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To traverse complex three-dimensional terrainwith large obstacles, animals and
robots must transition across different modes. However, most mechanistic
understanding of terrestrial locomotion concerns how to generate and stabilize
near-steady-state, single-mode locomotion (e.g. walk, run). We know little
about how to use physical interaction to make robust locomotor transitions.
Here, we review our progress towards filling this gap by discovering terrady-
namic principles of multi-legged locomotor transitions, using simplified
model systems representing distinct challenges in complex three-dimensional
terrain. Remarkably, general physical principles emerge across diverse model
systems, by modelling locomotor–terrain interaction using a potential energy
landscape approach. The animal and robots’ stereotyped locomotor modes
are constrained by physical interaction. Locomotor transitions are stochastic,
destabilizing, barrier-crossing transitions on the landscape. They can be
induced by feed-forward self-propulsion and are facilitated by feedback-
controlled active adjustment. General physical principles and strategies from
our systematic studies already advanced robot performance in simple model
systems. Efforts remain to better understand the intelligence aspect of locomotor
transitions and how to compose larger-scale potential energy landscapes of
complex three-dimensional terrains from simple landscapes of abstracted chal-
lenges. This will elucidate how the neuromechanical control system mediates
physical interaction to generate multi-pathway locomotor transitions and lead
to advancements in biology, physics, robotics and dynamical systems theory.
1. Introduction
To move about, animals can use many modes of locomotion (e.g. walk, run,
crawl, slither, burrow, climb, jump, fly and swim) [1,2] and often transition
between them [3,4]. Despite this multi-modality, the most mechanistic under-
standing of terrestrial locomotion has been on how animals generate [5–8] and
stabilize [9–11] steady-state, limit cycle-like locomotion using a single mode.

Previous studies began to reveal how terrestrial animals stochastically tran-
sition across locomotor modes in complex environments. Locomotor transitions,
like other animal behaviour, emerge from multi-scale interactions of the animal
and environment across the neural, postural, navigational and ecological levels
[12–14]. At the neural level, terrestrial animals use central pattern generators
[15] and sensory information [16–18] to switch locomotormodes to traverse differ-
ent media or overcome obstacles. At the ecological level, animals foraging across
natural landscapes switch locomotor modes to minimize metabolic cost [19]. At
the intermediate level, terrestrial animals transition betweenwalking and running
to save energy [20]. However, there remains a knowledge gap in how locomotor
transitions in complex three-dimensional terrain emerge from physical interaction
(i.e. terradynamics [21]) of an animal’s body and appendages with the environ-
ment mediated by the nervous system. We lack theoretical concepts for
thinking about how to generate and control locomotor transitions on the same
level of limit cycles for steady-state, single-mode locomotion [22].
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Figure 1. Multi-pathway transitions to avoid and traverse obstacles. (a) View from a self-driving car. (b) Geometric map scanned. (c) Multi-pathway driving tran-
sitions to avoid obstacles. (d ) Envisioned capability of robot traversing complex three-dimensional terrain with many obstacles as large as itself. (e) Abstracted
challenges from diverse large obstacles. ( f ) Envisioned multi-pathway locomotor transitions. Image credits: (a,b), Modified with permission from [23] under Creative
Commons CC-BY license. (d) Modified with permission from Luke Casey Photography. (Online version in colour.)
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Understanding of how to use physical interaction with
complex three-dimensional terrain to generate and control
locomotor transitions is also critical to advancing mobile
robotics. Similar to personal computers in the 1970s, mobile
robots are on the verge of becoming a major part of society.
Wheeled robots like robotic vacuums and self-driving cars
(figure 1a) already excel at avoiding sparse obstacles to navigate
flat homes, streets and even unpaved roads, by scanning a geo-
metricmap of the environment (figure 1b) and acting upon it to
transition between driving modes (figure 1c) [24]. This owes to
the well-understood wheel–ground interaction physics [25,26].
Understanding of appropriate leg–ground physical interaction
to generate and stabilize steady-state running andwalking [5,6]
enabled animal-like legged robot locomotion (such as from
Boston Dynamics) on near-flat surfaces with small obstacles.
However, despite progress in robot design, actuation and
control for multi-modal locomotion [3], robots still struggle to
make robust locomotor transitions to traverse obstacles as
large as themselves, hindering important applications such as
environmental monitoring in forests (figure 1d), search and
rescue in rubble and extraterrestrial exploration through
rocks. This is largely due to a poor understanding of physical
interaction in complex three-dimensional terrain.

Aphysics-based approach by creating a new field of terrady-
namics [21] holds promise for filling this major gap. For aerial
and aquatic locomotion of animals and robots, we understand
fairly well their fluid–structure interaction thanks to well-estab-
lished experimental, theoretical and computational tools, such
as wind tunnel and water channel, aerofoil and hydrofoil,
aero- and hydrodynamic theories, and computational fluid
dynamics techniques [27]. By creating controlled granular
media testbeds, robotic physical models [28,29], and theoretical
and computational models, recent studies elucidated how
animals (and how robots should) use physical interaction with
granular media to move effectively both on and within sandy
terrain (see [30] for a review). The general physical principles
[30] and predictive physics models [21,30] not only advanced
understanding of functional morphology [31–33], muscular
control [34,35] and evolution [36] of animals, but also led to
new design and control strategies [28,30,37–40] that enabled a
diversity of robots to traverse granular environments.

Inspired by these successes, our group has been expanding
the field of terradynamics to locomotion in complex three-dimen-
sional terrain, by integrating biological experiments, robotic
physical modelling and physics modelling (figure 2). Here, we
review our approaches, progress and opportunities ahead. This
review focuses on multi-legged locomotor transitions; for our
work on limbless locomotion in three-dimensional terrain, see
[42–47]. We studied the rainforest-dwelling discoid cockroach
(figure 3a), which is exceptional at traversing complex three-
dimensional terrain with diverse large obstacles such as
vegetation, foliage, crevices and rocks [4]. Just like how under-
standing the aerodynamics of passive aerofoils provides a
foundation for understanding flight control [60], we first focused
onunderstandingpassivemechanical interaction,whichprovides
a foundation forunderstanding sensory feedbackcontrol (and the
intelligence aspect of locomotor transitions in general). This is
achieved by studying the animal in the rapid, bandwidth-limited
escape [61] or emergency self-righting response and feed-for-
ward-controlled robotic physical models. Although still at an
early stage, our work begins to reveal general physical principles
of locomotor transitions, which is remarkable considering that
complex three-dimensional terrain is highly heterogeneous with
diverse obstacles. Our work again demonstrates the power of
interdisciplinary integration to discover terradynamic principles.
2. Experimental tools
(a) Model terrain
To begin to understand complex physical interaction during
locomotion in nature (figure 1d), we abstracted complex three-
dimensional terrain as a composition of diverse large obstacles
(figure 1e) that present distinct locomotor challenges. These
include compliant beams [50,51], rigid pillars [52], gaps [53]
and bumps [54]. To enable systematic experiments (as in
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Figure 2. Integrative approach. Observations of model organisms inspire
robot design and action. Simplified robots serve as physical models for testing
biological hypotheses or generating new ones [28,29,41] and allow control
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for robots. (Online version in colour.)
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a wind or water tunnel), for each model terrain, we created a
testbed that allowed controlled, systematic variation of obstacle
properties such as stiffness [50], geometry [52] and size [53,54]
(figure 3b). In addition, because animals and robots often flip
over when traversing large obstacles [4,52,55], we studied stren-
uous ground self-righting inwhich existing appendagesmust be
co-opted [55–59]. Furthermore, we developed tools to address
technical challenges in measuring locomotor transitions and
locomotor–terrain interaction in complex three-dimensional ter-
rain (figure 3b–d; electronic supplementary material, Text S1).

Although studying locomotor transitions to overcome these
challenges separately is an amenable first step (figure 1f ), in the
real world, animals and robots must continually transition
across locomotor modes to traverse diverse obstacles over
large spatio-temporal scales (figure 1e). To study continual
transitions, we developed a terrain treadmill (figure 3e) to
study locomotion through large obstacles over a long time
and a large distance [48], while allowing finer features such
as antenna and leg motion to be observed at a high spatial
resolution [49]. This research direction is still at an early stage.

(b) Robotic physical models
We created simplified robotic physical models [28,29] of each
model system (figure 3f–j). These robots offer several advan-
tages as experimental platforms. First, they generate relevant
locomotor behaviour using minimalistic design, actuation
and sensing, facilitating analysis and modelling. In addition,
they are more amenable than animals to controlled parameter
variation and hypothesis testing. Moreover, running the robot
in open loop allows isolating the effects of passive mechanics
from that of sensory feedback. Finally, they cannot violate the
laws of physics because robots are enacting, not modelling,
the laws of physics [62].

We emphasize that our robotswere designed and controlled
to generate relevant locomotor transitions that we studied, not
optimized for maximal performance. However, the physical
principles revealed by these tools are generalizable and can pre-
dict how to increase performance [4,28,29,50–55,57–59] (§4d).
3. Modelling approaches
(a) Potential energy landscape modelling
Understanding how locomotor transitions emerge from
locomotor–terrain interaction probabilistically (§4a) calls for a
statistical physics approach. A statistical physics treatment has
advanced understanding of complex, stochastic, macroscopic
phenomena in self-propelled living systems, such as animal fora-
ging [63], traffic [64] and active matter [65,66]. Here, we created
potential energy landscape models (figure 4b), directly inspired
by free energy landscapes for modelling multi-pathway protein
folding transitions [67–69]. The near-equilibrium, microscopic
proteins statistically transition from higher to lower, thermody-
namically more favourable states on the free energy landscape.
Thermal fluctuation comparable to free energy barriers
induces probabilistic barrier crossings. These physical principles
operating on a rugged landscape leads tomulti-pathway protein
folding transitions. Although our locomotor–terrain interaction
systems are macroscopic, self-propelled and far-from-
equilibrium, their locomotor transitions display similar
features, including stochasticity, multi-pathway transitions, kin-
etic energy fluctuation (from oscillatory self-propulsion) and
favourability of some modes over others [4,51–54,56–59], but
with the addition of intelligence.

Given these similarities, we hypothesized that locomotor
transitions are barrier-crossing transitions between basins of
potential energy landscapes of our systems. We tested this
hypothesis in each model system (figure 4; electronic
supplementary material, text S3–S7). To discover general prin-
ciples of locomotor transitions, we systematically varied system
parameters and studied how they affect locomotor transitions.
For how to use potential energy landscape modelling, see
electronic supplementary material, text S2.

A potential energy landscape approach to modelling
locomotor–terrain interaction is plausible also considering
the success of potential energy field methods in modelling
robotic manipulation. Similar to our systems, robotic part
alignment [70] and grasping [71] have continual collisions,
multiple pathways to reach the goal [70] and favourability
of some contact configurations over others [72]. Given these
complexities, quasi-static potential energy fields well
explained how system properties like geometry and friction
affect part-manipulator interaction and informed strategies
to achieve desired alignment or manipulation [70].

We emphasize that our potential energy landscapes
directly result from physical interaction and are based on
first principles, unlike artificially defined potential functions
to explain walk-to-run transition [73] and other non-equili-
brium biological phase transitions [74], metabolic energy
landscapes inferred from oxygen consumption measure-
ments to explain behavioural switching of locomotor
modes [19] and artificial potential fields for robot obstacle
avoidance [75].

For simplicity, our potential energy landscapes so far only
considered the most relevant system degrees of freedom
(body rotation and translation in obstacle traversal, body
rotation and wing opening in self-righting). In addition,
they do not yet model system dynamics, which is required
for the quantitative prediction of locomotor transitions
(§5a). Despite these limitations, they provided substantial
insight into the general principles and strategies of obstacle
traversal and strenuous ground self-righting (§4).
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(b) Dynamic templates and simulations
Although our model systems follow Newton’s laws, it is often
challenging to solve equations ofmotion analytically due to the
hybrid contact [22] and high-dimensional parameter space. As
a first step to understand transition dynamics, we developed
dynamical templates for two model systems, large gap traver-
sal [53] (figure 3k) and strenuous ground self-righting [58]
(figure 3l ), for which equations of motion are solvable when
two-dimensional dynamics is considered. Templates are the
simplest dynamical models that capture the fundamental
dynamics of a locomotor behaviour using minimal degrees of
freedom [76]. For these two systems, our templates enabled
quantitative prediction of contact and actuator forces [58], con-
trol strategies for traversal [53] or self-righting [58], and how
they depend on system parameters [53,58].

In addition, for strenuous ground self-righting, we devel-
oped multi-body dynamics simulations of the robot validated
against experiments [59] to study the effect of randomness
in wing–leg coordination (figure 3m). These simulations
enabled large-scale variation of relevant parameters ident-
ified from experiments and in-depth analysis at a precision
difficult to achieve in animals and robots. Finally, simulation
is faster than experiments [59].
4. Insights and general principles from simple
model systems

Our studies revealed how locomotor transitions depend on
system parameters (gap width, beam stiffness, body shape,
etc.; electronic supplementary material, table S1). For each
model system, these physical principles are generalizable
over the relevant parameter space and helped improve
robot performance. Although our model systems are level,
our approach also applies to interactions on slopes.

Across model systems, a potential energy landscape
approach helps understand how the animal’s and robot’s
stereotyped, probabilistic locomotor transitions are con-
strained by physical interaction. Several general physical
principles and new concepts emerge.

(a) Locomotor modes are stereotypical and transitions
are stochastic

For all model systems, the animal displayed stereotyped loco-
motor modes with qualitatively similar body postural
changes [4,50–54,56,57]. Not all modes lead to successful
obstacle traversal or self-righting. Transitions between
modes occur stochastically, with large trial-to-trial variation
[4,50,51,53,54,56,57]. The probability of using or transitioning
to a mode strongly depends on locomotor and terrain par-
ameters that affect physical interaction [4,50,52–54,56,57]
(§4f). The robot’s locomotor modes are also stereotyped
and transitions stochastic [4,50–55,57].

(b) Locomotor transitions are destabilizing barrier-
crossing transitions on a potential energy landscape

For all model systems, the system state in each mode is
strongly attracted to a local minimum basin of the potential
energy landscape over the relevant body state space [50–
52,54,57] (figure 4; electronic supplementary material, figures
S2–S6 and movie S1). This is because self-propulsion induces
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continual body–terrain collisions during obstacle interaction
and self-righting, which breaks continuous frictional contact
and makes the system statically unstable. This leads the
system to drift down the basin until a sufficient perturbation
induces an escape from the basin. However, the system does
not stay at the minimum due to self-propulsion. Due to this
strong attraction to landscape basins, the transition from
one locomotor mode to another requires the system to
destabilize itself to escape from one basin to fall into another.

(c) There exists a potential energy landscape-
dominated regime of locomotion

These observations across diverse model systems mean that
there is a potential energy landscape-dominated regime of loco-
motion. In this regime, alongwith certain directions, there exist
large potential energy barriers that are comparable to or exceed
kinetic energy and/ormechanical work generated by each pro-
pulsive cycle or motion. This may happen when propulsive
forces are either limited by physiological, morphological and
environmental (e.g. low friction) constraints or are not well
directed towards directions along which large barriers exist
for the desired transition. These situations are frequent in
large obstacle traversal and strenuous ground self-righting. In
this regime, not only do potential energy landscapes provide
a useful statistical physics approach for understanding loco-
motor transitions, but it also allows comparison across
systems (different species [56], robots [4,52], terrain [50,52–54]
and modes [4,50,52,56,57]) to discover general principles.
Outside of this regime, potential energy landscapes are not
useful or necessary. Such examples include ballistic jumping
over small obstacles with kinetic energy far exceeding potential
energy barriers, moving on slopes with potential energy
increasing or decreasing monotonically, and traversing
obstacles much smaller or larger than body size.

(d) Feed-forward self-propulsion can induce locomotor
transitions

Using robotic physical models, we discovered several prin-
ciples of locomotor transitions with feed-forward self-
propulsion. First, locomotor kinetic energy fluctuation from
self-propulsion helps the system stochastically cross potential
energy barriers to make transitions [50,57]. In addition,
escape from a basin is more likely in directions on the land-
scape along which the barriers are lower [50,57]. Finally,
during a transition, the system tends to transition to more
favourable modes attracted to lower basins [50,52,57]. The
animal’s locomotor transitions also largely followed
these principles during rapid, bandwidth-limited escape or
emergency self-righting response [50–54,56,57].

(e) Feedback-controlled active adjustments can assist
locomotor transitions

Not surprisingly, the animal can make active adjustments to
facilitate or enable desired transitions when feed-forward
self-propulsion is insufficient. For example, even when
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body kinetic energy fluctuation becomes comparable to, but
is still lower than, the potential energy barrier, the animal
transitions to a more favourable mode to traverse beam
obstacles [50], by actively adjusting body and appendages
[51]. Understanding this intelligence aspect of locomotor
transitions is clearly the next step. We have begun studying
the principles of feedback-controlled locomotor transitions
by creating robotic physical models with force sensing [51].

( f ) A suite of strategies can modulate locomotor
transitions and increase performance

Because locomotor transitions are barrier-crossing transitions,
they can be enhanced or suppressed by steering the system
state on the landscape, changing landscape barriers, or even
modifying landscape topology (the number of basins). This
insight allowed us to discover a suite of strategies (figure 4c)
to make desired transitions more probable for each model
system (figure 4a), elaborated below.

In bump traversal, approaching with a head-on (body
sagittal plane perpendicular to bump), pitched-up body pos-
ture directs the system to overcome a barrier to reach a
desired climb basin/mode and avoid being attracted towards
a deflect basin/mode (figure 4(i)) [54]. Similarly, in gap tra-
versal, approaching with a large forward velocity and
upward pitching velocity and a head-on, pitched-up body
posture increases kinetic energy that directs the system to
reach a desired cross basin/mode and avoid being attracted
into a fall basin/mode (figure 4(ii)) [53].

In pillar traversal, a cuboidal body induces a climb basin/
mode where the body is attracted to and pitches up against
the pillar, whereas an elliptical body eliminates it and induces
a desirable turn basin/mode where the body is repelled away
(figure 4(iii)) [52]. Alternatively, active turning by legs helps a
cuboidal body steer away from the climb basin/mode and
cross the barrier to transition to the turn basin/mode [52].
In beam traversal, when beams are stiff, it is challenging to
push across in a pitched-up mode attracted to a pitch basin,
and it is desirable to transition to a roll mode/basin to roll
into the beam gap to traverse (figure 4(iv)). Body kinetic
energy fluctuation from self-propulsion helps cross the
barrier to make this transition [50]. This transition is further
facilitated by reducing sprawling and differential use of
hind legs, which presumably destabilize and steer the
system towards the roll basin [51].

In strenuous ground self-righting (figure 4(v)), although
wing opening initiates a somersault and steers the system
towards an upright pitch basin/mode, it is insufficient to over-
come the large barrier. As a result, the system is frequently
trapped in a metastable basin/mode due to a triangular base
of support, leading to repeated failed attempts. However,
wing opening reduces the barrier to transition from the meta-
stable to a roll basin/mode, allowing small kinetic energy
fluctuation from leg oscillation to induce barrier crossing,
resulting in self-righting by rolling [57]. This transition is also
facilitated by proper wing–leg coordination that better steers
the system towards the lowered barrier to roll [58]. Randomness
in wing–leg coordination helps find proper coordination [59].

We emphasize that the desirable modes and strategies in
the obstacle interactions above aim at successful traversal. In
different tasks, other modes may be desirable. For example,
the fall mode in gap interaction (figure 4a,b(ii)) is desirable
for going into ground crevices, and the climb mode for
pillar interaction (figure 4a,b(iii)) is desirable for initiating
climbing up obstacles. Strategies can be discovered for these
modes accordingly using the same approach.

Using our feed-forward-controlled robotic physical
models [50,52,57–59] or with a human in the loop to switch
on the strategies [52–54,58], we have demonstrated that
these strategies increased robot performance substantially or
even enabled new capabilities in each model system (elec-
tronic supplementary material, table S1). Efforts remain to
study how robots should sense locomotor–terrain interaction
and use feedback control to make transitions intelligently.

(g) Stereotyped locomotor modes result from physical
interaction constraint

Although the self-propelled system can in principle move in
arbitrary ways, the observed locomotor modes are highly
stereotyped due to strong constraints from physical inter-
action (§4a). This stereotypy is because the potential energy
landscape is highly rugged, with distinct basins separated
by barriers, and the system is strongly attracted to landscape
basins in the potential energy landscape-dominated regime.
Because our potential energy landscapes are directly derived
from first principles (as opposed to fitting a model to behav-
ioural data [77,78]), this insight provided evidence that
behavioural stereotypy of animals emerges from the physical
interaction of their neural and mechanical systems with the
environment [12,13]. In addition, our systematic studies
revealed that variation in movement can lead to stochastic
locomotor transitions and is advantageous when locomotor
behaviour is separated into distinct modes, each of which
may be desirable for different scenarios.

We speculate that this physical constraint plays a role in the
evolution of animal morphology and behaviour. This is plaus-
ible because morphological [79–81] and behavioural [82]
adaptations that facilitate obstacle traversal and self-righting
are common when microhabitat properties physically con-
strain movement. Our potential energy landscape approach
is also useful for quantifying how physical interaction
constrains robot design, control and planning for locomotor
transitions in the large locomotor and terrain parameter space.

(h) Physical principles of locomotor–terrain interaction
are general

In the potential energy landscape-dominated regime, physical
principles and strategies that we discovered (figure 4c; elec-
tronic supplementary material, table S1) are applicable to a
broad range of the parameter space of model systems. For
example, obstacle attraction or repulsion is an inherent prop-
erty of the locomotor shape and insensitive to pillar size and
geometry [52]. Strategies that favour bump or gap traversal
are applicable to a large range of bump heights [54] or gaps
widths [53]. Physical principles of beam interaction explained
how pitch-to-roll transition probability changes as beam
stiffness varies over a large range [50].
5. Towards multi-pathway locomotor transitions
Considering the general physical principles of locomotor tran-
sitions fromdiverse simplemodel systems,we hypothesize that
multi-pathway locomotor transitions in heterogeneous
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statistical physics approach, but with the addition of intelligence, for understanding how the neuromechanical control system mediates physical interaction to gen-
erate multi-pathway locomotor transitions in complex 3-D terrain. Note that our locomotor-terrain interaction system differs from protein folding in that animals and
robots are macroscopic, self-propelled, far-from-equilibrium and can have intelligence. Image credits: (a) Left: from [83]. Reprinted with permission from AAAS.
Right: adapted with permission from [84]. Copyright © (2012) American Chemical Society. (b) Right: copyright © IOP Publishing. Reproduced with permission from
[4]. All rights reserved.

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

288:20202734

7

complex three-dimensional terrains can be understood by
composing larger-scale, higher-dimensional potential energy
landscapes (figure 5) from simple landscapes of abstracted
challenges (e.g. figure 1d–f ). Our terrain treadmill experiments
(figure 3e) are beginning to shed light on this [49]. Progress
towards such an understanding will lead to advancement for
several fields.
(a) Envisioned advancement for physics
The empirically discovered physical principles of locomotor
transitions using feed-forward self-propulsion (§4d) are
surprisingly similar to those of microscopic multi-pathway
protein folding transitions (see detail in [50]), where predic-
tive free energy landscape theories have been successful
[67–69]. This was unexpected, given the differences in scale
and nature of the interaction (macroscopic contact forces in
locomotion versus ionic and dipole interactions, hydrogen
bonds, van der Waals forces, hydrophobic interactions in
protein folding) [68].

We envision the creation of analogous potential energy
landscape theories, but with the addition of intelligence
(e.g. §4e,f ), to understand and predict how the animal’s ner-
vous system or robot’s sensing, control and planning systems
mediate physical interaction to generate multi-pathway loco-
motor transitions (such as observed in [4]). The next step
towards this is to model conservative forces using potential
energy landscape gradients, add stochastic, non-conservative
propulsive and dissipative forces that perturb the system to
‘diffuse’ across landscape barriers (analogous to [85], but
with closed-loop control of the landscape over locomotor
degrees of freedom), and simulate multi-pathway locomotor
transitions. Systematic studies to understand the principles
of force sensing [51] will inform how to steer the system
and modify the landscape to modulate transitions intelli-
gently using sensory feedback control. Such new theories
will help expand the physics of living systems to the organis-
mal level and expand statistical physics to macroscopic,
far-from-equilibrium, self-propelled (active) systems [65,66].

(b) Envisioned advancement for dynamical
systems theory

Our potential energy landscape approach provided a new
conceptual way of thinking about locomotor modes beyond
near-steady-state, limit cycle-like behaviour (e.g. walk, run
and climb [5–7]) (electronic supplementary material, figure
S8a). Locomotion in irregular terrain with repeated pertur-
bations requires an animal to continually modify its
behaviour, which cannot be described by limit cycles [61].
Our work demonstrated that, in the potential energy land-
scape-dominated regime, the system must destabilize from
an attractive landscape basin to transition from one mode
to another, and locomotor modes can be metastable [86],
far-from-steady manoeuvers (e.g. electronic supplementary
material, figure S8c). We foresee the creation of new dynami-
cal systems theories of terrestrial locomotion [22] that are
composed of multi-pathway transitions across modes
attracted to both landscape basins attractors and limit
cycles [87] (electronic supplementary material, figure S8d ).

In addition, such new dynamical systems theories model-
ling physical interaction may be combined with those that
model related processes and factors such as proprioception
[88], external sensory cues (e.g. predators, prey, resources)
[14,89], internal needs (e.g. hunger, mating) [90] and safety–
risk tradeoffs [91]. This integration will elucidate how these
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factors interplaywith physical interaction tomodulate animals’
locomotor transition behaviour in complex environments.

(c) Envisioned advancement for biology
Our potential energy landscape approach provides a means
towards the first principle, physical understanding of the
organization of locomotor behaviour, filling a critical knowl-
edge gap. The field of movement ecology [14] makes field
observations of trajectories of animals—often as a point
mass (e.g. [92])—moving and making behavioural transitions
in natural environments, because physical interactions are dif-
ficult to measure at such large scales. Recent progress in
quantitative ethology advanced understanding of the organiz-
ation of behaviours, often by quantifying kinematics in
homogeneous, near-featureless laboratory environments (see
[12,13] for reviews). Our work highlights the importance
and feasibility of, and opens new avenues for, studying how
stereotypy and organization of behaviour are constrained by
an animal’s direct physical interaction with realistic environ-
ments. Analysing the disconnectivity [69] of basins of future
composed landscapes for multi-pathway transitions will
reveal the hierarchy (‘treeness’ [93]) of locomotor modes.

In addition, there are opportunities to explore how physical
interaction during locomotion impacts large-scale processes
like predator–prey pursuit andmigrationwhere locomotor per-
formance is crucial [94]. If future potential energy landscape
theories can predict how locomotor performance depends on
relevant system parameters (§4d–g), they will provide a
proxy for fitness landscapes [95]. Such proxy fitness landscapes
will reveal how locomotor fitness exerts selective pressure on
morphology and behaviour that affect locomotor transitions
via physical interaction.

(d) Envisioned advancement for robotics
Future predictive potential energy landscape theories will pre-
dict strategies for robots to use physical interaction to generate
landscape basin attractors funnelled into one another [96] to
compose locomotor transitions to perform high-level, goal-
directed tasks in the realworld.Using informationof the geome-
try and physical properties of complex three-dimensional
terrain from sensors, a robot can abstract its locomotor task
into separate locomotor challenges (figure 1e) and calculate
their potential energy landscapes. Then, the robot can use the
landscape theories to identify possible transitions (figure 1d)
and predict how transition probabilities differ between strat-
egies (figure 4a,b). Finally, within its own constraints (e.g.
energy available and actuator force limits), the robot can plan
its strategies to make transitions that increase or even optimize
its probability to reach the goal (figure 1d). When the terrain
is sensed only up to a finite horizon with uncertainty, the
robot can react to newly sensed challenges or recently failed
attempts and update the pre-planned locomotor transition
sequence and strategies (analogous to reactive obstacle
avoidance using geometry [97]).

Recent learning approaches have managed to generate
slow locomotion where terrain perturbations are sufficiently
small for the learned controller to reject and stabilize the
robot around an upright body posture [98,99]. Although
learning approaches can in principle train the robot for any
task in simulation by brute force, even in such modest terrain,
the real system’s physics must still be modelled properly (e.g.
how motor dynamics affects leg dynamics) to narrow the
simulation-to-reality gap [98,99]. However, as our work
reveals, a robot should use physical interaction to destabilize
itself to make locomotor transitions to traverse large
obstacles. In addition, locomotor transitions are diverse and
stochastic, and they depend sensitively on locomotor and ter-
rain parameters and vary substantially with strategies.
Considering these, learning approaches alone will be fragile
for generating robot locomotor transitions in complex three-
dimensional terrain. Our physics approach will be crucial
for applying learning approaches here—it not only enables
robots with basic transition capabilities (§4f; electronic sup-
plementary material, table S1) to serve as real platforms for
learning, but also offers principles of how strategies affect
transitions across the large locomotor and terrain parameter
space (§4g) to guide learning.

In the longer term, we envision that first principle models
of locomotor–terrain physical interaction will be pervasive.
Analogous to self-driving cars that scan streets, robots will
create environmental physics maps and action databases for
locomotor transitions and add them to geometric maps in
the cloud for shared use [100]. They will help robots better
use physical interaction to traverse currently unreachable
complex three-dimensional terrain and expand our reaches
in natural, artificial and extraterrestrial terrain.
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