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Mendelian randomization studies use genotypes as instrumental variables to test for and estimate the causal effects
of modifiable risk factors on outcomes. Two-stage residual inclusion (TSRI) estimators have been used when
researchers are willing to make parametric assumptions. However, researchers are currently reporting uncorrected or
heteroscedasticity-robust standard errors for these estimates.We compared several different forms of the standard error
for linear and logistic TSRI estimates in simulations and in real-data examples. Among others, we consider standard
errors modified from the approach of Newey (1987), Terza (2016), and bootstrapping. In our simulations Newey, Terza,
bootstrap, and corrected 2-stage least squares (in the linear case) standard errors gave the best results in terms of cover-
age and type I error. In the real-data examples, theNewey standard errors were 0.5%and 2% larger than the unadjusted
standard errors for the linear and logistic TSRI estimators, respectively. We show that TSRI estimators with modified
standard errors have correct type I error under the null. Researchers should report TSRI estimates with modified stan-
dard errors instead of reporting unadjusted or heteroscedasticity-robust standard errors.

causal inference; instrumental variables; Mendelian randomization; 2-stage predictor substitution estimators;
2-stage residual inclusion estimators

Abbreviations: BMI, body mass index; BS1, bootstrap, second stage only; BS2, bootstrap, both stages; LSMM, logistic structural
mean model; SBP, systolic blood pressure; TSLS, 2-stage least squares; TSPS, 2-stage predictor substitution; TSRI, 2-stage
residual inclusion.

Mendelian randomization studies aim to use genotypes
as instrumental variables to test and estimate the causal effect of
modifiable exposures on disease-related outcomes (1–4). A vari-
ety of instrumental variable estimators have been described and
evaluated for use with data in a single study (5–12). A class of
semiparametric estimators known as structural mean models
have been found to be most robust to distributional assump-
tions for binary outcomes but can have problems with identi-
fication (7, 13–16). Therefore, researchersmaywish to fit models
that make more distributional assumptions.

One frequently used instrumental variable estimator is 2-stage
least squares (TSLS). This is a series of 2 linear models and is
most commonly applied when both the exposure and outcome
variables are continuous. The first stage is a linear regression
of the exposure on the instrumental variables. The second stage
is a linear regression of the outcome on the predicted values of
the exposure from the first stage. TSLS is consistent for the

causal effect when all relationships are linear and there are
no interactions between the instrument and unmeasured confoun-
ders and between the exposure and unmeasured confounders.
Palmer et al. (17) investigated 2 instrumental variable estimators
of the causal odds ratio for a binary outcome: the “standard”
and “adjusted” logistic instrumental variable estimators. The
standard logistic instrumental variable estimator replaced the lin-
ear regression in the second stage of TSLS with a logistic regres-
sion. Such estimators have been referred to as 2-stage predictor
substitution (TSPS) estimators, and arewritten as follows (18):

= α + α + ε ε ∼ ( σ ) ( )X Z NStage 1: , 0, 10 1 1 1 1
2

( [ ]) = β + β ( )h E Y XStage 2: , 20 1

where X represents the exposure variable, Y the outcome var-
iable, Z the instrumental variable, ()h the link function for
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the appropriate generalized linear model (19), and ε1 the stage-1
residuals with varianceσ1

2.
The adjusted logistic instrumental variable estimator included

the first-stage residuals alongside the predicted values of the ex-
posure in the second-stage logistic regression (17). In the econo-
metrics literature it is more common to fit the second stage of
such estimators using the original values of the exposure (9, 18).
When the residuals are included as an additive covariate, these
estimators have been referred to as 2-stage residual inclusion
(TSRI) estimators (18, 20, 21). If a function of the residuals is
included in the second-stage model, these estimators have been
referred to as control-function estimators (22). Therefore, the
second stage of TSRI estimators considered here can be writ-
ten as follows:

( [ ]) = β + β + β ε ( )h E Y XStage 2: . 30 1 2 1

In this paper we use “linear/logistic TSRI estimator” to
refer to the estimator using linear/logistic regression at the
second stage (with a linear first stage).

A recent review ofMendelian randomization studies showed
that TSRI estimators are commonly used but are typically being
reported with unadjusted or heteroscedasticity-robust standard
errors (23–34). One indication that this may not be appropriate
is that when TSLS is estimated by fitting the 2 stages sequen-
tially, the standard errors of the second-stage parameter esti-
mates are not correct (Web Appendix 1, Web Figures 1–3,
available at https://academic.oup.com/aje) (35). Interestingly, for
the linear TSRI estimator, the standard error of the coefficient on
the first-stage residuals is correct (36). For a binary outcome,
Newey (37) developed a correction to the standard errors of
the second-stage intercept and causal effect of the probit TSRI
estimator. More recently Terza (38) has suggested an alterna-
tive correction. The aim of this paper is to investigate these
corrections adapted to the linear and logistic TSRI estimators.

This paper proceeds by describing the probit TSRI estimator
and Newey’s correction for its standard errors. We then perform
2 simulation studies using binary and continuous outcomes to
investigate the performance of the corrected standard errors. We
then apply these corrections to a real-data example investigating
the causal effect of body mass index (BMI) on systolic blood
pressure (SBP) and on a binary indicator of diabetes status.

METHODS

Background to TSRI estimators

Two reviews of TSRI estimators and their application have
been conducted (18, 22). The rationale for TSRI estimators is
that the first-stage residuals capture some of the variability in
the confounders. Therefore, the first-stage residuals can be used
to correct for confounding between the exposure and the out-
come, known as endogeneity in econometrics (39–43). It is well
known that the linear TSRI estimator produces an estimate of
the causal effect equivalent to that from TSLS (36, 44). Haus-
man (45) showed that the test of the coefficient of the first-stage
residuals is a test for the presence of unmeasured confounding
(46, 47). That it is necessary to correct the standard errors of the
second-stage estimate of the causal effect of TSRI estimators

has been referred to as the problem of using “generated regres-
sors” in the second-stage model (36, 48, 49).

For binary outcomes, the use of probit TSRI estimators
has been discussed (36, 50–52). There are several estimation
methods available, including maximum likelihood and sequen-
tial 2-stage methods. For 2-stage estimation, a correction to the
second-stage standard errors was proposed by Newey (37) and
is implemented in the ivprobit and ivtobit commands in Stata
(StataCorp LP, College Station, Texas) (53).

It is also important to distinguish between different causal ef-
fects. We refer to a conditional causal effect as the value of the
causal effect conditioning on the unmeasured confounding and to
a marginal effect as the causal effect averaged over some propor-
tion of the unmeasured confounding. The maximum-likelihood
probit TSRI estimator estimates the conditional effect, whereas
the 2-stage probit and logistic TSRI estimators estimatemarginal
effects (12, 17, 18, 21, 53).

Probit TSRI estimator and Newey standard errors

Two-stage estimation of the probit TSRI estimator follows
equations 1 and 3, where the inverse normal cumulative distri-
bution function is used as the link function. If there are mea-
sured confounders, as with TSLS, these can be included as

covariates in both stages of estimation. Letting
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥



β =
β

β
1

0

denote

the vector of estimates of the causal effect and intercept yielded
by the probit TSRI estimator, and defining the matrix D as
⎡
⎣⎢

⎤
⎦⎥



α
α

0
1

1

0
(37, 53),

   β = ( ′Ω ) ′Ω γ ( )− − −
D D D 4

1 1 1

The variance of the probit TSRI estimator is as follows,
where γ ,Ω and its components are defined below (37):

  (β) = ( ′Ω ) ( )− −D Dvar 5
1 1

 ΣΩ = + ( )−Jwhere . 61
1

2

To obtain D , γ , and Ω, we use the following algorithm as
described by Newey (37):

1. Perform the first-stage linear regression of X on Z to compile
D and ε1̂.

2. Perform a probit regression of Y on Z and ε1̂, from which:
• γ is the coefficients of Z and the estimated intercept.
• −J1

1 is the variance-covariancematrix of these coefficients.
• λ is denoted as the coefficient on ε1̂.

3. Fit the second stage of the probit TSRI estimator by a
probit regression of Y on X and ε1̂.
• The coefficient on X is β1, the estimate of the causal
effect of interest.

4. Generate a new variable equal to (λ − β )X 1 .
• Perform a linear regression of this new variable on Z
(also including a constant).
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• The covariance matrix from this model is the estimate
of the second term in the expression forΩ (i.e., Σ2).

• Add this covariance matrix to −J1
1, givingΩ.

5. Calculate β and (β)var . The standard errors of β are sim-
ply the square root of the diagonal of (β)var .

The rationale for this approach is that we obtain a standard
error for our TSRI estimate that incorporates both the vari-
ability explained in the estimate by the instrumental variable
Z and the predicted first-stage residuals ε1̂.

To apply these standard errors to other TSRI estimators, we
propose to replace the probit regressions in steps 2 and 3 with the
second-stage models used by the specific TSRI estimator. Exam-
ple code for Stata andR (R Foundation for Statistical Computing,
Vienna, Austria) is provided inWebAppendix 2 (54, 55).

Terza (38) details an alternative algorithm for obtaining the
standard error of TSRI estimators and provides example Stata
code. We provide equivalent R code in Web Appendix 2. Terza
uses heteroscedasticity-robust standard errors in both stages of
the algorithm, which we refer to as Terza (SE) 1 (38). We addi-
tionally investigated using nonrobust standard errors, which we
refer to as Terza (SE) 2. By following the code in Web Appen-
dix 2, we can see that Terza’s corrected variance-covariance

matrix is the unadjusted TSRI covariance matrix plus some
function of the first-stage covariance matrix.

We also investigated 2 types of nonparametric bootstrap
standard errors. The first bootstraps only the second stage,
which we refer to as BS1, and the second, which we refer to
as BS2, bootstraps both the first and second stages. BS2 is
implemented in the ivprobit and ivtobit Stata commands. For
our binary outcome models we additionally investigated the
probit TSRI estimator, whose estimates we converted to the
odds ratio scale by dividing the estimate on the linear predic-
tor scale by 0.6071 and taking the exponential (10). These
probit estimates use Newey standard errors.

For all estimators, we calculated asymptotic normal 95%
confidence interval limits as: estimate± 1.96 × standard error.

SIMULATIONS

Logistic model simulations

Data were simulated using the basic model proposed in
Palmer et al. (17) but modifying the parameter values.
Specifically the data-generationmodelwas as follows,where index
i represents an observation and ( ) = ( ( − ))p p plogit log / 1i i i :
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Figure 1. Coverage of the logistic 2-stage residual inclusion (TSRI) estimators for n = 1,000 with respect to the conditional parameter,β = 11 . The
panels correspond to α2 being set to the following values: 0 (A), 2 (B), 4 (C), 6 (D), and 8 (E). The labels Newey, Terza 1 and Terza 2, and BS2 refer
to the TSRI estimator with those standard errors. BS2, bootstrapping, both stages.
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Data were simulated for sample sizes of 1,000 and 5,000,
and each scenario of values of α2 and β2, representing the ef-
fects of the unobserved confounding, was repeated 500 times.
A number of different estimators were fitted to the data: the
direct logistic regression of Y on X, the logistic TSPS, and the
logistic TSRI with unadjusted, robust, Newey, Terza 1 and Ter-
za 2, TSPS, and BS1 and BS2 standard errors. We also investi-
gated the logistic structural mean model (LSMM) estimated via
the generalized method of moments (GMM) (56) and the re-
scaled probit estimator with Newey standard errors.

In these simulations, with sample size 1,000 for the first-
stage model, the average F statistics were 422, 85, 25, 12, and
7, and the average R2 statistics were 0.30, 0.08, 0.02, 0.01, and
0.007 when α2 was equal to 0, 2, 4, 6, and 8 respectively.With

a sample size of 5,000, the average F statistics increased to 2,
104, 421, 125, 57, and 33, and the average R2 statistics were
approximately the same.

Type I error was assessed by generating the data with β1
set to 0 (which corresponds to the null hypothesis of no
causal effect) and counting the percentage of simulations for
which the particular estimator gave a P value less than 0.05.
Coverage was defined as a 95% confidence interval includ-
ing the value of either the conditional or marginal value of
β1. Marginal values of β1 for the estimators were obtained
using the adjustments detailed in the Appendix of Palmer
et al. (17) (andWeb Appendix 3, Web Figure 4). Simulations
were performed in Stata, version 14.1 (StataCorp LP) (54).

Linearmodel simulations

For a continuous outcome, the simulations were modified
as follows:

∼ β + β + β + ε ε ∼ ( )
α = α = α = { }

β = β = β = [ ] ( )

y x u N, 0, 1

0, 1, 0,2,4,6,8 ,
0, 1, 0, 3 8

i i i i i0 1 2 2 2
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Figure 2. Coverage of the logistic 2-stage residual inclusion (TSRI) estimators for n = 1,000 with respect to the marginal parameter. The panels
correspond to α2 being set to the following values: 0 (A), 2 (B), 4 (C), 6 (D), and 8 (E). The labels Newey, Terza 1 and Terza 2, and BS2 refer to the
TSRI estimator with those standard errors. BS2, bootstrapping, both stages.
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For a linear second-stage model the conditional and mar-
ginal parameter values are the same. Type I error was assessed
by setting β1 to 0. A number of linear estimators were fitted to
the data: the direct linear regression of Y on X, TSLS with
adjusted and unadjusted (i.e., TSPS) standard errors, and the
linear TSRI estimator with unadjusted, robust, Newey, Terza
1 and Terza 2, TSLS, and BS1 and BS2 standard errors.

RESULTS

Logistic model simulations

Figure 1 and Web Figure 5 show that, with respect to the
conditional parameter (β = 11 ), all estimators have low coverage
at some point in the simulations. This is mainly because of the
bias in the parameter estimates. The conditional coverage of sev-
eral estimators (which were not expected to performwell because
their standard errors do not account for the uncertainty in both
stages of estimation (TSRI with unadjusted, robust, and BS1 stan-
dard errors)) was around the 95% level for some larger values
of α2. This occurred because their standard errors increased in
proportion with their bias. The conditional coverage of TSRI
using the Newey, Terza 1 and 2, and BS2 standard errors was

the closest to 95% for the greatest proportion of simulated
scenarios.

Figure 2 andWeb Figure 6 show the coverage with respect
to the marginal parameter values estimated by the TSRI esti-
mator (the true marginal values are given in Figure 2 of Palmer
et al. (17) and Web Appendix 3). The logistic TSPS estimator
with unadjusted and robust standard errors had coverage values
well below the target value of 95%. The coverage of the logis-
tic TSRI estimator with unadjusted, robust, and BS1 standard
errors was lower than the expected 95%. The coverage of the
logistic TSRI estimator with TSPS standard errors was also too
low and decreased as the confounding increased. However, the
coverage of the logistic TSRI estimator using Newey, Terza 1
and 2, and BS2 standard errors, and the coverage of LSMM
were approximately correct with values around 95%.

Figure 3 and Web Figure 7 show that the type I error of the
logistic TSRI estimator with unadjusted, robust, and BS1 stan-
dard errors was too high, with values greater than the nominal
level of 5%. Type I error was also too high for the logistic
TSRI estimator with TSPS standard errors when there was
confounding. For the LSMM estimates, the type I error was
approximately correct, with values around 5%. The logistic
TSPS estimator also had approximately correct type I error
with unadjusted and robust standard errors with values around
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Figure 3. Type I error of the logistic 2-stage residual inclusion (TSRI) estimators for n = 1,000. The panels correspond to α2 being set to the follow-
ing values: 0 (A), 2 (B), 4 (C), 6 (D), and 8 (E). The labels Newey, Terza 1 and Terza 2, and BS2 refer to the TSRI estimator with those standard er-
rors. BS2, bootstrapping, both stages.
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5%. This is because under the null there is no substantial bias
in the logistic TSPS estimates. The logistic TSRI estimator using
Newey, Terza 1 and 2, and BS2 standard errors had approxi-
mately correct type I error, with values around 5%.

Similar trends can be seen in the results for the simulations
using a sample size of 5,000 in Web Figures 8–10. Web Fig-
ures 2 and 3 show that the correction to the logistic TSRI stan-
dard error has the largest effect when the absolute value of the
correlation between the confounders of the exposure and out-
come is greater than about 0.5 or, more generally, when the
effect of the confounder is stronger. The effect of the correction
is also more pronounced when the outcome has a higher preva-
lence (up to 50%, beyond which the effect decreases).

Linearmodel simulations

The results in Figure 4 and Web Figure 11 show that the
direct regression of Y and X has poor coverage when there is
confounding. This is because of the bias in the point estimate.
The TSRI estimator with unadjusted standard errors had poor
coverage because the standard error does not account for the
uncertainty from the first-stage estimation. TSRI using BS1 and
robust standard errors also showed poor coverage for the same
reason. Usually we want the standard errors for the TSRI esti-

mate to be larger than the unadjusted standard error, but robust
standard errors are often smaller. All other estimators demon-
strated coverage values around 95%. The coverage values for
TSRI using the Terza standard errors (1 and 2) were slightly
above 95%. The coverage of TSRI usingNewey and TSLS stan-
dard errors fell below 95% as the amount of confounding
increased. TSRI using BS2 standard errors had the cover-
age values consistently closest to 95% over the range of the
simulated scenarios.

The type I error results in Figure 5 and Web Figure 12 show
essentially the same pattern as for the coverage results. The type I
error of TSRI using unadjusted and BS1 standard errors is
inflated, whereas it is approximately correct for the other TSRI
standard errors. Again the type I error of the TSLS and Newey
standard errors is inflated as the confounding increases. The type
I error of the two Terza standard errors is slightly below 5%, and
the results for BS2 are the closest to 5% over the range of the
simulations.

Similar trends can also be seen in Web Figures 13 and 14.
Web Figure 1 shows that the correction to the TSRI standard
errors has the largest effect when the absolute value of the
correlation between the confounders of the exposure and out-
come residuals is greater than about 0.5 or, more generally,
when the confounding is stronger.
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Example: causal effect of BMI on SBP and diabetes

Data were gathered on 17,057 participants from 6 prospective
cohorts of European ancestry that had been genotyped with the
HumanCVD BeadChip (Illumina Inc., San Diego, CA) (57).
The 6 cohorts are Atherosclerosis Risk in Communities (ARIC)
(58), the Cardiovascular Health Study (CHS) (59), Coronary
Artery Risk Development in YoungAdults (CARDIA) (60), the
Framingham Heart Study (FHS) (61), Multinational Etoricoxib
and Diclofenac Arthritis Long-term (MEDAL) (62), and the
Multi-Ethnic Study of Atherosclerosis (MESA) (63).

Individuals had complete data on variables for BMI, SBP,
and diabetes. An externally weighted allele score was con-
structed out of the genetic variants for BMI. Details of the
genetic variants and the construction of the allele scores have
been previously reported (64). In the first example, we esti-
mate the causal effect of BMI on SBP using linear instrumen-
tal variable estimators. In the second example, we estimate the
causal odds ratio for diabetes for a unit increase in BMI using
binary outcome instrumental variable estimators. Analysis was
performed using Stata, version 13.1 (StataCorp LP) (54).

The prevalence of the diabetes outcomewas 13.7%. Table 1
shows the estimated causal odds ratios for diabetes for a 1-unit
increase in BMI. The direct estimate of the odds ratio was

1.14 (95% CI: 1.13, 1.15). In the first stage of TSPS and TSRI
estimation, the instrument gave a first-stage F statistic of 119,
greater than the usual cutoff for a weak instrument of 10, but a
low R2 of 0.7%. The logistic TSPS estimate was larger at 1.32
(95% CI: 1.19, 1.48) and also excluded a null effect. The logis-
tic TSRI gave the same point estimate of the causal odds ratio.
For the TSRI estimator, the unadjusted standard error was
0.058, whereas the Newey standard error was 2% larger at
0.059. The Terza standard errors were 0.057 and 0.059. For
logistic TSRI, the BS1 standard error was the same as the robust
standard error, whereas the BS2 standard error at 0.061 was
larger than the Newey and Terza 2 standard errors. For the
logistic TSRI with the Newey standard error, the z statistic
was 4.71, whereas the probit TSRI gave a slightly larger
z statistic of 4.74. The LSMM gave a larger point estimate
of the causal odds ratio of 1.39 (95% CI: 1.19, 1.59) and also a
larger standard error as shown by the smaller z statistic and
wider confidence interval. We conclude that the observa-
tional estimate of the causal odds ratio has been attenuated
by unmeasured confounding and that these data support a
causal effect of BMI on the risk of diabetes.

Table 2 shows the estimates of the effect on SBP of a 1-unit
increase in BMI. The direct estimate of this association was
0.76 mmHg (95% CI: 0.70, 0.82). Using the same first stage as
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rors. BS2, bootstrapping, both stages; TSLS, 2-stage least squares.
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the logistic TSPS and TSRI estimators, TSLS gave an estimate
for a 1-unit increase of BMI of 0.36 mm Hg (95% CI: −0.37,
1.10) with a standard error of 0.374. The linear TSRI gave the
same point estimate with a smaller unadjusted standard error of
0.372. The Newey standard error of 0.374 was equal to the
TSLS standard error, and the Terza standard errors were slightly

smaller at 0.370 and 0.372. In this example, the BS2 standard
error was the largest at 0.384. The Newey correction increased
the standard error by 0.5%. We conclude that the observational
association is likely to be partly explained by unmeasured con-
founding and that the data do not support a causal effect of BMI
on SBP.

Table 1. Estimates of the Causal Odds Ratios for Diabetes for a 1-Unit Increase in BodyMass Index Across 6
Cohortsa (n = 17,057)

Estimator SEb z OR 95%CI

Direct logistic 0.004 29.6 1.14 1.13, 1.15

Logistic TSPS (stage 1: F = 119,R2 = 0.007) 0.056 4.96 1.32 1.19, 1.48

Logistic TSRI (unadjusted SE) 0.058 4.79 1.32 1.18, 1.48

Logistic TSRI (robust SE) 0.057 4.86 1.32 1.18, 1.47

Logistic TSRI (TSPS unadjusted SE) 0.056 4.96 1.32 1.18, 1.47

Logistic TSRI (BS1)c 0.057 4.80 1.32 1.18, 1.48

Logistic TSRI (BS2)c 0.061 4.50 1.32 1.17, 1.49

Logistic TSRI (Newey) 0.059 4.71 1.32 1.17, 1.48

Logistic TSRI (Terza 1) 0.057 4.83 1.32 1.18, 1.47

Logistic TSRI (Terza 2) 0.059 4.77 1.32 1.18, 1.48

LSMM 0.101 3.26 1.39 1.19, 1.59

Probit TSRI (on OR scale) 0.090 4.74 1.28 1.15, 1.42

Abbreviations: BS1, bootstrap, second stage only; BS2, bootstrap, both stages; CI, confidence interval; LSMM, structural
meanmodel; OR, odds ratio; SE, standard error; TSPS, 2-stage predictor substitution; TSRI, 2-stage residual inclusion.

a The 6 cohorts were Atherosclerosis Risk in Communities (ARIC) (58), the Cardiovascular Health Study (CHS) (59),
Coronary Artery Risk Development in YoungAdults (CARDIA) (60), the FraminghamHeart Study (FHS) (61), Multinational
Etoricoxib andDiclofenac Arthritis Long-term (MEDAL) (62), and theMulti-Ethnic Study of Atherosclerosis (MESA) (63).

b SEs given on log odds ratio scale.
c Bootstrapping using 500 replications.

Table 2. Estimates of the Causal Effect of a 1-Unit Increase in BodyMass Index on Systolic Blood Pressure (mm
Hg) Across 6 Cohortsa (n = 17,057)

Estimator SE Estimate 95%CI

Direct linear 0.031 0.76 0.70, 0.82

TSLS (stage 1: F = 119,R2 = 0.007) 0.374 0.36 −0.37, 1.10

TSPS (unadjusted SE) 0.378 0.36 −0.38, 1.11

Linear TSRI (unadjusted SE) 0.372 0.36 −0.37, 1.09

Linear TSRI (robust SE) 0.370 0.36 −0.36, 1.09

Linear TSRI (TSPS unadjusted SE) 0.378 0.36 −0.38, 1.11

Linear TSRI (BS1)b 0.376 0.36 −0.37, 1.10

Linear TSRI (BS2)b 0.384 0.36 −0.39, 1.12

Linear TSRI (Newey) 0.374 0.36 −0.37, 1.10

Linear TSRI (Terza 1) 0.370 0.36 −0.36, 1.09

Linear TSRI (Terza 2) 0.372 0.36 −0.37, 1.09

Abbreviations: BS1, bootstrap, second stage only; BS2, bootstrap, both stages; CI, confidence interval; SE, stan-
dard error; TSLS, 2-stage least squares; TSPS, 2-stage predictor substitution; TSRI, 2-stage residual inclusion.

a The 6 cohorts are Atherosclerosis Risk in Communities (ARIC) (58), the Cardiovascular Health Study (CHS) (59), Cor-
onary Artery Risk Development in Young Adults (CARDIA) (60), the Framingham Heart Study (FHS) (61), Multinational
Etoricoxib andDiclofenac Arthritis Long-term (MEDAL) (62), and theMulti-Ethnic Study of Atherosclerosis (MESA) (63).

b Bootstrapping using 500 replications.
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In this example, the standard errors that do not take into account
the uncertainty from both stages of estimation (unadjusted, robust,
and BS1) are only slightly smaller than those that do (TSLS,
Newey, Terza 1 and 2, BS2, LSMM, and probit) because of
the combination of low first-stage R2 and large sample size.

DISCUSSION

In the present analysis, we have adapted corrections to the
standard errors of TSRI estimators, developed by Newey
(37) and Terza (38), to linear and logistic TSRI estimators.
The results of our simulations show that Newey, Terza, BS2,
and corrected TSLS (for the linear case) standard errors have
the best properties in terms of coverage and type I error.

The methods were illustrated in real-data examples investi-
gating the effect of BMI on SBP and diabetes risk. In the exam-
ples, the Newey standard errors were 0.5% and 2% larger than
the unadjusted standard errors for the linear and logistic TSRI
estimators, respectively. In the supplementary material, we
show that the corrections to the TSRI standard errors have the
greatest effect when the unmeasured confounding is greater and
when the outcome prevalence is higher (up to 50%, beyond
which the effect decreases). In the binary-outcome example, the
probit TSRI estimator gave a slightly larger z statistic than the
logistic TSRI estimator. The standard error of the logistic TSRI
estimator could be scaled to give the same z statistic. We do not
prefer this approach because using the scaled standard error in
equation 4 would not give the same value as sequential 2-step
estimation.

Further work could investigate the application of Newey and
Terza standard errors to TSRI estimators using other general-
ized linear models at the second stage. For example, Terza et al.
(18) used a parametric Weibull model and an ordered logistic
regression model in the second stage. And Tchetgen Tchetgen
et al. (65) discussed TSRI estimators for survival models using
anAalen additive hazardmodel at the second stage. Ourwork has
applicability beyond Mendelian randomization studies because
TSRI estimators have been used in other areas: for example, using
randomized treatment status in a clinical trial as an instrumental
variable to correct for noncompliance and in health economics
(18, 22, 66).

Newey’s correction to the standard errors of the 2-step probit
TSRI estimator relates to Murphy-Topel (67) standard errors in
econometrics, which can be used for TSPS estimates. Murphy-
Topel standard errors have been implemented in Stata (Stata-
Corp LP) (68–71). It has been argued that researchers maywant
to fit the logistic TSPS estimator because it is consistent for the
effect averaged over the population (72, 73), whereas it is less
clear what effect is identified by the TSRI estimator (74). Also
TSPS estimators have correct type I error under the null (17, 72,
75). However, because we have shown that using Newey, Ter-
za, and BS2 standard errors for TSRI estimators also gives cor-
rect type I error under the null, we argue that TSRI estimators
are attractive to researchers using noncollapsible models at the
second stage. There is also scope to use TSRI estimates, with
corrected standard errors, as part of the algorithms in the
recently proposedMendelian randomization–Egger and median
estimators, which are robust to different proportions of invalid
instruments (76, 77).

In conclusion, we recommend that researchers fitting TSRI
estimators should not report unadjusted or heteroscedasticity-
robust standard errors. Instead, they should report standard er-
rors using the Newey or Terza corrections or from bootstrap-
ping, including both stages of estimation.
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