increasing trend
over time under control condition in both the leaves and the roots (Figures S2 and S3). While a similar
trend was observed under cold and heat conditions in the roots for most candidate RGs, CYP and
β-TUB show a significant increasing trend and GAPDH displays a decreasing trend. Trends are not
that marked in the leaves exposed to cold and heat. While all candidate RGs except CYP show an
increasing trend in the leaves of plants exposed to salt, both non-significant increasing and decreasing
trends were observed in the roots of the plants exposed to the same conditions. All the genes show an
increasing trend in both the leaves and the roots of plants exposed to drought condition, except for
CYP and VHAC in the leaves and GAPDH in the roots. On the other hand, β-TUB displays a strong
and significant increase in Cq values over time in leaves and roots of plants exposed to drought stress.
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Figure 2. Boxplot of the quantification cycle (Cq) values for 14 candidate reference genes in S. viminalis
roots and leaves exposed to various abiotic stresses. Eight-month old cuttings were exposed to drought,
cold, heat, metal or salt stress in triplicate for up to two months before being sampled.

Expression stability of the candidate RGs was analyzed in the roots, the focus of our study.
Nevertheless, we also provide RGs to use in studies focused on the leaves and/or various organ
combinations in the Tables S2–S4.

2.3. Reference Genes Ranking

geNormPLUS is a quantity-based algorithm with a pairwise comparison approach. Quantity-based
algorithms take both Cq values and E into account during the computation. The key principle behind a
pairwise comparison approach is that ideal RGs display similar expression patterns across the different
samples. Based on this hypothesis, expression levels of ideal RGs are highly correlated between them
and ideal RGs can therefore be easily detected. One drawback of this assumption is that co-regulated
genes are artificially ranked amongst the most stable genes, independently of their intrinsic gene
expression stability [26].

To rank RGs, geNormPLUS computes for each gene a measure of stability (named M) based on the
average pairwise variation between this gene and the remaining candidate RGs. The algorithm also
calculates another stability value (called Average expression stability M) by doing a stepwise exclusion
of the least stable gene and averaging the M value of the remaining RGs.

In addition to ranking genes, geNormPLUS is able to determine the minimal number of RGs that
should be used to obtain an accurate normalization. To do so, the software estimates the pairwise
variation between two normalization factors (NF) composed of an increasing number of reference
genes (namely Vn/n+1, with n being the n most stable genes). A large variation indicates that the
added gene (+1) has a significant effect on normalization and should be kept for the calculation of
the NF. On the contrary, if the variation falls below a threshold value (fixed to 0.15), n is considered
the minimum number of RGs to use for accurate normalization [24]. Alternatively, n+1 genes can be



Int. J. Mol. Sci. 2019, 20, 4210 7 of 20

used for normalization when Vn/n+1 reaches a minimum [28]. This has the advantage of providing a
minimum of three RGs for normalization, which reduces the risk of having co-regulated genes.

Table 3. Potential reference genes (RGs) to normalize qPCR data in Salix viminalis roots exposed to
various abiotic stresses. Plants were exposed to the stresses for up to two months. RGs expression
stability is given by the “Average expression stability M” value as determined by geNormPLUS. Lower
stability value means greater stability. Stab.: gene stability value.

Rank
Control Metals Salt Cold Heat Drought Conditions

Merged

Gene Stab. Gene Stab. Gene Stab. Gene Stab. Gene Stab. Gene Stab. Gene Stab.

1 CYP 0.196 CDC2 0.232 CDC2 0.250 CYP 0.217 ACT 0.278 CDC2 0.247 CDC2 0.301
2 eTIF5 0.196 TIP41 0.239 TIP41 0.253 CDC2 0.222 CDC2 0.281 ACT 0.260 TIP41 0.307
3 EF1b 0.203 α-TUB 0.243 CYP 0.258 eTIF5 0.227 TIP41 0.283 TIP41 0.266 ACT 0.326
4 CDC2 0.223 EF1b 0.265 ARI8 0.273 EF1b 0.232 eTIF5 0.293 ARI8 0.291 ARI8 0.356
5 ACT 0.249 ACT 0.293 EF1b 0.298 ACT 0.248 ARI8 0.330 CYP 0.304 EF1b 0.377
6 TIP41 0.265 ARI8 0.316 α-TUB 0.310 TIP41 0.267 VHAC 0.351 VHAC 0.332 UCEE2 0.404
7 β-TUB 0.279 CYP 0.333 ACT 0.325 α-TUB 0.278 EF1b 0.372 UCEE2 0.353 VHAC 0.425
8 α-TUB 0.290 OTUp 0.365 eTIF5 0.338 ARI8 0.293 UCEE2 0.390 EF1b 0.386 α-TUB 0.454
9 ARI8 0.310 UCEE2 0.395 VHAC 0.355 OTUp 0.311 PT1 0.405 PT1 0.420 CYP 0.478

10 VHAC 0.331 VHAC 0.420 UCEE2 0.367 UCEE2 0.334 α-TUB 0.420 α-TUB 0.460 PT1 0.500
11 UCEE2 0.348 eTIF5 0.448 OTUp 0.380 VHAC 0.358 OTUp 0.449 OUTp 0.502 OTUp 0.526
12 PT1 0.360 PT1 0.473 PT1 0.399 β-TUB 0.380 CYP 0.483 eTIF5 0.545 eTIF5 0.549
13 OTUp 0.372 β-TUB 0.539 β-TUB 0.433 PT1 0.404 β-TUB 0.538 GAPDH 0.649 GAPDH 0.673
14 GAPDH 0.462 GAPDH 0.613 GAPDH 0.528 GAPDH 0.497 GAPDH 0.636 β-TUB 0.868 β-TUB 0.811

In this experiment, CDC2 ranked amongst the most stable genes across all the tested conditions
(Table 3). TIP41 and ACT also ranked well, although their ranking was more variable depending
on the conditions tested. GAPDH and β-TUB were among the least stable genes for each condition.
CYP showed a variable stability pattern i.e., while it was the most stable gene under control and cold
conditions, it varied between the third and twelfth position under the other conditions. The gene eTIF5
had a similar pattern although it was generally slightly less stable than CYP.

BestKeeper is another software based on pairwise comparison. To rank the candidate RGs,
the algorithm computes several stability measures, which allow the users to select the most stable
genes. First, it computes the standard deviation (SD) of the Cq values for each gene (the lower the more
stable). In parallel, it combines all the candidate RGs into an index computed based on the geometrical
average of the Cqs of all the RGs for each sample. It then estimates the coefficient of determination
(r2) between each candidate RGs and the index (the closer to 1 the better). In addition, BestKeeper
measures sample integrity by comparing for each RG, the sample Cq values with the index Cq value.

As the original excel-based algorithm allows to test a maximum of 10 genes, we used ctrlGene,
a package based on R [29], after having verified it produced the same results as the original spreadsheets.
When less than 10 reference genes were used and efficiency fixed to 2, the results obtained with the
R-based BestKeeper package were the same as for the excel-based BestKeeper, with the exception
of SD [x-fold] (data not shown). When using the efficiencies calculated from our primers, only the
“[x-fold]” measures changed. This means that BestKeeper could not be classified as a quantity-based
algorithm. Both the correlations and the descriptive statistics were calculated based on the Cq values.
The efficiency factor, a quantitative factor, was then only taken into account for the calculation of the
[x-fold] values [17]. As the correct [x-fold] values can easily be manually computed, we used the R
package that allowed us to analyze the stability of 14 reference genes at the same time.
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Table 4. Potential RGs to normalize qPCR data in Salix viminalis roots exposed to various abiotic stresses. Plants were exposed to the stresses for up to two months.
Gene expression stability was calculated with BestKeeper. Two stability values are given: standard deviation SD [+/− Cq] (the lower, the better) and by the coefficient
of determination (r2) (the closer to 1, the better). Genes with SD [+/− Cq] over 1 should be discarded. Color scale: the bluer, the more stable.

Conditions α-TUB ACT ARI8 β-TUB CDC2 CYP EF1b eTIF5 GAPDH OTUp PT1 TIP41 UCEE2 VHAC

Control

SD[+/− Cq] 0.54 0.542 0.536 0.733 0.525 0.629 0.605 0.667 1.066 0.572 0.638 0.49 0.77 0.642
r2 0.816 0.865 0.873 0.823 0.965 0.969 0.885 0.938 0.405 0.832 0.909 0.94 0.927 0.905

p-value 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.026 0.001 0.001 0.001 0.001 0.001

Metals

SD[+/− Cq] 0.462 0.509 0.477 1.019 0.446 0.622 0.518 0.692 1.023 0.529 0.676 0.433 0.759 0.661
r2 0.786 0.751 0.865 0.436 0.877 0.896 0.884 0.635 0.352 0.698 0.781 0.899 0.873 0.77

p-value 0.001 0.001 0.001 0.007 0.001 0.001 0.001 0.001 0.02 0.001 0.001 0.001 0.001 0.001

Salt

SD[+/− Cq] 0.423 0.524 0.531 0.745 0.426 0.615 0.516 0.655 1.038 0.484 0.509 0.471 0.63 0.557
r2 0.782 0.768 0.852 0.59 0.925 0.921 0.857 0.843 0.321 0.724 0.779 0.89 0.888 0.852

p-value 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.014 0.001 0.001 0.001 0.001 0.001

Cold

SD[+/− Cq] 0.543 0.644 0.62 0.872 0.601 0.704 0.688 0.728 1.129 0.602 0.824 0.577 0.871 0.853
r2 0.857 0.904 0.892 0.839 0.934 0.964 0.907 0.933 0.387 0.866 0.889 0.907 0.909 0.893

p-value 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.001 0.001 0.001 0.001 0.001

Heat

SD[+/− Cq] 0.842 0.737 0.635 1.341 0.689 1.115 0.881 0.72 0.955 0.644 0.866 0.635 1.05 0.803
r2 0.892 0.915 0.869 0.805 0.97 0.891 0.931 0.923 0.034 0.648 0.954 0.898 0.957 0.906

p-value 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.422 0.001 0.001 0.001 0.001 0.001

Drought

SD[+/− Cq] 0.972 0.693 0.716 2.421 0.779 0.656 0.875 0.589 1.347 0.678 0.93 0.642 0.896 0.669
r2 0.777 0.9 0.895 0.654 0.941 0.891 0.918 0.36 0.145 0.551 0.931 0.924 0.899 0.87

p-value 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.007 0.108 0.001 0.001 0.001 0.001 0.001

Conditions merged

SD[+/− Cq] 0.821 0.748 0.68 1.746 0.672 0.912 0.812 0.694 1.364 0.605 0.87 0.584 0.866 0.757
r2 0.8 0.88 0.872 0.668 0.906 0.826 0.934 0.615 0.102 0.617 0.877 0.898 0.898 0.791

p-value 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.021 0.001 0.001 0.001 0.001 0.001
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Based on the calculated standard deviation, TIP41 was globally the most stable gene, followed by
CDC2 (Table 4). In six out of seven conditions tested, GAPDH had a SD > 1, indicating a low stability.
Similarly, β-TUB had a SD > 1 in four conditions. Under the heat condition, β-TUB, CYP and UCEE2
were shown to be unstable. The coefficient of determination shows that CDC2 and TIP41 were highly
correlated to the BestKeeper index while β-TUB and GAPDH were the least correlated to it.

NormFinder is a quantity-model-based software. Model-based algorithms use complex statistical
models to compute the variation between the expression of genes in samples belonging to different
biological groups (conditions, time points, organs . . . ). These approaches have two advantages
over pairwise comparison algorithms: (1) They are theoretically less sensitive to co-regulated
genes and (2) they take biological groups into account and thereby reduce the errors introduced
by systematic intergroup variation [26]. However, compared to the pairwise approach, the robustness
of a model-based approach is more dependent on the number of reference genes and conditions tested.
For example, the NormFinder manual recommends to use a minimum of three candidate genes and
two samples per group, and optimally 5–10 genes and eight samples per group.

To rank RGs, NormFinder evaluates the overall variation of the candidate RGs, but also the
variation existing between sample groups. The algorithm then merges the intra- and intergroup
variations values into a stability index allowing the user to select the most stable genes. The software
can also give the best combination of two genes that together are the most stable.

Table 5. Potential RGs to normalize qPCR data in Salix viminalis roots exposed to various abiotic
stresses. Plants were exposed to the stresses for up to two months. Stability value of candidate RGs
was determined by NormFinder. Genes are ranked from top to bottom in order of decreasing stability,
lower values indicate higher stability. Stab.: gene stability value.

Rank
Control Metals Salt Cold Heat Drought Conditions

Merged

Gene Stab. Gene Stab. Gene Stab. Gene Stab. Gene Stab. Gene Stab. Gene Stab.

1 CDC2 0.102 CYP 0.150 CDC2 0.131 CYP 0.113 CDC2 0.124 CDC2 0.140 CDC2 0.200
2 CYP 0.106 CDC2 0.154 TIP41 0.162 CDC2 0.147 eTIF5 0.194 TIP41 0.193 EF1b 0.202
3 TIP41 0.154 TIP41 0.163 ARI8 0.172 eTIF5 0.153 VHAC 0.204 CYP 0.197 TIP41 0.214
4 eTIF5 0.166 ARI8 0.180 CYP 0.179 ACT 0.159 ACT 0.221 ARI8 0.208 ARI8 0.220
5 VHAC 0.169 EF1b 0.183 VHAC 0.192 TIP41 0.179 TIP41 0.224 ACT 0.226 ACT 0.233
6 ARI8 0.191 ACT 0.237 EF1b 0.196 EF1b 0.186 UCEE2 0.242 VHAC 0.229 UCEE2 0.247
7 ACT 0.199 UCEE2 0.264 UCEE2 0.202 ARI8 0.196 ARI8 0.257 UCEE2 0.232 VHAC 0.312
8 UCEE2 0.207 α-TUB 0.267 ACT 0.220 OTUp 0.206 PT1 0.268 EF1b 0.234 CYP 0.318
9 EF1b 0.208 VHAC 0.269 α-TUB 0.227 UCEE2 0.220 EF1b 0.275 PT1 0.318 α-TUB 0.348

10 OTUp 0.222 OTUp 0.286 OTUp 0.252 VHAC 0.233 α-TUB 0.280 α-TUB 0.420 eTIF5 0.353
11 PT1 0.232 eTIF5 0.305 eTIF5 0.253 α-TUB 0.234 CYP 0.403 OTUp 0.454 PT1 0.354
12 α-TUB 0.246 PT1 0.334 PT1 0.264 PT1 0.300 OTUp 0.403 eTIF5 0.497 OTUp 0.385
13 β-TUB 0.257 β-TUB 0.442 β-TUB 0.289 β-TUB 0.303 β-TUB 0.544 GAPDH 0.830 β-TUB 0.765
14 GAPDH 0.504 GAPDH 0.549 GAPDH 0.544 GAPDH 0.513 GAPDH 0.652 β-TUB 1.148 GAPDH 0.823

GrayNorm is another quantity-model-based algorithm specifically designed to identify RGs that
limit uncertainty introduced during data normalization. GrayNorm is based on the principle that
non-normalized data of GOIs contain both biologically meaningful expression differences (signal) and
technical variation (noise). Signal and noise are fixed once the experiment is finished and only the NF
can further change the uncertainty level. Therefore, GrayNorm identifies candidate RGs that introduce
the least uncertainty during normalization.

GrayNorm works by computing the NF for each condition and each possible RG combination.
It then calculates the average NF per condition in relation to the control. Finally, it orders the different
RG combinations based either on the coefficient of variation of these NF averaged per condition
(CVinter), or on the cumulative deviation of the NF [27,30]. In our study, CVinter was used as the ranking
factor. Interestingly, by computing all the possible RG combinations, GrayNorm can group RGs
showing opposite expression variability trends, thereby producing a NF that smoothens individual
gene expression variability [26].
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Table 6. Potential RGs to normalize qPCR data in Salix viminalis roots exposed to various abiotic stresses.
Plants were exposed to the stresses for up to two months. Gene expression stability was calculated
with GrayNorm. Genes are ranked according to their internal coefficient of variation (CVinter). Only
single gene combinations are shown.

Rank
Control Metals Salt Cold Heat Drought Conditions

Merged

Gene CVinter Gene CVinter Gene CVinter Gene CVinter Gene CVinter Gene CVinter Gene CVinter

1 ACT 0.479 ACT 0.427 ACT 0.472 OTUp 0.483 OTUp 0.563 VHAC 0.490 OTUp 0.563
2 TIP41 0.497 ARI8 0.451 TIP41 0.485 TIP41 0.495 ARI8 0.617 CYP 0.514 GAPDH 0.610
3 ARI8 0.506 TIP41 0.465 ARI8 0.493 ACT 0.495 GAPDH 0.610 ACT 0.516 ARI8 0.617
4 OTUp 0.556 VHAC 0.498 EF1b 0.501 ARI8 0.497 TIP41 0.640 TIP41 0.537 VHAC 0.639
5 VHAC 0.578 CYP 0.505 VHAC 0.505 CDC2 0.535 CDC2 0.723 OTUp 0.558 TIP41 0.640
6 EF1b 0.580 EF1b 0.521 β-TUB 0.530 EF1b 0.538 eTIF5 0.768 eTIF5 0.601 CDC2 0.723
7 CDC2 0.581 CDC2 0.555 GAPDH 0.538 CYP 0.547 ACT 0.736 ARI8 0.601 ACT 0.736
8 CYP 0.586 OTUp 0.565 CDC2 0.550 α-TUB 0.557 VHAC 0.639 UCEE2 0.611 eTIF5 0.768
9 α-TUB 0.620 α-TUB 0.577 α-TUB 0.551 eTIF5 0.596 α-TUB 0.932 GAPDH 0.616 UCEE2 0.854

10 eTIF5 0.653 PT1 0.592 OTUp 0.554 VHAC 0.617 UCEE2 0.854 CDC2 0.650 PT1 0.921
11 β-TUB 0.660 UCEE2 0.648 PT1 0.558 GAPDH 0.661 PT1 0.921 PT1 0.807 α-TUB 0.932
12 PT1 0.702 eTIF5 0.673 CYP 0.591 UCEE2 0.675 EF1b 1.045 EF1b 0.824 EF1b 1.045
13 GAPDH 0.719 GAPDH 0.771 UCEE2 0.670 β-TUB 0.688 CYP 1.458 α-TUB 0.869 CYP 1.458
14 UCEE2 0.766 β-TUB 0.778 eTIF5 0.687 PT1 0.715 β-TUB 2.147 β-TUB 1.795 β-TUB 2.147

Although ACT and OTUp rank best in most of the conditions, their stability depends highly on
the conditions to which the plants are exposed. In general, TIP41 was always found amongst the
higher ranked (Table 6). The gene ARI8 was also generally detected as stable although its rank varied
importantly depending on the conditions the plants were exposed to. Interestingly, GAPDH was
amongst the most stable genes when all the conditions were grouped together and under heat stress,
where it was second and third respectively. On the other hand, CDC2 ranked on average at the seventh
place while it was determined as one of the most stable genes with the other algorithms.

2.4. Consensus Ranking List

In this study, four different algorithms were used to analyze the expression stability of 14
candidate RGs. However, the algorithms yielded different ranking lists due to their different approach.
In order to provide a comprehensive result, we used RankAggreg [31] to compute a consensus RG list
for each condition.

RankAggreg is an algorithm specifically designed to aggregate large ranking lists. To do so, it first
generates all the candidate consensus lists possible. It then computes the distance between the input
lists and the candidate consensus list for each of the possible candidate consensus list. Two functions
can be used to compute the distance: Spearman footrule distance (which was used) or Kendall’s tau
distance. Finally, RankAggreg selects the consensus list which yields the minimum distance value.
As this task can be time consuming with long (>10) input lists, RankAggreg has built-in Cross-Entropy
Monte Carlo and Genetic algorithms to reduce the time of computation required.

Predictably, CDC2 and TIP41 were amongst the most stable genes in all analyses (Table 7). CYP
showed a high variation pattern as it ranked first in control and cold conditions but eighth and twelfth
when all conditions were grouped and under heat stress, respectively. GAPDH and β-TUB were the
least stable genes across all conditions, which is expected as they were ranked last by most algorithms.

Table 7. Consensus ranking of the 14 candidate RGs to normalize qPCR data in Salix viminalis roots
exposed to various abiotic stresses for up to two months. Plants were exposed to the stresses for up to
two months. This consensus ranking list was generated by RankAggreg. Genes are listed from top to
bottom in order of decreasing expression stability.

Rank Control Metals Salt Cold Heat Drought Conditions Merged

1 CYP TIP41 CDC2 CYP CDC2 CDC2 CDC2
2 CDC2 CDC2 TIP41 CDC2 TIP41 TIP41 TIP41
3 TIP41 ARI8 ARI8 TIP41 ARI8 CYP ARI8
4 ARI8 EF1b EF1b ACT eTIF5 ACT ACT
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Table 7. Cont.

Rank Control Metals Salt Cold Heat Drought Conditions Merged

5 ACT ACT CYP eTIF5 ACT VHAC EF1b
6 VHAC CYP VHAC EF1b VHAC ARI8 UCEE2
7 EF1b α-TUB ACT OTUp UCEE2 UCEE2 VHAC
8 eTIF5 OTUp α-TUB ARI8 PT1 EF1b CYP
9 α-TUB VHAC UCEE2 α-TUB EF1b PT1 α-TUB

10 OTUp PT1 OTUp UCEE2 α-TUB α-TUB PT1
11 PT1 eTIF5 PT1 VHAC OTUp OTUp OTUp
12 β-TUB UCEE2 eTIF5 PT1 CYP eTIF5 eTIF5
13 UCEE2 β-TUB β-TUB β-TUB β-TUB GAPDH GAPDH
14 GAPDH GAPDH GAPDH GAPDH GAPDH β-TUB β-TUB

2.5. Optimal Combination of Reference Genes to Use

Out of the four algorithms used, two (geNormPLUS and GrayNorm) allow to compute the optimum
combination of reference genes to use (cf. supra for the principles).

Based on our data, geNormPLUS recommends the use of two reference genes to normalize the
expression of GOI (Figure 3). Indeed, for every condition, the value of V2/V3 is under the threshold
value of 0.15. However, based on the recommendations of Ling and Salvaterra [28], more genes should
be used. For example, under control condition, the eight most stable genes could be used to normalize
gene expression. However, the optimal number of RGs to use for normalization is highly dependent
on the conditions studied, and ranges from four under heat stress to 11 for salt-exposed roots.

Based on our data, GrayNorm recommends to use between one and five reference genes to
normalize GOIs expression values (Table 8). The number of reference genes to use for optimal
normalization was highly dependent on the condition, it was one, for roots of plants exposed to metals
and under control condition, two, under heat stress and when grouping all the stresses together, three,
under drought and salt stresses and five, under cold stress. Interestingly, RG combinations given
by GrayNorm are not always the combination of the most stable genes. Most of the time, optimal
combinations consist of genes classified as highly stable and genes individually classified as having
lower stability values. For example, under cold conditions, GrayNorm suggests to use the four most
stable genes (OTUp, TIP41, ARI8, ACT) and one less stable gene (GAPDH, ranked 11 out of 14).
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geNormPLUS. The recommended threshold of 0.15 (red dashed line) was kept in this study.
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Table 8. Optimal combinations of reference genes to use for appropriate data normalization in S.
viminalis roots under abiotic stress conditions as computed by GrayNorm.

Conditions CVinter

Control

1 ACT 0.479
2 TIP41 + ACT 0.490
3 ARI8 + ACT 0.493

Metals

1 ACT 0.427
2 ARI8 + ACT 0.441
3 ARI8 + ACT + VHAC 0.447

Salt

1 GAPDH + ACT+ β-Tub 0.435
2 TIP41 + GAPDH + β-Tub 0.441
3 TIP41 + GAPDH + ACT+ β-Tub 0.443

Cold

1 TIP41 + OTUp + ARI8 + GAPDH + ACT 0.474
2 TIP41 + ARI8 + GAPDH + ACT 0.475
3 TIP41 + OTUp + ARI8 + GAPDH 0.476

Heat

1 TIP41 + GAPDH 0.439
2 GAPDH + ACT 0.441
3 CDC2 + GAPDH 0.456

Drought

1 GAPDH + ACT+ VHAC 0.472
2 GAPDH + ACT 0.474
3 eTIF5 + ACT+ VHAC 0.475

Conditions merged

1 GAPDH + VHAC 0.454
2 TIP41 + GAPDH 0.457
3 TIP41 + GAPDH + VHAC 0.465

2.6. Gene Stability in the Leaves and Other Organs

In the leaves, TIP41 was the most stable gene across all conditions, according to the consensus
list (cf. Table S2). ARI8 displayed a high expression stability under most conditions but falls at the
fifth and seventh place under cold and drought conditions, respectively. Similarly, EF1b ranked well
except under heat stress and when all conditions were grouped (where it ranked at the sixth position).
In the leaves, CDC2 showed an important variation in its stability as it ranked first under salt and heat
condition, but ninth under drought condition. Interestingly, CYP was the second least stable gene
in average, while it ranked as the most stable gene in roots exposed to control and cold conditions.
As in roots, β-TUB, GAPDH and PT1 were amongst the least stable genes.

When the data from the roots and the leaves were merged together, TIP41 was the most stably
expressed gene, according to the consensus list (cf. Table S3). Under most conditions, EF1b and CDC2
were stably expressed when both organs were grouped together. Apart from β-TUB and GAPDH,
which displayed a huge variation in their expression pattern, α-TUB, OTUp, and PT1 were not stable
under any tested conditions. To normalize qPCR data across various organs under control conditions,
eTIF5, TIP41, CDC2, and EF1b were the most stable genes (cf. Table S4). Overall, TIP41 was the most
stably expressed gene across all conditions and organs.
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2.7. Reference Genes Validation

The validity of the candidate RGs identified was tested in the different organs and conditions by
studying the expression profiles of three reporter genes: HSP17 (a 17.6 kDa heat shock protein,
SapurV1A.0393s0170), ADC (arginine decarboxylase, SapurV1A.0091s0150), and CAT (catalase,
SapurV1A.0016s0660).

The small heat shock protein HSP17 has a chaperone-like activity and its expression changes
when exposed to temperature and osmotic stresses [32]. Arginine decarboxylase is an enzyme playing
a role in the synthesis of putrescine, a polyamine, which plays a role in the tolerance to various abiotic
stresses among which osmotic stress, salinity, hypoxia, and cold [33]. The last tested gene codes for
catalase, a H2O2-scavenging enzyme with expression changes in response to osmotic, temperature,
and oxidative stresses [34].

It was assumed that the stress treatment would affect the expression level of the reporter genes
but not the expression of the RGs. The data was analyzed with qBasePLUS and normalized using CDC2,
TIP41, ARI8, ACT, and EF1b for both the roots and the leaves (figure for the leaves are found in Figure
S4), since these genes were the most stable according to the consensus list.

As can be seen in Figure 4, the ADC expression level increased in roots exposed to cold and
drought stresses. On the contrary, it decreased in the roots exposed to heat et metals. CAT expression
was induced in the roots by both drought and heat stresses. Drought and heat stresses both significantly
induced HSP17 expression. Salt stress did not significantly affect the expression level of any of these
genes in the roots, except a mild decrease of expression of ADC during the first day. Interestingly,
salt stress had a significant effect on the expression level of both ADC and HSP17 in the leaves on the
first day after the stress application (Figure S4).
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3. Discussion

Currently, qPCR is widely used to perform gene expression analysis [15]. However, the use of
non-stable RGs for data normalization can lead to improper analysis and conclusions [20]. Therefore,
the aim of this study was to identify RGs in S. viminalis with a stable expression level across various
conditions and organs. While validation of appropriate RGs has been done in many plants, most studies
focus on herbaceous plants [30] and no RGs are publicly available for the closely related S. purpurea,
which has been sequenced.

Due to the high potential of S. viminalis in phytoremediation, together with its high primary
productivity, we performed RG validation for leaves and roots exposed to various conditions. The study
showed that the potential RGs had different expression profiles depending on the organ studied,
which highlights the need to perform condition- and organ-specific RG validation before every gene
expression experiment.

Chlorophyll fluorescence was measured and the FV/FM ratio was calculated and used as a stress
marker. Interestingly, the FV/FM ratio of the drought-exposed plants only slightly decreased during the
six first days but on the seventh, two of the three plants had lost their leaves. Conversely, the plants
exposed to cold showed a drop in FV/FM value the first day and subsequently recovered, although the
stress was maintained at the same level. According to Lichtenthaler (1998) [35], stress has a dose-effect
relationship i.e., while some stressors have a low effect on plant survival at low “concentration”,
higher “concentration” or longer exposure time could lead to significant damage to the plant integrity
(exhaustion phase). Conversely, some stresses can induce a temporary distress (alarm phase) which act
as a stimulatory signal for the plant and induces its hardening. The FV/FM ratio could indicate the
alarm and exhaustion phases in the stress response rather than the application of a stressor to the plant.

Four different algorithms, geNormPLUS, BestKeeper, NormFinder, and GrayNorm were used to
analyze the expression stability of 14 candidate RGs. While the four algorithms produced globally
similar rankings, some punctual but important differences could be observed between the algorithms’
outputs. For example, while geNormPLUS, BestKeeper and NormFinder ranked GAPDH amongst the
least stable genes across all conditions, GrayNorm ranked this gene among the most stable ones when
all conditions were grouped and under heat stress. These kinds of discrepancies arise from the fact that
each algorithm is based on specific premises and working hypotheses. However, under most conditions,
the same general pattern could be observed across the different algorithms. More specifically, CDC2
and TIP41 always ranked amongst the most stable genes across all conditions; CYP displayed a high
expression stability under control and cold conditions but a lower expression stability under the other
conditions; ACT, ARI8, and EF1b were globally stable; and GAPDH, β-TUB, and PT1 were the least
stable genes. Nevertheless, the variations existing between the outputs of the different algorithms were
smoothened by the use of RankAggreg, which allowed us to produce a consensus list.

In the consensus list, CDC2 and TIP41 were the most stable RGs across all conditions. CDC2 codes
for a cyclin dependent kinase (CDK1/CDKA), which is involved in eukaryotic cell cycle regulation.
In association with various cyclins, CDK1/CDKA is known for its role in the control of the transition
from one cell cycle phase to another [36]. It is interesting that its expression remained stable during
metal stress, as cadmium has been reported to block the cell cycle at the G2 checkpoint in the roots
of Lactuca sativa [37]. TIP41 codes for a 41kDa protein interacting with TAP42, which is involved in
the regulation of cellular growth in response to the nutrient status and the environment [38]. It has
been shown to be induced by long-term exposure to NaCl [38], but this was not observed in our study.
CYP codes for a cyclophilin peptidyl prolyl isomerase involved in a wide range of basal functions,
such as proper protein folding and regulation of plant growth and development. Some cyclophilin
isoforms have been observed to be induced by abiotic stresses [39], but this was not the case for the
cyclophilin isoform used in the present study. UCEE2 and ARI8 both code for proteins involved in
the ubiquitination process (respectively in ubiquitin conjugation and ubiquitin ligation) [40]. Proteins
involved in ubiquitination are constitutively expressed and have been reported to be reliable RGs in
various species and under diverse stresses [16]. Interestingly, while ARI8 was relatively stable, UCEE2
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expression stability varied from relatively stable (sixth most stable gene in all conditions grouped)
to unstable (thirteenth under control condition). GAPDH, which was amongst the least stable genes,
is involved in glycolysis but also in non-metabolic functions during abiotic stress [41]. It was less
expressed in the roots than in the leaves, as it also plays a role in the Calvin-Benson cycle.

The expression level of the different candidate RGs was globally stable over time in the roots of S.
viminalis under control condition. The same pattern could be observed for every RGs except GAPDH
in the roots of plants exposed to cold and heat. No clear trend could be observed in the roots exposed
to salt stress as some genes showed increasing expression level and other decreasing. Under drought
conditions, a significant increase in the Cqs value could be observed for most genes, except for GAPDH,
which displays opposite trend. Curiously, candidate RGs that showed different trends than the other
RGs (for example CYP, β-TUB and GAPDH in the roots under heat stress) were ranked as less stable by
the algorithms. This is due to the fact that ideal RGs expression patterns are expected to be highly
correlated between them.

Interestingly, GAPDH and β-TUB, which are both widely used as reference genes in plants, were
ranked as the least stable genes under most conditions. This is worrisome, as standardization with
non-stable RGs can lead to misinterpretations of data, all the more since often only one RG is used.
For example, let us consider an experiment in which we want to investigate the effect of metal exposure
on the expression level of some GOI in the roots of S. viminalis. If a GOI is standardized with GAPDH,
which has a maximum variation of 4.04 Cq between control roots and roots exposed to metals, there
could potentially be a [(amplification factor)maximum variation = 1.884.04 =] 12.81-fold difference in GOI
quantification compared to the situation where we use an ideal RG, which would have no variation
across samples and conditions. However, as mentioned previously, perfect RGs do not exist, and
even TIP41, which was ranked as the most stable gene under metal exposure, displayed a maximum
variation of 2.24-fold. As such, the use of multiple RGs is recommended, as it cancels out the variation
in expression observed for individual RG [17,26].

The optimum combination of genes given by geNormPLUS and GrayNorm were not the same.
This was expected, as the two algorithms have a different approach to determine the best combination
of RGs. Indeed, geNormPLUS combines genes based on their individual stability i.e., it groups together
the n most stable genes, as such the addition of a new RG (n+1) does not significantly affect the
normalization factor. On the contrary, GrayNorm groups genes based on the stability of their NF.
This can lead to the proposed use of genes with poor individual stability but which, grouped together,
have a higher stability. In other words, geNormPLUS computes the combination of the best RGs while
GrayNorm calculates the best combination of RGs. Nevertheless, it is clear from both the geNormPLUS

and GrayNorm output that the optimal number of genes to use for gene expression normalization
depends on the condition and the organ that is targeted, as it was already observed in Arabidopsis
thaliana [42], Petunia hybrid [43], Populus euphratica [30], and Salix psammophila [22] amongst others.
Nevertheless, a minimum of three stable genes should be sufficient for data normalization in most
studies [28].

For the validation phase, we used three genes known to change in expression during exposure to
abiotic stresses. In general, the stress-responsive genes displayed the same response patterns in both
roots and leaves. However, some differences were observed between both organs. For example, while
metals did not induce ADC in the roots, its expression level increased in the leaves. Similarly, while
cold did not significantly altered CAT expression in the roots, it was significantly down-regulated in
the cold-exposed leaves.

4. Materials and Methods

4.1. Plant Cultivation and Sampling

Green cuttings of approximately 15 cm and 5 mm diameter of one individual of S. viminalis were
rooted in containers filled with a mix of 25 kg of potting soil and 17.5 kg sand under greenhouse
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conditions for 5 months. Shortly after bud break, rooted cuttings were transferred to pots (2 cuttings
per pots) containing the same mixture as previously used. Three of these pots were supplemented
with a mixture of metals under the form of metal chloride (final concentration of 3 ppm Cd, 60 ppm Ni,
1000 ppm Zn, 350 ppm Cu), and the rooted cuttings were allowed to grow for two months, forming the
metal-exposed samples. After two months of growth in the greenhouse, the cuttings were subjected to
abiotic stresses and sampled at several time points (cf. Table 1). Four cuttings were exposed to cold
(9/7 ◦C, 16/8 photoperiod) and four to heat (35/25 ◦C, 16/8 photoperiod) and sampled after 1, 4, and
7 days. For salt stress, 200 mM of NaCl were solubilized in water and gradually added during the
first day of the treatment; cuttings were subsequently watered with tap water and sampled after 1, 4,
and 12 days. For drought stress, plants were left without watering and sampled at days 4, 6, and 7.
Organs from plants under control conditions (no treatment) were sampled at each of these time points.
For each of these treatments, organs from the two cuttings growing in the same pot were pooled as one
biological replicate. At each sampling points, chlorophyll fluorescence was measured on the third fully
expanded leaf using a Plant Efficiency Analyzer (Hansatech Instruments, Pentney, England). More
precisely, intact leaves were dark-adapted for 30 min and then minimal fluorescence yield (F0) was
determined with a diode emitting red light (650 nm). Maximal fluorescence yield (FM) was determined
after exposure to a saturating flash of light. The variable fluorescent yield (FV) was calculated as FM –
F0, and the FV/FM ratio was used as a stress marker. In addition, the volumetric water content (RWC)
was recorded for the pots of control and drought-exposed plants at each sampling time with a Field
Scout Digital Moisture Sensor (Turf-Tec International, Tallahassee, FL, USA). For each pot, the final
value recorded was the average of 5 measurements taken at different places.

On the 12th day, coarse roots xylem and phloem, stem cortex and bark were also collected from
control plants. All the organs were sampled in biological triplicate and snap-frozen in liquid nitrogen
and stored at −80 ◦C before subsequent use.

4.2. Total RNA Isolation and cDNA Synthesis

Samples (250 mg) were ground into a fine powder using mortar and pestle in liquid nitrogen.
Total RNA was extracted using a modified CTAB-buffer extraction protocol [44]. Total RNA was
purified and treated with DNase I using the RNeasy plant mini kit (Qiagen, Leusden, The Netherlands)
according to the manufacturer’s instructions. RNA purity and quantity were assessed by measuring the
absorbance at 230, 260, and 280 nm using a Nanodrop ND1000 spectrophotometer (Thermo Scientific,
Villebon-sur-Yvette, France). Total RNAs integrity was assessed using the RNA Nano 6000 Assay
(Agilent Technologies, Diegem, Belgium) and a 2100 Bioanalyzer (Agilent technologies, Santa Clara, CA,
USA) with parameters adapted to plant RNA profiles. All samples had sufficient purity and integrity
scores. Precise RINs as well as 230/260 and 280/260 ratios are available in Table S5. Subsequently, one
microgram of total RNA was retro-transcribed using ProtoScript II First Strand cDNA Synthesis Kit
(NEB, Leiden, The Netherlands), following the manufacturer’s instructions.

4.3. Primer Design & qPCR Conditions

The sequences of genes used in this study were obtained from Salix purpurea genome annotation
ver. 1.0 (Phytozome ver. 12.1.5; https://phytozome.jgi.doe.gov/pz/portal.html). All the sequences were
blasted against S. viminalis EST (GenBank; https://www.ncbi.nlm.nih.gov/genbank/) and, when available,
the top hit sequence was used for primer design. Primers were designed using Primer3Plus [45]
with the following parameters: primer size 18–23 bases, amplicon length 60–200 bp, primer melting
temperature 58–61 ◦C, CG content 40–60%. Primers were analyzed with OligoAnalyzer 3.1 (available
online: https://eu.idtdna.com/calc/analyzer) to detect potential self- and hetero-dimers.

For each primer pair, standard curves were obtained using a 5-fold dilution series of cDNA
template over seven dilution points, starting from a concentration of 12.5 ng/µL. The coefficient of
determination (r2) and slope (S) values were obtained from the standard curves. All the coefficients of
determination were above 0.99 (Table 2, Table S6). Primer efficiencies were calculated with qBasePLUS

https://phytozome.jgi.doe.gov/pz/portal.html
https://www.ncbi.nlm.nih.gov/genbank/
https://eu.idtdna.com/calc/analyzer
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(ver. 3.5; https://www.qbaseplus.com; Hellemans et al., 2007 [46]). All efficiencies ranged from 83%
to 115%.

For the qPCR analysis, 4 ng of cDNA were used as a template. The reactions were performed
in a 384-wells plate prepared with a liquid handling robot (epMotion 5073, Eppendorf, Hamburg,
Germany). The cDNA was amplified using Takyon low ROX SYBR qPCR MasterMix dTTP Blue Kit
(Eurogentech, Liège, Belgium) on a Viia 7 Real-Time PCR System (Thermo Fisher, Waltham, MA, USA)
in a final volume of 10 µL. No-template as well as non-RT controls ensured that the samples were
free from contamination. The reactions were performed in technical triplicates for each biological
independent replicate. The PCR conditions consisted of an initial denaturation at 95 ◦C for 3 min,
followed by 40 cycles of denaturation at 95 ◦C for 10 sec and annealing/extension at 60 ◦C for 60 sec.
A melting curve analysis was performed at the end of each experiment to check the specificity of the
amplified products.

4.4. Analysis of Gene Expression Stability

4.4.1. Descriptive Analyses

For all the analyses, data obtained from the Viia 7 Real-Time PCR Software were trimmed and
exported into Excel datasheets. The descriptive analyses were performed using R (v. 3.5.1; https://www.
r-project.org). The boxblots of the quantification cycle values were made with the median value of each
technical replicate using the package ggplot2 (v. 3.2.0; https://cran.r-project.org/web/packages/ggplot2/).
Stability over time was assessed by plotting the median value of each technical replicate as a function
of the days. Linear regression and 95% confidence intervals were calculated by ggplot2.

4.4.2. Determination of RG Expression Stability with geNormPLUS, BestKeeper, NormFinder, and
GrayNorm

The geNormPLUS version included in qBasePLUS was used, with the primer efficiencies previously
calculated and all parameters set to default. As the original BestKeeper Excel spreadsheet (ver. 1.0;
https://www.gene-quantification.de/bestkeeper.html) can only compute gene stability for a maximum
of 10 candidate RGs, the R-based package ctrlGene (ver. 1.0.0; https://cran.r-project.org/web/packages/
ctrlGene/) was used after verifying it yielded the same results as the Excel-based solution (cf. Results).
NormFinder software (ver. 0.953; http://moma.dk/normfinder-software) is a Visual Basic Application
based on Excel to rank RG expression stability. Input data was first transformed as required and a
unique group identifier was set for each combination of organ, sampling day and condition. GrayNorm
(ver. 1.1; https://github.com/gjbex/GrayNorm) is a python-based (ver. 2.7.x) algorithm able to compute
the combination of genes that introduces the least uncertainty during gene expression normalization.
It was used on Anaconda (ver. 1.9.2; https://www.anaconda.com/distribution/) and control groups
were defined as the samples from day 0, with no treatment. When RG stability in more than one organ
was computed, roots were also set as control group.

4.5. Consensus Ranking of Candidate RGs with RankAggreg

In order to generate a consensus from the data produced by geNormPLUS, BestKeeper, NormFinder,
and GrayNorm, we aggregated the obtained ranking lists by applying the RankAggreg (ver. 0.6.5)
package of R software as done previously [16,43,47]. RankAggreg is a package which provides
algorithms able to combine different ranking lists. Based on the size of our ranking lists, we used the
Cross-Entropy Monte Carlo algorithm. The ranking list previously generated were used as input with
the following parameters: Distance was calculated using the Spearman’s Footrule function, rho was set
at 0.1, the seed at 75, and the “convIn” argument at 50.

https://www.qbaseplus.com
https://www.r-project.org
https://www.r-project.org
https://cran.r-project.org/web/packages/ggplot2/
https://www.gene-quantification.de/bestkeeper.html
https://cran.r-project.org/web/packages/ctrlGene/
https://cran.r-project.org/web/packages/ctrlGene/
http://moma.dk/normfinder-software
https://github.com/gjbex/GrayNorm
https://www.anaconda.com/distribution/
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4.6. Reference Genes Validation

The expression level of the stress-responsive genes studied in the various organs and conditions
was analyzed using qBasePLUS and normalized using the five most stable RGs as indicated in the
“Results” section. The expression level of the stress-responsive genes, expressed as “Calibrated
Normalized Relative Quantities” (CNRQs) as calculated by qBasePLUS, was exported to Excel datasheet.
A one-way ANOVA (followed by a Tukey-Kramer post-hoc test) taking all the possible “day x condition”
combination as factors was performed on the logEfficiency transformed CNRQs using R and the agricolae
package (https://cran.r-project.org/web/packages/agricolae).

5. Conclusions

The expression stability of 14 candidate RGs was assessed in Salix viminalis leaves and roots
exposed for 12 days to five abiotic stress conditions. This assessment was done using four algorithms
and the different rankings they produced were aggregated into a consensus list. Out of the 14 candidate
RGs, TIP41 and CDC2 were globally the most stable genes across all conditions. Other RGs that should
be used in combination with TIP41 and CDC2 were organ and condition dependent. Our results
provide a panel of reference genes that can be used when performing a gene expression analysis in
different organs and under various stresses in S. viminalis. These reference genes will be useful for
unwinding the expression patterns and function of genes involved in stress tolerance. This report also
emphasizes the MIQE recommendations. Amongst those, it clearly outlines the importance to use more
than one reference gene, which unfortunately still occurs a lot. In addition, this report emphasizes the
importance to validate widely used reference genes before performing an experiment with specific
plants and stresses.
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