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ABSTRACT
Single cells exhibit a significant amount of variability in transcript levels, which arises from slow, stochastic transitions between gene
expression states. Elucidating the nature of these states and understanding how transition rates are affected by different regulatory mech-
anisms require state-of-the-art methods to infer underlying models of gene expression from single cell data. A Bayesian approach to
statistical inference is the most suitable method for model selection and uncertainty quantification of kinetic parameters using small data
sets. However, this approach is impractical because current algorithms are too slow to handle typical models of gene expression. To
solve this problem, we first show that time-dependent mRNA distributions of discrete-state models of gene expression are dynamic Pois-
son mixtures, whose mixing kernels are characterized by a piecewise deterministic Markov process. We combined this analytical result
with a kinetic Monte Carlo algorithm to create a hybrid numerical method that accelerates the calculation of time-dependent mRNA
distributions by 1000-fold compared to current methods. We then integrated the hybrid algorithm into an existing Monte Carlo sam-
pler to estimate the Bayesian posterior distribution of many different, competing models in a reasonable amount of time. We demon-
strate that kinetic parameters can be reasonably constrained for modestly sampled data sets if the model is known a priori. If there
are many competing models, Bayesian evidence can rigorously quantify the likelihood of a model relative to other models from the
data. We demonstrate that Bayesian evidence selects the true model and outperforms approximate metrics typically used for model
selection.
© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5110503., s

I. INTRODUCTION

Gene expression is a biochemical process driven by the chance
collisions of molecules, which can result in strong stochastic sig-
natures and cell-to-cell variability in gene dynamics. Advances in
single-cell and single-molecule technologies have provided unprece-
dented resolution on the stochastic dynamics of gene expression.1

Dynamic assays measure gene expression in living cells either
directly via transcript tagging2–5 or indirectly via fluorescent or lumi-
nescent proteins.6–9 Static assays measure transcript levels in fixed
cells either using a cocktail of fluorescently labeled DNA oligos that
bind specific transcripts10,11 or via single-cell RNA sequencing.12,13

Static assays are popular because they do not require genetic mod-
ifications and are easily multiplexed. The disadvantage is that static
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assays only provide population snapshots of transcripts levels and
cannot follow the dynamics of transcription in a single cell through
time.

To this end, static assays have relied upon mathematical mod-
els to infer dynamic properties of gene expression in single cells
from the measured snapshot of transcript levels; see Ref. 14 for
a review. Inference requires (1) appropriate models of stochas-
tic gene expression, (2) numerical methods to calculate the time-
dependent mRNA distribution in a population of cells given any
underlying model and associated parameters, and (3) quantify-
ing the likelihood that measured data were sampled from the cal-
culated distribution. We recently developed a Bayesian approach
(BayFISH) that uses this likelihood to infer best-fitting parame-
ters from single cell data and quantifies their uncertainty using
the posterior distribution.15,16 Although Bayesian inference is the
most complete and rigorous approach, it requires significantly
more computation than other approximate methods, e.g., maximum
likelihood.

Here, we developed a hybrid numerical method that acceler-
ates the calculation of time-dependent mRNA distributions by 1000-
fold compared to standard methods. We integrated this method
into BayFISH and, for the first time, one can estimate the Bayesian
posterior distribution of many competing models of gene expres-
sion in a reasonable amount of time. The Bayesian evidence rigor-
ously quantifies the likelihood of a model relative to other models
given the data, and we show that Bayesian evidence selects the true
model and outperforms approximate metrics, e.g., Bayesian Infor-
mation Criterion (BIC) or Akaike Information Criterion (AIC),
typically used for model selection. Our accelerated Bayesian infer-
ence represents a significant advance over existing methods used
for inferring gene expression models from snapshots of single cell
transcripts.

II. CONNECTING MODELS OF GENE EXPRESSION
TO SINGLE CELL DATA

Our inference method uses data from single-molecule RNA
Fluorescence In Situ Hybridization (smFISH) but could include
single cell data from other static assays. The smFISH technique
labels transcripts with fluorescent DNA oligos and measures both
the number of mature mRNAs (m) and the number of gene loci
with high-activity transcription sites (TSs); see Fig. 1(a). A typ-
ical smFISH data set is a histogram h = h(ω⃗), where ω⃗ ∈ Ω
is the set of all possible states (m, TS) that can be measured in
a cell.

A broad spectrum of measured gene expression profiles in
bacteria and eukaryotes is well-explained by discrete state gene
expression models,17,18 summarized by the following reactions:

Gene state i
κijÐ→ Gene state j,

Gene state i
βiÐ→ Gene State i + mRNA,

mRNA δÐ→ ∅.

In this article, we adopt a two-allele, 3-state model [Fig. 1(b)] as
a case study for modeling stochastic gene expression in eukary-
otes and for testing our method of accelerated Bayesian inference.
We further focus on dynamic smFISH experiments that perturb

gene expression (e.g., induction) and then measure mRNA distri-
butions at different times after induction to infer dynamics and
kinetic parameters. Induction can change one or more of the model
parameters [Fig. 1(c)]. The smFISH data from an induction exper-
iment consist of a joint histogram h = h(ω⃗, tℓ), where tℓ are
independent observations made at different times before and after
induction. If the changed parameters are unknown a priori, then
one should evaluate all possible induction models, which leads to
a combinatorial explosion in model space. For example, there are
28 = 256 candidate induction models for the 3-state model shown
in Fig. 1(b), of which the model shown in Fig. 1(c) is one. In
Sec. V, we will consider 26 = 64 candidate models where the same
two parameters (δ and β0) are known a priori to not change upon
induction.

A likelihood approach is used to connect mathematical mod-
els of stochastic gene expression to single cell data. Formally, the
likelihood L is the probability that a candidate model M and its
associated parameter set θ⃗ would generate a given set of data (h).
The number of parameters (i.e., dimension of θ⃗) is determined by
the model structure M. Mathematically, the likelihood L is a func-
tion of the joint probability distribution P(ω⃗, tℓ∣θ⃗,M) of a candidate
model M and its associated parameters θ⃗ at discrete observation
times,

L = ∏
tℓ∈Φ
{Mℓ ⋅∏

ω⃗∈Ω
[P(ω⃗, tℓ∣θ⃗,M)]h(ω⃗,tℓ)}, (1)

where Φ is the set of observation times and Mℓ is the multinomial
coefficient associated with each h(ω⃗, tℓ) that arises because the data
were not ordered.

In our Bayesian inference work flow [Fig. 1(d)], each candidate
model M in the class of possible models {M} will require a large
number (≥106) of Monte Carlo steps where, at each step, numer-
ical simulations calculate the time-dependent mRNA distributions
and evaluate the likelihood that different parameter sets θ⃗ for that
model generated the observed data. Our previous software15,16 took
days to perform the likelihood calculations for one model, which
highlights the challenge of using Bayesian inference to evaluate hun-
dreds of models and perform model selection. Below, we develop a
hybrid method that both accelerates numerical simulation and like-
lihood calculations, and (in contrast to standard methods) scales
with the number of multicore processors, thus allowing for efficient
parallelization.

III. A NOVEL HYBRID METHOD TO CALCULATE
THE TIME EVOLUTION OF DISCRETE-STATE MODELS

While exact time-dependent solutions exist for two-state
models,19–21 it is hard to generalize this analysis to models with
more states. It is therefore necessary to solve the general time-
dependent problem using numerical simulations. There are two
classes of numerical procedures to solve the time evolution of a
discrete-state model for a given set of parameters. The first class
forward-evolves the chemical master equations (CMEs), which are
a system of infinitely many coupled ordinary differential equations
(ODEs) that describe the joint probability distributions P(ω⃗, t) as
a function of time.22,23 To be numerically feasible, a truncation
scheme (e.g., only consider mRNA levels below a maximum M)
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FIG. 1. Single cell data and models
of gene expression. (a) The single-
molecule RNA FISH (smFISH) tech-
nique provides information on the local-
ization and numbers of mature mRNAs
(m) in single cells, including clusters
of nascent transcripts produced at tran-
scription sites (TSs) at active genetic
loci. (b) A diploid, two-allele 3-state
genetic model where κij is the transi-
tion rate between genetic states, βi is
the mRNA synthesis rate of each state,
and δ is the mRNA degradation rate. (c)
Induction changes one or more parame-
ters from an unstimulated (U) to a stim-
ulated value (S). Here, we show one
of the many possible induction mod-
els M, labeled in binary (00110000).
(d) Schematic of the Bayesian inference
work flow.

is used to reduce the infinite size of the dynamical system. While
this approach delivers accurate estimates of the temporal evolu-
tion of the truncated CME, there are two shortcomings. First, the
number of ODEs scales as S2M, where S is the number of genetic
states for each allele. The ODE system becomes unwieldy for mam-
malian cells where the number of observed mRNAs per cell can be

O(103).24–27 Second, the forward integration of the CME requires
stiff ODE solvers, which can place demands on memory resources
and hinder parallel processing. The second class of numerical proce-
dures utilizes kinetic Monte Carlo methods (e.g., continuous time
Markov chain simulation28–33) to sample the temporal evolution
of the joint probability distribution P(ω⃗, t). While this approach
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is computationally less expensive, it comes at the cost of hav-
ing to sample over many runs to achieve equivalent accuracy to
the CME.

In this article, we develop a hybrid simulation method (the
Poisson Mixture with a Piecewise Deterministic Markov Switching
Rate or PM-PDMSR) which leverages analytical results and the effi-
ciency of the kinetic Monte Carlo method. The key result is that
the mRNA distribution can be exactly calculated for any realization
(trajectory) of the genetic state, s(t); see Appendix. Once transient
initial conditions have burned off (t ≫ δ−1), where δ is the mRNA
degradation rate, the mRNA (NmRNA) distribution is always Poisson,
P(NmRNA = m) = λm(t)e−λ(t)/m! with a dynamic rate λ(t) satisfying
the following piecewise ODE:

d
dt
λ(t) = βs(t) − δλ(t) (2)

with an initial condition λ(0) = 0. Given any trajectory s(t), we can
exactly compute the mRNA distribution P(m∣s(t)); see Figs. 2(a)

and 2(b). Our goal, however, is to determine the joint distribu-
tion P(ω⃗, t), which requires us to generate Ns sample paths of s(t)
that cover P(s, t). The sample paths in the small genetic state space
(S2-dimensional) are efficiently generated using standard kinetic
Monte Carlo methods. After accumulating a large number of sam-
ple paths Ns generated by the underlying model, the mixture of
the Poisson distributions recovers the mRNA distribution via a
convolution

P̂(NmRNA(t) = m, s(t) = i) = 1
Ns

Ns

∑
k=1

δi,sk(t)
λmk (t)e−λk(t)

m!
, (3)

where λk(t) is the solution of (2) subject to the kth sample path of
genetic switching trajectory sk(t) and δi ,j is the Kronecker delta [see
Figs. 2(c)–2(e)].

A detailed description of the hybrid simulator is given in the
Appendix. We evaluated the efficiency of the hybrid simulator rela-
tive to the CME in performing a single step of the Bayesian inference

FIG. 2. Hybrid simulation method,
PM-PDMSR. For simplicity, we illustrate
the principle of PM-PDMSR for a single
allele, 3-state model (M = 00110000).
The gene is induced at t = 10.
Model parameters: before stimulation
(κ01, κ12, κU

21, κU
10,β0,β1,β2, δ) = (0.5,

0.5, 5, 5, 20, 150, 300, 1) and after
stimulation, κS

21 = κS
10 = 0.5. [(a) and

(c)] Changing transcription and dynamic
rates for Ns = 1 and Ns = 25 sample
paths. [(b) and (d)] Poisson mRNA dis-
tribution for the sample paths shown in
(a) and (c), respectively. (e) Convolution
of Poisson mixtures generated from
Ns = 105 sample paths.
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FIG. 3. Efficiency of the hybrid method relative to the CME method. We measured the time for each method to complete one step of Bayesian inference, i.e., calculate
joint distribution and evaluate the likelihood. This comparison was performed for increasingly complex model classes: (a) 2-state, (b) 3-state, and (c) 4-state models of gene
expression. Each model class was evaluated for 1024 different parameters along with associated data sets; see Appendix for details.

work flow, i.e., simulate the joint distribution P(ω⃗, t) and calcu-
late the likelihood L that this joint distribution produced a given
data set (h). We benchmarked the simulators on diverse classes
of discrete-state models, parameter sets, and data sets; see Fig. 3.
The hybrid simulator is up to 103 more efficient for models with
increased genetic states, S = 3 and 4. The efficiency gain of the hybrid
simulator originates from the fact that P(m∣s(t)) is solved exactly
in mRNA space (and is independent of the size of M) and that
P(s, t) is sampled efficiently in genetic-state space via kinetic Monte
Carlo techniques. The accelerated hybrid method achieved equiva-
lent accuracy to the CME; see Fig. S1 of the supplementary material.
Finally, we tested the scaling of efficiency of different simulators on
a modern multicore workstation, which can execute up to 64 parallel
threads. We found that the hybrid method runs well in parallel, i.e.,
the total time needed for a fixed computational task distributed over
T threads scales as 1/T. Surprisingly, the CME method exhibited stiff
scaling such that the total time stayed constant and did not decrease
with increasing threads; see Fig. S2 of the supplementary material
and Sec. VI.

IV. BAYESIAN INFERENCE AND UNCERTAINTY
QUANTIFICATION OF MODEL PARAMETERS

Equipped with an efficient simulator of the time-dependent
joint probability distribution and likelihood calculation for any
model and parameter set, we first turned our attention to uncer-
tainty quantification of model parameters θ⃗ for a fixed model M.
Given a likelihood, Bayesian inference uses the Bayes formula to
update any prior beliefs P(θ⃗∣M) and calculate the posterior dis-
tribution P(θ⃗∣h,M) of parameters θ⃗ given the data h and a fixed
model M,

P(θ⃗∣h,M) = P(h∣θ⃗,M)P(θ⃗∣M)
P(h∣M) = L ⋅ P(θ⃗∣M)

P(h∣M) . (4)

As done previously, we resorted to Markov chain Monte Carlo
(MCMC) with a Metropolis–Hastings (MH) sampler to estimate the
posterior distribution P(θ⃗∣h,M); see Appendix and Ref. 15. We
assumed that the priorP(θ⃗∣M) is log-uniform. At each MCMC step,

the MH sampler randomly proposes a nearby parameter set and
computes the ratio of the posterior probability P(θ⃗∣h,M) relative
to that of the current parameter set and probabilistically accepts or
rejects the proposal with a prescribed criterion that only depends on
the ratio of the likelihood values. The denominator P(h∣M) in (4) is
identical for any parameter set θ⃗ and cancels during the calculation
of the ratio.

We benchmarked our approach on two synthetic data sets that
were generated by sampling (N = 100 or 1000 cells per time point for
a total of 4 time points) from a two-allele, 3-state induction model,
where the induction stimulus decreased the downward transition
rates; see Methods. Here, the model was known a priori and our goal
was to infer the kinetic parameters and perform uncertainty quan-
tification by comparing their posterior distributions [Figs. 4(a) and
4(b)] to the ground truth (GT) parameters used to generate the sam-
pled synthetic data set (Fig. S3 of the supplementary material). Our
method constrained the posterior parameter distribution around
the ground truth, and a 10-fold increase in the number of sampled
cells dramatically reduced uncertainty in the inferred parameters.
This observation holds true for a synthetic data set generated by
a different two-allele, 3-state induction model; see Fig. S4 of the
supplementary material.

Fitted models in systems biology often exhibit “sloppiness,”
where the goodness of the fit remains unchanged when several
parameters are perturbed in a coordinated direction. Such direc-
tions in the parameter space, called eigenparameters, are the princi-
ple components of the likelihood function in the high-dimensional
parameter space.34 A common way to visualize the eigenparame-
ters is to project the high-dimensional posteriors to the subspace
spanned by any of the two bare parameters;34,35 see Figs. S5 and
S6 of the supplementary material. For example, our results show
that simultaneously increasing the ON rate and OFF rate (and,
thus, leaving mean transcript levels unchanged) results in a similar
goodness of the fit. We also show that the posterior distribution is
far from the asymptotic Gaussian limit, even when the number of
samples N per time point is as large as 103. In this non-Gaussian
regime, it is necessary to consider the full posterior distributions
for parameter uncertainty quantification, in contrast to heuristic
approaches that consider only the covariance matrix of the posterior
chain.36
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FIG. 4. Parameter inference and uncertainty quantification using the Bayesian
posterior distribution. We benchmarked the hybrid method by running Bayesian
inference on a synthetic data set sampled (N cells at 4 different time points) from
a known model M = 00110000 and “ground-truth” (GT) parameter set. Poste-
rior distributions for (a) N = 100 and (b) 1000 cells per time point. These posterior
distributions were projected into six, separate one-dimensional parameter spaces.
However, projections of the posterior into two-dimensional parameter spaces are
useful because they illustrate sloppy modes in the parameter fitting; see Figs.
S5 and S6 of the supplementary material. The joint probability distributions cor-
responding to the best-fit parameters are shown in Fig. S3 of the supplementary
material.

V. MODEL SELECTION USING THE FULL
BAYESIAN FRAMEWORK

Knowing that our method of accelerated Bayesian inference
can reliably constrain the kinetic parameters for a given model,
we turned our attention to the harder problem of model selec-
tion. The goal was to identify the correct model from 64 possi-
ble types of two-allele, 3-state induction models given the same
synthetic data set in Fig. 4, which was sampled from a ground-
truth model and its parameters. We reduced the number of can-
didate models from 256 to 64 by keeping β0 and δ constant

upon induction, i.e., always 0 in the binary notation such that
M = xxxx0xx0. Our choice of noninducible parameters stems from
our previous work that used a Bayesian approach to infer models
of gene expression in stimulated neurons.15,16 It was known that
the mRNA degradation rate (δ) did not change, and our analy-
sis showed that the inferred basal transcription rate (β0) did not
change upon stimulation. We therefore chose to keep these parame-
ters unchanging to mimic our previous case study. Bayesian anal-
ysis naturally provides a quantitative measure of the likelihood
of any model M, i.e., the probability of the model to reproduce
the experimentally observed data h. The measure, referred to as
the marginalized likelihood or evidence,37,38 is the denominator
of (4),

P(h∣M) = ∫ P(h∣θ⃗,M)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

L

P(θ⃗∣M)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

Prior

dθ⃗. (5)

The evidence is simply the probability that a model M produced
data h and is equal to the sum of the probabilities of the model
(i.e., likelihood) over all sets of parameters that could have pro-
duced the data. The evidence is a convolution of the likelihood
with the prior P(θ⃗∣M), which quantifies the belief regarding the
initial parameter distributions. The dimensionality of θ⃗ does not
have to be identical for two different models, and this prior inher-
ently penalizes models with too many parameters; see Sec. VI. The
complexity of each model M increases with the total number of
1’s in the binary notation because there will be two values (before
induction and after induction) to be inferred for each inducible
parameter.

The evidence for a model M is not calculated during the
MCMC sampling of the posterior distribution and has to be com-
puted separately. Computing the evidence is a sophisticated prob-
lem,39–42 and we adopted an Importance Sampler of the Harmonic
Mean Estimator (IS-HME) proposed by Robert and Wraith,43 which
resamples the posterior distribution estimated by the MCMC to
compute the evidence of each model; see Appendix. We first car-
ried out the MCMC calculations of posterior distributions for each
of the 64 possible types of two-allele, 3-state induction models for
the data sets described in Fig. 4 and Fig. S4 of the supplementary
material. We then used IS-HME to compute the evidence of each
model given the underlying data set. We compared the IS-HME evi-
dence to maximum likelihood metrics used for model selection, such
as the Bayesian Information Criterion (BIC) and Akaike Informa-
tion Criterion (AIC).15 Both BIC and AIC are approximations to the
Bayesian evidence and become equivalent in the limit of large sample
sizes; see Sec. VI.

Our results demonstrate that the IS-HME evidence P(h∣M)
of the ground truth model dominates over other models (≥95%)
when using Bayesian inference on the larger data set (N = 1000
cells sampled per time point); see Fig. 5. The BIC approxima-
tion also selected the ground-truth model (although incorrect mod-
els exhibited significant probabilities, e.g., >5%), whereas the AIC
failed to select the correct model. When the sample size dropped
to N = 100 cells per time point, even IS-HME evidence could
not reliably select the ground-truth model with this underpowered
data set.
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FIG. 5. Model selection using Bayesian
evidence. We plot the IS-HME, BIC, and
AIC evidence metrics of the top 10 mod-
els, ordered by decreasing the IS-HME
score. Model selection was performed on
data sampled at two densities (N = 100
and 1000 cells per time point at 4
different time points) for two different
ground-truth models (M = 0011000 and
M = 1100000). The parameter posterior
distributions of the top 10 models for the
ground-truth model (M = 0011000 and
M = 11000000) are presented in Figs.
S7–S10 of the supplementary material.

VI. DISCUSSION

Piecewise-deterministic Markov processes (PDMPs) have
become a useful, coarse-grained description of stochastic gene
dynamics, where the underlying discrete variable s(t) captures the
stochastic dynamics of gene states and the continuous variable λ(t)
captures the first moment of downstream gene products.44–50 The
key insight of our manuscript was proving that the time-dependent
mRNA distribution of any underlying s(t) is asymptotically a Pois-
son distribution with a rate λ(t) and that the time-dependent joint
probability distributions of discrete-state models are dynamic Pois-
son mixtures, whose mixing kernels are characterized by a PDMP.
This significantly expands upon a related framework, which only
considered the stationary distribution of discrete-state models.51

More generally, our analysis helps bridge a gap between mecha-
nistic discrete-state models and statistical models used in single
cell analysis. For example, Wang et al. recently proposed a sta-
tistical model of gene expression which postulated that mRNA
distributions are Poisson mixtures,52 and our work justifies this
assumption.

We used our insight to develop a hybrid method that calcu-
lates the time-dependent joint distribution more efficiently than
standard numerical methods that forward-integrate the Chemical

Master Equation (CME). The efficiency arises because our method
analytically solves the mRNA distribution and rapidly samples many
path s(t) of discrete-switching events using a kinetic Monte Carlo
algorithm. We benchmarked the hybrid method and showed that
it is O(103) more efficient than previous methods that directly
integrate the CME. Furthermore, the hybrid method runs effi-
ciently in parallel on a multicore processor than it does on a sin-
gle processor. The stiff CME integrators ran more slowly in par-
allel, and this sublinear scaling persisted for different integrators.
We suspect that the slowdown arises from the competing memory
demands of stiff CME integrators running on a multicore proces-
sor. While there is room to improve stiff integration and paral-
lelization, we note that current approaches are fundamentally lim-
ited compared to the hybrid method because they must integrate
the CME for a large number of mRNA states, e.g., 0–1000 mRNAs
per cell.

We incorporated the hybrid algorithm into BayFISH and were
able, for the first time, to use a full Bayesian framework for model
selection and uncertainty quantification of parameters from single-
cell smFISH data. We adopted the Bayesian framework for model
selection because it naturally quantifies “Occam’s factor”37,40 and,
thus, avoids overfitting. For example, the top models based on
Bayesian evidence are not the most complex models with the
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largest number of parameters that change upon induction, e.g.,
M = 11110110; see Fig. 5. The evidence resists overfitting because
when the dimensionality of parameter space is high, the value of
a uniform probability density of the prior parameter distribution
P(θ⃗∣M) in (5) is small due to normalization. Thus, Bayesian evi-
dence will favor a model that is complex enough to have a large
likelihood but not too complex to decrease the prior parameter
density.

We note that when the data sample size is large such that the
posterior distributions P(θ⃗∣h,M) can be approximated by a mul-
tivariate normal distribution, the logarithm of the evidence con-
verges asymptotically to the Schwarz index (commonly known as
the Bayesian Information Criterion, BIC).38,40 A similar asymptotic
criterion is the Akaike Information Criterion (AIC),53 which aims
to minimize the information loss measured by the Kullback–Leibler
divergence of the theoretically predicted joint probability distri-
bution from the sampled distribution. Our results show that the
posterior distribution estimated from modest data sets can deviate
from multivariate normal distributions (see Figs. S5 and S6 of the
supplementary material), which suggests that AIC and BIC can
underperform in model selection, relative to Bayesian evidence.
Here, we benchmarked the ability of Bayesian evidence, BIC and
AIC metrics, to select the correct model from synthetic data sets
generated by a ground-truth model and parameters. Figure 5 shows
that while the BIC (but not AIC) ranked models similar to Bayesian
evidence for the larger data set (N = 1000 cells per time point),
BIC requires an even larger sample size to confidently converge to
the correct model. This is an important issue because most biol-
ogy labs are ill-equipped to generate and analyze large smFISH
data sets, and their sample sizes are typically N = 100–1000 cells
per time point. Our work demonstrates why Bayesian inference
should be used for modestly sampled data sets. We show that
N = 100 cells per time point is sufficient for parameter inference and
uncertainty quantification if one has high confidence in the under-
lying model; see Fig. 4. However, if the goal of the smFISH exper-
iments is model selection, then these smaller data sets are under-
powered and the experimentalist needs to increase data sampling by
at least 10-fold; see Figs. 5(a) and 5(c). Here, we only considered
one round of experiments followed by Bayesian inference, but mul-
tiple cycles of data collection and analysis are becoming the norm.
Our framework quantifies certainty in both models and parameters
using Bayesian evidence and posterior distributions. Future work
can complete the data collection and analysis cycle by using the
evidence and posterior distributions to rationally dictate the next
round of experiments,54 i.e., different sampling times and densi-
ties, which are most informative for constraining models and/or
parameters.

In this article, we adopted a Markov chain Monte Carlo
algorithm with Metropolis-Hastings sampling (i.e., MCMC-MH)
to compute the posterior distributions of the model parame-
ters.15,16,36 However, there is room to further improve the speed of
Bayesian inference. First, Hamiltonian Monte Carlo (HMC) algo-
rithms are more efficient at sampling posterior distributions in
high dimensional parameter spaces because they use local sensi-
tivity, i.e., the partial derivatives of the likelihoods with respect to
the model parameters.55–57 Second, although PM-PDMSR is effi-
cient at generating sample paths in the space (s,λ), evaluating the

convolution to calculate the joint distribution (3) is the rate-limiting
step in the likelihood calculation. Thus, transforming the experi-
mental data h into the mixing kernel of the Poisson mixtures ρs(λ)
would accelerate Bayesian inference. Third, one could use low-order
moments of PM-PDMSR and experimental data to formulate a suf-
ficient statistics for likelihood-free approximate Bayesian computa-
tion,35 thus replacing the explicit calculation of the likelihood L.
Finally, our proposed PM-PDMSR provides an order-of-magnitudes
more efficient algorithm to evaluate the likelihoods compared to
CME calculations. In this article, we demonstrated that such an effi-
ciency gain makes expensive Bayesian calculations feasible. If one
has a large enough data set such that the posterior distribution is
in the Gaussian limit (e.g., N = 104 cells per time points), then
model selection could be achieved by the asymptotic BIC, which
only needs the maximum likelihood. In this regime, however, PM-
PDMSR is still O(103) more efficient and scalable at estimating the
maximum likelihood of complex models when compared to CME
methods.

SUPPLEMENTARY MATERIAL

See supplementary material figures for Figs. S1–S10. Figure
S1—Accuracy of PM-PDMSR: The likelihood calculated by using
PM-PDMSR (LPM-PDMSR) is plotted against the likelihood calculated
using CME integration (LCME). The summary error ⟨ε⟩ is com-
puted according to Eq. (A23) in the manuscript. Figure S2—Scaling
analysis of CME and PM-PDMSR runtimes: We parallelized both
CME and PM-PDMSR using Python’s multiprocessing mod-
ule. Simultaneously, {1, 2, 4, 8, 16, 32} cores are utilized to process
the same batch (1024) of synthetic data for each of the 2-, 3-, and
4-state models described in Appendix 2a. We report the average
time per thread to process each data set (panels A and C) and the
total time of all threads to process the entire batch (panels B and D).
PM-PDMSR described in Fig. 3 is parallel (total time ∼ 1/number
of cores utilized simultaneously), whereas the CME suffers from a
stiff scaling such that multiprocessing on a computer—even if it is
equipped with multiple CPUs—is not significant more efficient than
running a single thread. The machine we used for this benchmark-
ing is equipped with 32 cores and can process simultaneously 64
threads (two Intel© Xeon© CPU E5-2698 v3 at 2.30 GHz). Figure
S3—Joint probability distribution of the best-fit parameters: The
joint distribution of the best-fit parameters to synthetic data sets
with N = 100 (panel A) and 1000 (panel B) cells per time point,
M = 00110000. Figure S4—Parameter inference and uncertainty
quantification using the Bayesian posterior distribution: We bench-
marked the hybrid method by running Bayesian inference on a syn-
thetic data set sampled (N cells at 4 different time points) from a
known model M = 11000000 and “ground-truth” (GT) param-
eter set. Posterior distributions (panels A and B) and joint dis-
tribution of best-fit parameters (panels C and D) for N = 100
and 1000 cells per time point, respectively. Figure S5—Two-
dimensional projection of the posterior distribution (N = 1000): The
posterior parameter distribution projected into two-dimensional
parameter space for the ground truth model M = 00110000
and N = 1000 cells. Even with N = 1000, the posterior distri-
bution in some of the dimensions is still far from the Gaussian
asymptotic limit. Figure S6—Two-dimensional projection of the

J. Chem. Phys. 151, 024106 (2019); doi: 10.1063/1.5110503 151, 024106-8

© Author(s) 2019

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.5110503#suppl
https://doi.org/10.1063/1.5110503#suppl


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

posterior distribution (N = 100): The posterior parameter distri-
bution projected into two-dimensional parameter space for the
ground truth model M = 00110000 and N = 100 cells. The
posterior distribution is far from the Gaussian asymptotic limit.
Figure S7—Posteriors of top 10 models (M = 00110000 and
N = 100): The posterior parameter distribution of the top 10 per-
forming models in Fig. 5(a) inferred forN = 100 cell data set, ordered
by the evidence calculated from IS-HME (top: best-performing
model). The ground truth model M = 00110000 was ranked as
the second best explanatory model for this synthetic data set (see
Fig. S3A of the supplementary material). Figure S8—Posteriors of
top 10 models (M = 00110000 and N = 1000): The posterior
parameter distribution of the top 10 performing models in Fig. 5(b)
inferred for N = 1000 cell data set, ordered by the evidence cal-
culated from IS-HME (top: best-performing model). The ground
truth model M = 00110000 was ranked as the best explanatory
model for this synthetic data set (see Fig. S3B of the supplementary
material). Figure S9—Posteriors of top 10 models (M = 11000000
and N = 100): The posterior parameter distribution of the top
10 performing models in Fig. 5(c) inferred for N = 100 cell data
set, ordered by the evidence calculated from IS-HME (top: best-
performing model). The ground truth model M = 11000000 was
ranked as the best explanatory model for this synthetic data set
(see Fig. S4C of the supplementary material). Figure S10—Posteriors
of top 10 models (M = 11000000 and N = 1000): The posterior
parameter distribution of the top 10 performing models in Fig. 5(d)
inferred for N = 1000 cell data set, ordered by the evidence cal-
culated from IS-HME (top: best-performing model). The ground
truth model M = 11000000 was ranked as the best explanatory
model for this synthetic data set (see Fig. S4D of the supplementary
material).
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APPENDIX: THEORETICAL RESULTS, NUMERICAL
SIMULATIONS, AND METHODS OF STATISTICAL
INFERENCE
1. Poisson mixture with piecewise deterministic
Markov switching rates

We illustrate our central theoretical results using a single-allele
model. However, the results generalize to multiple-allele models
because the states of a multiple-allele model can be relabeled as
internal states of a single-allele model.

a. Central theoretical result I
Given a trajectory of genetic state s(t), the total number of

mRNA, NmRNA(t), is the sum of two variables N initial
mRNA(t) and

Nnew
mRNA(t). N initial

mRNA(t) describes the number of initial mRNAs that
remain at time t. The probability distribution of N initial

mRNA(t) is

a binomial mixture weighted by the initial mRNA distribution
Pm,0 ∶= P(N initial

mRNA(t = 0) = n),

P(N initial
mRNA(t) = n) =

∞

∑
m=0

Pm,0(mn )(1 − e
−δt)

m−n
e−nδtΘ(m − n +

1
2
).

(A1)

Here, Θ(⋅) is the Heaviside step function. Nnew
mRNA(t) describes the

number of new mRNAs that were synthesized after t > 0 and still
remain at time t. The probability distribution of Nnew

mRNA(t) is a
Poisson distribution with rate λ(t),

P(Nnew
mRNA(t) = m) =

λm(t)e−λ(t)
m!

, (A2)

where λ(t) satisfies equation λ̇(t) = βs(t) − δλ(t) with an initial
condition λ(0) = 0.

Proof We denote the probability of the total number of mRNA
NmRNA at time t by Pm(t). For a given trajectory of the genetic state
s(t), the temporal evolution satisfies the chemical master equation
(CME)

d
dt

Pm(t) = −(βs(t)+δm)Pm(t) + βs(t)Pm−1(t) + δ(m + 1)Pm+1(t),
(A3)

for all m ∈ Z≥0 and with a boundary condition P−1 = 0. We
prove central theoretical result I by using the probability generating
function defined by

G(z, t) ∶=
∞

∑
m=0

zmPm(t), (A4)

where Pm(t) = ∂m
z G(z, t)/m!. We first solve for G(z, t) over an inter-

val of time when s(t) is constant. We will then extend our analysis
to include piecewise intervals of time with different value of con-
stant s, similar to s(t) generated by a genetic state model. To begin,
we apply the operator ∂t to G(z, t) and use (A3) to obtain the partial
differential equation (PDE),

∂tG(z, t) = δ(1 − z)∂zG(z, t) + βs(z − 1)G(z, t). (A5)

This linear PDE can be solved using the method of characteristics,58

and the general solution is

G(z, t) = [
∞

∑
m=0
(1 + (z − 1)e−δt)

m
Pm,0] exp(βs

δ
(z − 1)(1 − e−δt)),

(A6)

where Pm,0 ∶= Pm,0(t = 0) is the initial mRNA distribution of the
system. For reasons that will become apparent below, we label the
initial-distribution-dependent part by Ginit(z, t) and the rest of the
terms by Gnew(z, t),

Ginit(z, t) =
∞

∑
m=0
(1 + (z − 1)e−δt)

m
Pm,0, (A7a)

Gnew(z, t) = exp(βs
δ
(z − 1)(1 − e−δt)). (A7b)

The above solution applies to a constant s(t). We now con-
sider a piecewise-constant trajectory for any genetic state s(t). To
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specify the discrete state and the switching events, we label s(t) by
the ordered pairs (ti, si) for i = 0, 1, . . ., N before an observation
time t. The gene starts with a state s0 at t0 ∶= 0, switches to s1 at t1,
etc., until the final switching event to sN at time tN . Our aim is to
compute the generating function G(z, t) after N switching events
(t ≥ tN).

The solution G(z, t, ∣t ≤ t1) is identical to (A6) with s = s0 before
the first switching event. At t = t1, the generating function is

G(z, t1) = Ginit(z, t1) × Gnew(z, t1). (A8)

Note that after t1 and before t2, the genetic state changes to s1 and
only the transcription rate in (A3) changes from βs0 to βs1 . The initial
condition of the generating function of this period (t1 ≤ t ≤ t2) is pre-
ciselyG(z, t1) in the above equation. Matching the “initial condition”
for G(z, t1), we arrive at

G(z, t∣t1 ≤ t ≤ t2) = Ginit(z, t) ⋅ exp{ z − 1
δ
[βs0 (1 − e−δt1)e−δ(t−t1)

+ βs1(1 − e−δ(t−t1))]}. (A9)

We iterate this procedure for each piecewise “episode” until t = tN ,

G(z, tN) = Ginit(z, tN)

× exp[ z − 1
δ

N
∑
n=1

βsn−1(1 − e−δ(tn−tn−1))e−δ(tN−tn)], (A10)

and for t ≥ tN ,

G(z, t∣t ≥ tN) = Ginit(z, t) × Gnew(z, t),
Gnew(z, t) ∶= exp[ψ({tn}Nn=1)],

ψ({tn}Nn=1) ∶=
z − 1
δ
[

N
∑
n=1

βsn−1(1 − e−δ(tn−tn−1))

× e−δ(t−tN) + βsN(1 − e−δ(t−tN))].

(A11)

The total solution G(z, t∣t ≥ tN) is factorized into two terms,
Ginit(z, t) and Gnew(z, t), for any N and t. The probability gener-
ating function of the sum of two independent random variables
is the product of the generating functions of the random vari-
ables. This hints that we can define two random variables, X1
and X2, which have generating functions Ginit(z, t) and Gnew(z, t),
respectively.

Our next task is to identify variables X1 and X2 and
their probability distributions. For X1, we expand Ginit(z, t) to
arrive at

Ginit(z, t) ≡
∞

∑
m=0

Pm,0

∞

∑
n=0
(mn )(1 − e

−δt)
m−n

zne−nδt . (A12)

Recall that the generating function of a Binomial(m, p) distribution
is

[1 − p + pz]m =
∞

∑
n=0
(mn )(1 − p)

m−nznpn. (A13)

The probability distribution of X1 is therefore identified to
be a binomial mixture with a temporally decaying parameter
p = exp(−δt) and a mixing kernel defined by the initial distri-
bution Pm,0. The physical meaning of X1(t) is the number of ini-
tial mRNA molecules that remain at time t, i.e., N initial

mRNA(t). These
mRNA molecules can only degrade with the decay rate δ. Each of
the mRNA decays independently and, at time t, there is a probabil-
ity exp(−δt) that a specific mRNA has not degraded. Importantly,
when t ≫ 1/δ, this distribution will be concentrated at m = 0 (see
Corollary I).

The total mRNA is N(t) = X1(t) + X2(t) = N initial
mRNA(t) + X2(t),

so X2(t) is identified to be the number of new mRNA molecules
that were synthesized after t = 0 but which have not degraded at
time t. We refer to this variable as Nnew

mRNA(t). The square bracket of
Gnew(z, t) in (A11) is the piecewise solution λ(t) of the following
ODE for a given genetic trajectory s(t):

d
dt
λ(t) = βs(t) − δλ(t), and λ(0) = 0. (A14)

We now expand Gnew(z, t),

Gnew(z, t) = exp[(z − 1)λ(t)] = e−λ(t)
∞

∑
m=0

zmλm(t)
m!

=
∞

∑
m=0

zm
e−λ(t)λm(t)

m!
=
∞

∑
m=0

zmqm(λ(t)), (A15)

where qm(λ(t)) is the probability density function of a Poisson
distribution with rate λ(t), as in (A2). ◽

Corollary I. The transient time scale for the initial distribution
is O(1/δ). When t ≫ O(1/δ), the mRNA distribution converges to
a Poisson with a dynamic rate parameter λ(t).

Proof Physically, the time scale of degradation of each initially
populated mRNA is 1/δ, so for a time scale which is much longer
than this, the initial distribution will be fully degraded. Mathemati-
cally, the probability that the initial mRNA molecules have not fully
decayed is

P(N initial
mRNA(t) > 0) = 1 − P(N initial

mRNA(t) = 0)1 −
∞

∑
m=1

Pm,0(1 − e−δt)
m

.

(A16)

In the asymptotic limit t≫ 1/δ, exp(−δt)≪ 1 so

P(N initial
mRNA(t) > 0) = 1 −

∞

∑
m=0

Pm,0(1 −me−δt)[1 + O(e−δt)]

= ⟨N initial
mRNA(0)⟩e−δt[1 + O(e−δt)]. (A17)

Here, ⟨N initial
mRNA(0)⟩ is the first moment of the initial

distribution. P(N initial
mRNA(t) > 0) decays exponentially fast, and

we can bind this probability to be smaller than ε when
t > δ−1 log(⟨N initial

mRNA(0)⟩/ε). ◽

b. Central theoretical result II
At long times t ≫ 1/δ, the mRNA distribution asymptoti-

cally converges to a Poisson mixture regardless of the initial mRNA

J. Chem. Phys. 151, 024106 (2019); doi: 10.1063/1.5110503 151, 024106-10

© Author(s) 2019

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

distribution and genetic switching trajectory s(t),

P(NmRNA(t) = m, s(t) = i) = ∫
∞

0
ρi(λ, t)λ

me−λ

m!
dλ, (A18)

where the joint probability density ρi(λ, t) satisfies the forward
Kolmogorov equation

∂tρi = −∂λ[(βi − δλ)ρi] +∑
j≠i
(κjiρj − κijρi). (A19)

The initial condition for ρi(λ, t = 0) is defined by

ρi(λ, t = 0) ∶= δ(λ)P(s(t = 0) = i), (A20)

where δ(λ) is the Dirac delta distribution at λ = 0.

Proof The solution of (A14) subject to random switching
events of s(t) is a random process. Formally, λ(t) and the dis-
crete switching states s(t) jointly comprise a piecewise deterministic
Markov process (PDMP).59–61 The forward Kolmogorov equation

describing the temporal evolution of the joint probability distribu-
tion is (A19).47,49 Therefore,

P(NmRNA(t) = m, s(t) = i)

= ∫
∞

0
P(NmRNA(t) = m∣λ(t) = ℓ, s(t) = i)ρi(ℓ, t)dℓ. (A21)

We then use central theoretical result I and corollary I to show
that P(NmRNA(t) = m∣λ(t) = ℓ, s(t) = i) = ℓme−ℓ/m! asymptotically
when t≫ 1/δ to complete the proof. ◽

c. Efficient numerical method for sampling ρi(λ, t)
Because λ is continuous, solving the forward Kolmogorov

equation (A19) is as complex as solving the full CME, both
of which are infinite dimensional systems. Instead, we used
an efficient kinetic Monte Carlo simulation44,49 to generate a
large number of sample paths to estimate the asymptotic joint
distribution P(NmRNA(t) = m∣λ(t) = ℓ, s(t) = i) when t ≫ 1/δ
using (A18). The pseudocode of this algorithm is shown in
Algorithm 1.

ALGORITHM 1. An efficient kinetic Monte Carlo algorithm which generates exact sample paths of the piecewise deterministic Markov process [λ(t), s(t)].

Require: Initial state λ(t = 0) = 0 and s(t) = s0. Kinetic rate κij (switching rates from discrete state i→j), βk (transcription rates),
and δ (degradation rate). N discrete observation times T ∶= {tℓ}Nℓ=1.

Ensure: An exact sample path of the random process (λ(t), s(t)) at N discrete times T.
1: t ← 0, λ← 0, s← s0 ⊳ Initiate system time and state
2: for tobservation in T do
3: while t < tobservation do
4: κ←∑iκsi ⊳ Compute the total propensity of switching
5: u← Unif(0, 1)
6: ∆t ← −κ−1 log(u) ⊳ Sample the random advanced time
7: if t + ∆t < tobservation then ⊳ A switching event occurs before tobservation

8: c0 ← 0, ci ← ∑i
j−1 κsj for i ∈ {1, 2, . . . S} ⊳ Sample the switching events

9: k← 0
10: w ← cS ×Unif(0, 1)
11: while w > κck do
12: k← k + 1
13: end while
14: λ← βs/δ + (λ − βs/δ) exp(−δ∆t), s← k ⊳ Update system state
15: else ⊳ No switching event occurs before tobservation

16: ∆t ← tobservation − t
17: λ← βs/δ + (λ − βs/δ) exp(−δ∆t) ⊳ Update system state
18: end if
19: t ← t + ∆t ⊳ Update system time
20: end while
21: Output the system state (λ, s) at the observation time tobservation

22: end for
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d. Computing the joint distribution
from sample paths

To compute the time-dependent joint distribution of genetic
states and mRNAs, we generated Ns sample paths {λk(t), sk(t)}Ns

k=1
with Algorithm 1. We then used (A18) to estimate ρi(λ),

P̂(NmRNA(t) = m, s(t) = i) = 1
Ns

Ns

∑
k=1

δi,sk(t)
λmk (t)e−λk(t)

m!
, (A22)

where δi ,j is the Kronecker delta function which is equal to 1 if i = j
and 0 otherwise. We determined that Ns ≡ 105 is a sufficient number
of sample paths to estimate the same joint distribution obtained by
forward-integrating the CME. We refer to our method as the Pois-
son Mixture with a Piecewise Deterministic Markov Switching Rate
(PM-PDMSR).

The goal was to compute the joint distribution of genetic states
and mRNAs before and after induction. Similar to the situation in
many experimental systems,62,63 the joint distribution is at station-
arity before induction. Upon induction, we assume that some model
parameters are changed, which results in the time-evolution of
the joint probability distribution P(NmRNA(t) = m, s(t) = i) toward
a new stationary state. We label the kinetic rates (κij and βk)
before and after induction by U (Unstimulated) and S (Stimu-
lated). To use PM-PDMSR to estimate the stationary distribution
before induction, we first solved for the marginal stationary distri-
bution of the genetic state p∗i , where 0 = ∑j(κUij − κUji )p∗i , i = 1,
2, . . ., S for an S-state model. We initiated Nsp∗i sample paths in
PM-PDMSR at λ = βi/δ and state s = i and ran for t = 10/δ so
that the Poisson mixture relaxes to stationarity. Upon induction at
t = 10/δ, we changed model parameters κUij → κSij and βUk → βSk for
i, j, k ∈ {1, 2, . . . S} and continued simulating the temporal evolu-
tion of the joint probability distribution after induction using PM-
PDMSR. This is valid because our previous proofs and arguments
for (A18) apply even when the kinetic rate constants change upon
induction.

2. Testing the speed and accuracy of the simulators
We benchmarked the efficiency of PM-PDMSR vs the

“gold-standard” simulator, i.e., forward-integration of a truncated
CME.22,23 Both simulators were embedded into BayFISH and eval-
uated on their ability to perform a single Monte Carlo step,
i.e., simulate the time-dependent joint distribution of a model
and its parameters, and to calculate the likelihood of a syn-
thetic data set generated by the same model and parameters.
This single-step benchmarking was performed for 1024 diverse
models and parameters across two-allele, discrete-state models
of increasing complexity (2-state, 3-state, and 4-state induction
models).

a. Generating diverse models, parameters,
and synthetic data sets

Each model had a randomly chosen subset of parameters that
were one value (κUij ,βUk ) before induction from t = 0 to t = 20 and
with different parameters (κSij,βSk) after induction from t = 20 to
t = 22. The genetic switching rates of parameters κij ranged between
10−2 and 102, and the transcription rates βk range between 0 and 200.

For each instance of a model, we randomly generated the switch-
ing rate constants in the logarithmic space (log10 κij ∼ Unif(−2, 2)
if |i − j| = 1) and transcription rate constants in linear space
(βk ∼ Unif(0, 200)). Note that not all parameters were random or
changed upon induction: We fixed β0 = 0 and the mRNA degrada-
tion rate δ = 1, and we constrained βi ≤ βj if i < j. For the purpose
of benchmarking algorithm speed and efficiency, we considered a
complex induction model M for each discrete model class. The cor-
responding induction model is M = 11010 (2-state), M = 11110110
(3-state), and M = 11111101110 (4-state).

The synthetic data of each model with its parameters were
generated by running 1000 independent trajectories of standard
continuous-time Markov chain simulation. We collected the statis-
tics of the trajectories at four discrete times tℓ = 20, 20.5, 21, and 22
(N = 1000 cells per time point). The measured allele activity state
TS was marginalized: we define TS = 1 when its internal state is
s > 0. The synthetic data set therefore consists of a histogram at dis-
crete times tℓ, h(m,TS, tℓ), which is the number of trajectories with
m mRNAs and TS active transcription sites (which can be 0, 1, or 2
for a two-allele system) at time tℓ. For each model class (2-, 3-, and
4-state models), we repeated the process 1024 times to test diverse
parameter combinations.

b. CME simulators
Given an induction model and associated parameters, we for-

ward propagated the CME using the same parameter values used
to create the synthetic data sets in Sec. IV. We truncated the num-
ber of mRNA at 500 (i.e., there is no transcription event once
the system reaches NmRNA = 500) with an absolute error toler-
ance of 10−5. The truncation number M was motivated by data
sets in animals, showing that mRNA populations can be as large
as O(500).24–27 We tested different software platforms, including
Matlab, Python (SciPy), and a research software ACME,23 to forward
integrate the same stiff CME. Python’s stiff integrator (using back-
ward differentiation formula, BDF) outperformed other integrators
and software platforms. Thus, Python (with SciPy) was chosen to
be the platform for direct integration of the CME in the following
analysis.

c. Comparison of the PM-PDMSR and CME simulators
We incorporated these PM-PDMSR and CME simulators into

modified BayFISH software to evaluate their speed and accuracy for
one Monte Carlo step. Both algorithms were implemented in c++
and compiled using Intel’s icc compiler. All PM-PDMSR and CME
simulations were carried out on the same machine with Intel©
Xeon© CPU E5-2695 v3 at 2.30 GHz. We computed the joint distri-
butions of the models and parameter sets used to create the synthetic
data sets. These joint distributions and corresponding synthetic data
(h(m,TS, tℓ)) were then used to compute the likelihoodL of the gen-
erated data h(m,nTS, tℓ) using (1). The execution time of a Monte
Carlo step for each simulator for each model class of the generated
parameter set was recorded and presented in Fig. 3. We also com-
pared the accuracy of the calculated likelihoods of each synthetic
data set. We compared the average error of the PM-PDMSR like-
lihood relative to the more accurate CME likelihood. We define the
average error by
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⟨ε⟩ ∶= ⟨∣LPM-PDMRS −LCME

LCME
∣⟩. (A23)

The relative accuracy of CME vs PM-PDMSR is presented in the
supplementary material.

To test the parallelization of each simulator, we simultane-
ously ran 32 simulations on a 32-core machine (two Intel© Xeon©
CPU E5-2698 v3 at 2.30 GHz) and recorded the execution time; see
Fig. 3. PM-PDMSR on 32 parallel threads takes the same amount of
time as running a single thread. By contrast, the CME on 32 par-
allel threads takes 32 times longer than a single thread; see Fig. S2
of the supplementary material. This suboptimal scaling holds true
on the multiple machines that we tested, and our algorithms lever-
age Python’s subprocesses functionality (Pool). We suspect that the
slowdown in the CME is due to the high memory demand of the
BDF integrator. Results of a more detailed scaling analysis with dif-
ferent numbers of parallel threads are presented in Fig. S2 of the
supplementary material.

3. Bayesian statistical inference for model
parameters and structure
a. Synthetic data

We synthesized data sets to test if Bayesian statistical inference
could identify the ground truth (of the model parameter values and
the model structure.) We chose two 3-state ground-truth models for
data synthesis: (1) an ON-rate induction model, κU01 = 1 → κS01 = 12,
κU12 = 0.25 → κS12 = 20, κU10 = κS10 = 3, κU21 = κS21 = 10, β0 = 0, β1 = 25,
and β2 = 300; and (2) an OFF-rate induction model, κU01 = κS01 = 1,
κU12 = κS12 = 1, κU10 = 10 → κS10 = 0.1, κU21 = 10 → κS21 = 0.1,
β0 = 0, β1 = 100, and β2 = 200. The protein degradation rate con-
stant is δ = 1 by choosing the time scale of the model. We relaxed
the models from t = 0 to t = 20 and sampled the system at t = 20,
20.5, 21, and 22. The observation time scale was motivated by our
recent experimental procedure.15,16 For each model, we synthesized
by sampling 100 and 1000 synthetic data at each of the discrete
sampled times from the joint probability distribution. The data con-
sist of the sampled and discrete number of mRNA and whether
the gene is active. Again, the genetic space s is marginalized that
we defined s > 0 is an active allele (TS = 1) and otherwise inactive
(TS = 0).

b. Bayesian analysis
The model class we considered for Bayesian inference is the

set of two-allele, 3-state models with βU0 = βS0 = 0. The rest of the
parameters are free parameters, but depending on the model struc-
ture, some of the perturbed (S) parameters may be constrained to
the unperturbed (U) value. Combinatorially, there are in total 26

= 64 models we considered, as there are six biophysical parameters
θ⃗ ∶= (κ01, κ12, κ21, κ10,β1,β2).

We adopted a plain Markov chain Monte Carlo algorithm to
sample the posterior distribution P(θ⃗∣h,M), using the Metropolis-
Hastings sampler.64–66 Specifically, we perform random jumps in
the logarithm space of the parameters (log κij and log βk). The
jump kernel was chosen to be uniformly distributed Unif(−D,D),
where the metaparameter D (diffusivity) globally regulates how
wide the isotropic diffusion kernel is. For each model structure,
we adjusted the metaparameter D such that the acceptance rate

of the Metropolis-Hastings sampler was between 0.2 and 0.3.67

We assumed that our prior is uniform in the logarithm space
log θi.

Before running the MCMC samplers, we randomized 400
initial guesses of the model parameters and forward evolved the
MCMC for 5 × 104 iterations each chain. Most of the chains con-
verged to a unique parameter region, and the likelihood value in
this region was significantly higher than the few chains trapped in
(presumably) local maxima. We independently initiated 32 MCMC
chains with different random initial speeds from the parameter
values that maximized the likelihood in the previous test runs.
We collected a total length (the sum of the length of all 32
chains, >107) to accurately approximate the posterior distribution
P(θ⃗∣h,M).

c. Computing the evidence P(h∣M)
from the posterior distributions P(θ⃗∣h,M)

As described in Ref. 43, the evidence P(h∣M) is computed by
the algebraic identity

P(h∣M) =
⎡⎢⎢⎢⎢⎣
∫

φ(θ⃗′)P(θ⃗′∣h,M)
P(h∣θ⃗′,M)P(θ⃗′∣M)

dθ⃗′
⎤⎥⎥⎥⎥⎦

−1

, (A24)

with an importance sampler φ(θ⃗′) satisfying the normalization
condition

∫ φ(θ⃗′)dθ⃗′ = 1. (A25)

In this work, the posterior distributions were exclusively uni-
modal. Therefore, we chose the importance sampler to be propor-
tional to an indicator function on an ellipsoid located at the high
posterior density region. We first ranked the posterior chain by
their likelihood and selected the top 20% parameter sets to con-
struct the importance sampler. We performed a principle com-
ponent analysis on the selected samples to compute the mean
θ̄k, variance σ2

k, and eigenvector êk, k = 1, 2, . . ., 6, in the six-
dimensional parameter space. We used the eigenvalues and eigen-
vectors to construct an ellipsoid centering at the mean and with
the axis length proportional to the eigenvalues along with the
eigenvectors,

E ∶=
⎧⎪⎪⎨⎪⎪⎩
θ⃗
RRRRRRRRRRRR

6
∑
k,j=1

(Rk,jθj − Rk,jθ̄j)
2

ασ2
k

< 1
⎫⎪⎪⎬⎪⎪⎭

, (A26)

where Ri,j ∶= (êi)j is the linear transformation onto the eigenbasis.
We tuned the metaparameter α such that there were precisely 20%
of the points of the posterior chains inside the ellipsoid E. These
samples were then used to compute the evidence.

One must also specify the prior distribution P(θ⃗∣M) to com-
pute the evidence. For simplicity, we imposed a uniform prior
in the logarithm space of the parameters, bound by (10−16, 104).
P(θ⃗∣M)is 1/V, where V is the bounded volume in the param-
eter space. Let the posterior chains to be {θ⃗k}

NP

k=1, where NP is
the total number of samples in the posterior chains. Then, the
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marginalized likelihood is estimated computed by the Monte Carlo
sampler,

P̂(h∣M) =
⎡⎢⎢⎢⎢⎣

NP

∑
k=1

1
P̂(h∣θ⃗k,M)

1θ⃗k∈E

⎤⎥⎥⎥⎥⎦
, (A27)

where 1θ⃗k∈E is the characteristic function which is equal to 1 if θ⃗k
is in the ellipsoid E and 0 otherwise. In Fig. 5, we presented a
normalized probability among all the 64 linear 3-state models we
considered,

P̄(h∣Mi) ∶=
P̂(h∣Mi)

∑64
j=1 P̂(h∣Mj)

, (A28)

which is reported in Fig. 5.

d. Estimating the evidence P(h∣M)
from the Bayesian information criterion
and Akaike information criterion

The Schwarz index is an asymptotic result of the Bayesian evi-
dence P(h∣M) when the sample size is large.68 Given a model Mi,
the Bayesian Information Criterion (BIC) is defined to be twice of
the its Schwarz index,

BIC(Mi) ∶= −2Lmax
i + mi logN, (A29)

where Lmax
i and mi are the maximum likelihood and the number of

free parameters of model Mi, respectively, and N is the sample size
(the number of data). Thus, to estimate the normalized probability
P̄ using BIC, we use

P̄BIC(h∣Mi) ∶=
exp[− 1

2 BIC(Mi)]
∑64

j=1 exp[− 1
2 BIC(Mj)]

. (A30)

We remark that the calculation of BIC only involves estimating
the maximum likelihood Lmax

i of each model Mi and not the full
posterior distribution P(θ⃗∣Mi).

Akaike Information Criterion (AIC) is another commonly
adopted matrix information criterion. The motivation of AIC is
to minimize the information loss, measured by the Kullback–
Leibler divergence (KL) of the prediction from the data. It is
derived53 as

AIC(Mi) ∶= −2Lmax
i + 2mi + 2

mi + m2
i

N −mi − 1
. (A31)

Thus, the (normalized) evidence calculated by the AIC is

P̄AIC(h∣Mi) ∶=
exp[− 1

2 AIC(Mi)]
∑64

j=1 exp[− 1
2 AIC(Mj)]

. (A32)

We remark that the negative logarithm of the likelihood func-
tion (1) converges to N × KL(h(ω)/N∣∣P(ω∣Mi, θ⃗)) only when
N ≫ 1 such that the multinomial coefficient Mℓ can be
expanded by the Stirling approximation. In most biological cases,
the sample size is far from this regime, and the Kullback–
Leibler divergence is a poor choice to approximate the likelihood
function (1).
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