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Abstract: RNA silencing is a sequence specific post-transcriptional mechanism regulating important
biological processes including antiviral defense in plants. Argonaute (AGO) proteins, the catalytic
subunits of the silencing complexes, are loaded with small RNAs to execute the sequence specific
RNA cleavage or translational inhibition. Plants encode several AGO proteins and a few of them,
especially AGO1 and AGO2, have been shown to be required for antiviral silencing. Previously,
we have shown that the P1 protein of the sweet potato mild mottle virus (SPMMYV) suppresses the
primary RNA silencing response by inhibiting AGO1. To analyze the role of AGO2 in antiviral defense
against the SPMMYV, we performed a comparative study using a wild type and agoZ_/ ~ mutant
Nicotiana benthamiana. Here we show that the AGO2 of N. benthamiana attenuates the symptoms
of SPMMYV infection. Upon SPMMYV infection the levels of AGO2 mRNA and protein are greatly
increased. Moreover, we found that AGO2 proteins are loaded with SPMMYV derived viral small
RNAs as well as with miRNAs. Our results indicate that AGO2 protein takes over the place of AGO1
to confer antiviral silencing. Finally, we provide a plausible explanation for the AGO2 mediated
recovery of an SPMM V-infected sweet potato.
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1. Introduction

RNA silencing refers to one of the cellular pathways that regulates gene expression
through specific mechanisms acting on RNA and is based on the sequence specificity of
nucleic acids. RNA silencing is considered to have evolved to regulate gene expression
both in the nucleus and the cytoplasm of almost all eukaryotes. Among many functions,
RNA silencing serves as an antiviral mechanism in plants. The replicative forms of ssRNA
viruses or other sources of dsRNA such as regions with strong secondary structures result
in double-stranded RNA that triggers RNA silencing. This viral dsRNA is recognized and
processed into viral siRNAs (vsRNAs) by the Dicer-like (DCL) enzymes. vsRNAs are then
associated with argonaute (AGO) proteins, which are the central molecule of the RNA
induced silencing complex (RISC) and guide the RISC to the viral nucleic acids for target
cleavage or translational inhibition [1].

Plant viruses evolved viral suppressors of RNA silencing (VSR) proteins to counteract
RNA silencing. VSRs are very diverse proteins and inhibit different steps of RNA silencing
such as the generation of vsRNAs, the sequestering of vsRNAs, the formation of RISC
complexes or the inhibition of a pre-assembled RISC [1,2].
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The genome of Arabidopsis thaliana encodes 10 AGO proteins that are shown to be
involved in different RNA silencing pathways and AGO1 was first shown to be required for
antiviral defense [3]. Hypomorphic AGO1 mutants are more vulnerable to brome mosaic
virus (BMV, genus Bromovirus, family Bromoviridae) and the cucumber mosaic virus (CMYV,
genus Cucumovirus, family Bromoviridae) relative to the wt A. thaliana [4-6]. However, the
AGO1 mutant is less susceptible to the tobacco rattle virus (TRV, genus Tobravirus, family
Virgaviridae) [7].

AGQO?2 is required for antiviral defenses against a broad range of viruses including the
turnip crinkle virus (TCV, genus Betacarmovirus, family Tombusviridae), the TRV, potato virus
X (PVX, genus Potexvirus, family Alphaflexiviridae), the turnip mosaic virus (TuMV, genus
Potyvirus, family Potyviridae) and the tomato bushy stunt virus (TBSV, genus Tombusvirus,
family Tombusviridae) [8-12]. However, the lack of AGO2 had a subtle effect against the
cymbidium ringspot virus (CyMRSV, genus Tombusvirus, family Tombusviridae) and the
CMYV [13]. Therefore, it is widely accepted that AGO1 and AGO2 proteins act as the first
line of antiviral RNA silencing in the case of certain viruses.

The sweet potato mild mottle virus (SPMMYV; genus Ipomovirus, family Potyviridae) is
a positive single stranded RNA virus with a genome of about 10,000 nucleotides (nt) in
length encoding a polyprotein of about 3450 amino acids and an embedded out-of-frame
shorter additional gene product. The genome organization and the length of the mature
proteins are very similar to that of potyviruses [14]; however, the P1 protein of the SPMMV
differs most from the corresponding proteins of other Potyviridae [15,16].

Previously we found that the P1 VSR protein of the SPMMYV physically interacts with
AGOIL containing pre-assembled RISC complexes [17]. Using an agrobacterium-based
infiltration system to transiently express in vivo different gene products we could measure
specific AGO activity and we revealed that P1 inhibits the target cleavage of AGO1. Whilst
P1 interacts with AGO?2, the target cleavage activity was not affected by P1 [18]. Therefore,
it is an interesting question to answer whether beyond AGO1, AGO2 takes part in the
antiviral defense against the SPMMYV in vivo.

2. Results

2.1. The N. benthamiana AGO2~/~ Mutant Is More Susceptible to the SPMMYV Compared with
Wild Type Plants

To test whether AGO2 plays a role in antiviral defense against the SPMMYV, wild type
(wt) and AGO2~/~ mutant N. benthamiana plants were infected with the SPMMYV. The
predominant symptoms of the SPMM V-infected plants were leaf curling and mottling de-
veloped in systemic leaves. SPMMYV infection also caused stunting in plants (Figure 1a,b).
Moreover, the SPMMV-infected AGO2~/~ mutant N. benthamiana plants had more dis-
torted leaves, more pronounced mottling and more severe stunting than the infected wt
plants at both 15 and 30 dpi.

wt ago2--
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Figure 1. Cont.
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Figure 1. (a) AGO2 deficiency exacerbates symptoms of SPMMYV infection in N. benthamiana. Wt and
AGO2~/~ N. benthamiana plants were infected with the sap of SPMMV-infected N. benthamiana leaves.
As controls, mock infections were also performed. Photographs of the SPMMYV and mock-infected
wild type and AGO2~/~ plants were taken at (a) 15 and (b) 30 dpi.

To find out whether the severity of symptoms was correlated with the SPMMYV level
we used Northern blot hybridization. Our analysis revealed a higher amount of SPMMV
genomic RNA at 15 dpi than at 30 dpi in the wt plants. In N. benthamiana we detected a
slight difference in the abundance of genomic RNA. However, the RNA extracts from the
AGO2~/~ mutant plant at 15 dpi contained more genomic RNA than that of the extracts
from the SPMM V-infected mutant at 30 dpi. Finally, the abundance of SPMMYV derived
small RNAs was consilient with the genomic RNA level in all samples (Figure 2).

wt ago2™
SPMMV - + + - + +
dpi 15 30 15 30

SPMMV RNA 2 d band

vsiRNA - .j
miR159 | ————

1 2 3 4 5 6

Figure 2. Northern analysis of SPMMV-infected plants. RNA extracts of SPMM V-infected wt and
ago2~/~ at 15 and 30 dpi and mock-infected plants were subjected to a Northern analysis using
denaturing agarose gels. TRNA was used for the loading control. The same RNA extracts were
separated on a 10% acrylamide and 8 M urea containing denaturing gel to detect small RNAs. A
negative strand [x-32P]-UTP-labeled RNA probe was used to detect the viral genomic RNA and
vsRNAs. A [y-32P]-ATP-labeled LNA oligo to detect miR159 was used to show equal loading.
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2.2. SPMMYV Infection Induces AGO2

Using the well-established system based on agroinfiltration to measure specific AGO
activity [11], we recently showed that mock infiltrated N. benthamiana leaves did not
possess AGO?2 activity. However, the sole administration of the SPMMYV P1 protein by
agroinfiltration strongly induced AGO2 target cleavage activity and mRNA levels [18]. As
SPMMYV P1 VSR inhibited AGO1 miRNA and vsRNA driven target RNA cleavage [17] and
because the N. benthamiana (as well as A. thaliana, Ipomoea batatas and Ipomoea triloba) AGO2
mRNA contains one miR403 binding site in the 3’ untranslated region (UTR) (Figure 3a),
we speculated that the global inhibition of AGO1 mediated miRNA silencing by P1 would
liberate AGO2 mRNA from silencing [18].

Nicotiana benthamiana TATCGACCTAGC, 'TT GTGAATCTAATGGGATTTCATG-~-T
Arabidopsis thaliana TTCTGG--TAGAAAGGAGTTTGTGCGTGAATCTAATTGGGTTTTTCG--T
Ipomoea batatas CCATTGCGCATACATG-GTTTGTGCGTGAATCTAATGGGATTCATAGCTT
Ipomoea triloba CCATTGCGCATACATG-GTTTGTGCGTGAATCTAATGGGATTCATAGCTT
* L L A T A *  *
(a)
8+

ok

Fold change
D

2
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Figure 3. AGO2 mRNA and protein expression is induced by SPMMYV infection. (a) Clustal se-
quence alignment of the 3’ end UTR containing the miR430 target site of N. benthamiana (read
identifier Niben1015cf05245g01007.1), A. thaliana (NM_102866.3), Ipomoea batatas (read identifier
gnl | SRA | SRR7866901.255798333) and Ipomoea triloba (XM_031274565.1). The * indicates nucleotide
identity. (b) N. benthamiana plants were infected with the SPMMYV then RNA samples were taken
at 15 and 30 dpi (1-mock treated at 15 dpi; 2-SPMM V-infected at 15 dpi; 3-mock treated at 30 dpi;
4-SPMM V-infected at 30 dpi). AGO2 mRNA expression was normalized to that of the endogenous
elongation factor 1 (EF1). A mock-infected control sample was used as the calibrator and three
independent biological replicates of each treatment were carried out. For each biological replicate,
two parallel samples were analyzed. The * indicates statistically significant differences between the
mock and infected plants at 15 and 30 dpi according to a two-sample T-test Bonferroni post-hoc test
(** p < 0.001; **** p < 0.0001). (c) Leaf samples of the SPMMYV and mock-infected wt and AGO2~/~ N.
benthamiana plants were taken at 15 and 30 dpi and protein extracts were analyzed by SDS-PAGE
followed by incubation with the AGO2 antibody (19). As a control, the same protein extracts were
analyzed on a separate gel to detect AGO1 (Agrisera). Ponceau staining was used as a loading
control. The arrow indicates a non-specific band in the mock-infected wt and AGO2~/~ mutant N.

benthamiana plants.
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To see if AGO2 induction occurred in vivo, we assessed AGO2 mRNA and the protein
expression in SPMMV-infected wt N. benthamiana plants. RNA was isolated from the
systemic leaves of the SPMMYV and mock inoculated N. benthamiana plants at 15 and 30 dpi
and subjected to qRT-PCR to measure the AGO2 mRNA level. Our analysis revealed
a significant increase of AGO2 mRNA upon SPMMYV infection at both 15 and 30 dpi
(Figure 3b); however, the fold change was more pronounced at 15 dpi than at 30 dpi (6.22
vs. 3.74). A Western blot analysis with an AGO2 specific antibody of mock and SPMMYV-
infected wt N. benthamiana plants detected a ~110 kDa protein similar to the estimated size
of the A. thaliana AGO2 protein [8] in the protein extracts of the virus-infected plants at
both 15 and 30 dpi (Figure 3c; lanes 1 and 2; 3 and 4). As a control, we used homozygous
AGO2~/~ mutant N. benthamiana plants that do not express AGO2. As expected, we could
not detect this 110 kDa protein in the extracts of the mock and SPMM V-infected AGO2~/~
mutant N. benthamiana plants (Figure 3c; lanes 1, 2 or 3, 4 to 5-8)

Therefore, we concluded that SPMMYV infection strongly elevated endogenous AGO2
expression at both the mRNA and protein level in wt N. benthamiana leaves.

2.3. AGO2 Associates with Viral siRNAs and miRNAs in SPMMV-Infected Plants

The more severe symptoms upon SPMMYV infection on homozygous AGO2~/~ mu-
tant compared with the wt N. benthamiana plants and the inducible nature of AGO2 highly
suggested the involvement of AGO2 in the antiviral defense against the SPMMV. The na-
ture of small RNAs associated with a few certain AGO proteins is a good indicator of their
function [1,4,8,19,20]. Thus, the association of viral siRNA with AGO2 of N. benthamiana
would provide further evidence of an antiviral function. To test if N. benthamiana AGO2
protein binds SPMMYV derived siRNAs, we performed immunoprecipitation followed by
Western and Northern blotting from mock and SPMM V-infected plants. As we previously
showed, AGO2 was induced by SPMMYV infection (Figure 3b,c) and the input and eluate
fractions of SPMM V-infected wt plants contained vsRNAs providing strong evidence for
a physical interaction with the AGO2 protein (Figure 4a; lanes 4 and 5). As expected, no
vsRNA was detected in the mock-infected plants (Figure 4a; lanes 1-3).

AGO2 IP AGO1IP
SPMMV - + SPMMV - +
In IP -Ab In IP -Ab In IP -Ab In IP -Ab
AGO2 L - AGO1 [JEpeess  Shw—"
Rubisco Rubisco

vsiRNA

mir159 | W -

(b)

Figure 4. AGO?2 associates with vsRNAs and miRNAs. (a) SPMMYV and mock-infected plants at
15 dpi were used to prepare native protein extracts. Immunoprecipitations were carried out with
the AGO2 antibody. One half of the IP fractions was used to isolate proteins while the other half
was used for RNA preparation. Input, IP and control IP with no antibody (-Ab) samples were used
to detect AGO2 proteins by Western blotting; vsRNAs and miRNAs were detected by Northern
blotting using a [x-32P]-UTP-labeled single stranded in vitro transcribed RNA probe and a DNA
oligo to detect miR393*. (b) This panel was carried out as in (a), but the AGO1 antibody was used
to immunoprecipitate and detect the AGO1 protein. For Northern blotting an [y-32P]-ATP-labeled
miR159 LNA oligo was used.

miR393*

The pivotal role of AGO1 in antiviral defense has been long known [1]. In our
host-pathogen system we found similar AGO1 expression in N. benthamiana irrespective
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of SPMMYV infection and genetic background (wt vs. AGO2~/~ mutant) (Figure 4b).
Therefore, AGO1 was also immunoprecipitated from the mock and SPMM V-infected leaves
of N. benthamiana. As expected, vsRNAs could be pulled down with AGO1 only from
native extracts of SPMM V-infected plants (Figure 4b; lanes 4 and 5) and we did not detect
AGO1 protein co-immunoprecipitated with vsRNAs from the uninfected leaves of N.
benthamiana (Figure 4b; lanes 1 and 2). To further validate our results, we took advantage
of the differential sorting of plant miRNAs to AGO1 and AGO2 proteins [21]. For example,
miR393* (the star strand of the miR393 duplex) was shown to be loaded to AGO2 while
miR159 was almost exclusively found in association with the AGO1 protein [20]. In
agreement with previous results, we found miR393* expression in the inputs of both the
mock and SPMM V-infected N. benthamiana leaves but miR393* could be only pulled down
from SPMMV-infected plants in which AGO2 protein was induced (Figure 4a; lanes 4
and 5), further proving that AGO2 was induced and specifically associated with miRNAs
as well. Finally, in the eluates of AGO1 immunoprecipitations miR159 was detected in
both the mock and SPMM V-infected N. benthamiana plants, indicating that miRNAs were
associated with AGO1 regardless of virus infection (Figure 4b; lanes 1, 2 and 4, 5).

3. Discussion

The genome of higher plants contains several AGO genes. For example, the genome of
the model plant Arabidopsis thaliana encodes 10 AGO proteins that are specialized to several
RNA silencing pathways [3,22]. A genetic analysis revealed a possible involvement of
AGO1, AGO2, AGO4, AGO5, AGO7 and AGO10 in antiviral defense [11,23,24]. However,
AGO1 and AGO?2 are thought to be the main AGO proteins involved in antiviral defense
in A. thaliana and other plant species [23].

Our goal was to elucidate the role of AGO?2 in the widely used test plant N. benthamiana
upon SPMMYV infection. We observed that the homozygous AGO2~/~ null mutant N.
benthamiana plants were more susceptible to SPMMYV infection than that of the wild plants
implicating the role of AGO2 in the antiviral defense. In contrast SPMMYV infection of
the sweet potato plants, the natural host of the SPMMYV, exhibited mild vein chlorosis
and mottling for 2—4 weeks then plants recovered from the infection [25]. The difference
in symptomatology between the two species might be explained by the fact that wt N.
benthamiana is more prone to RNA viruses than other species [26].

In the model plant A. thaliana, AGO1, AGO2 and AGOS5 have been shown to bind
virus derived vsRNAs in an immunoprecipitation analysis [24]. Recently, it was found
that AGO2 mutant A. thaliana plants were hypersusceptible to the TCV and the CMV [8].
Moreover, AGO2 was also absolutely required to control PVX infection in Arabidopsis [9].

In agreement, the AGO2 null mutant N. benthamiana was hypersusceptible to the TCV,
PVX and the TuMV [13]. However, the same study revealed that AGO2 had little effect
to control CMV and CymRSV infection in N. benthamiana suggesting that AGO1 but not
AGO2 might have a critical role in coping with CymRSV and CMYV infection. In contrast,
AGO?2 silenced N. benthamiana plants with TBSV (a close relative of the CymRSV) infection
caused severe symptoms [10].

In conclusion, plant RNA viruses show different sensitivity to AGO2 mediated RNA
silencing yet the AGO2 protein is required to restrict a broad range of viruses including
the SPMMV.

Using a transient expression method based on infiltration, specific AGO1 and AGO2
target cleavage activity could be measured. With this technique, we recently revealed
that normal N. benthamiana leaves do not possess AGO2 activity. However, a transient
expression of the P1 silencing suppressor of the SPMMYV by itself increased the mRNA and
target cleavage activity of AGO2 [18]. In agreement, upon SPMMYV infection (this study)
both AGO2 mRNA and the protein expression were strongly upregulated in N. benthamiana
leaves. As we showed earlier, the P1 silencing suppressor of the SPMMYV efficiently
inhibited (viral siRNA) vsRNA and miRNA induced RNA silencing by binding the AGO1
protein of RISC complexes. Therefore, the liberation of AGO2 mRNA from miR403-AGO1
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mediated repression provided a plausible explanation for the strong induction of AGO2
mRNA and protein expression upon P1 infiltration and SPMMYV infection [17,18] (this
study). Our results were further supported by the fact that the AGO1-25 A. thaliana mutant,
in which the miR403-AGO1 mediated repression of AGO2 mRNA does not occur, was
constitutively expressing AGO2 [8].

The target cleavage and translational repression by RNA silencing requires the for-
mation of AGO-small RNA complexes. In SPMM V-infected plants we detected SPMMV
derived vsRNAs co-immunoprecipitated with AGO2 suggesting that these ribonucleopro-
tein complexes could serve as functional RISC complexes. Thus, the more severe symptoms
of the SPMM V-infected AGO2~/~ mutant N. benthamiana compared with that of the wt
suggested that the AGO2-vsRNA complex was a critical component of the antiviral de-
fense against the SPMMV. Plant AGO2 was also found to take part in miRNA driven
RNA silencing. In agreement, we detected miR393*, which inhibits retrograde transport
in Pseudomonas-infected A. thaliana, in our immunoprecipitation from SPMM V-infected
leaf extracts indicating that functional miR393*-AGO2 complexes were formed upon viral
infection [20] (this work).

Besides the miR403-AGO1 driven RNA silencing, other ways of regulating AGO2
expression have been found in virus-infected plants. For example, upon tomato ringspot
virus-Rasp1 (ToRSV-Rasp1, genus Nepovirus, family Secoviridae) and ToRSV-GYV infection,
a strong and transient induction of AGO2 mRNA was detected leading to AGO2 protein
production [27]. The authors speculated that the transient AGO2 induction occurred at
the level of transcription. However, in this host-pathogen system, the de novo translated
AGO2 protein was then downregulated by cellular protein degradation mechanisms in
systemic leaves in infected plants indicating the possible dual regulation of AGO2 [27].
Another study revealed that upon TuMV infection, the mature form of miR403 was induced
(and consistently the pri-miR403 level was reduced). Moreover, AGO2 mRNA was strongly
induced suggesting that upregulation could escape AGO2 mRNA from AGO1-miR403
repression [28]. Indeed, gibberellic acid, UV irradiation and bacterial infection upregu-
lated AGO2 mRNA revealing that AGO2 was regulated by a variety of biotic and abiotic
stresses [20,29,30].

Our results on N. benthamiana point out the critical role of AGO?2 in the antiviral
defense against the SPMMV. The results presented here allow us to postulate a model for
infection of N. benthamiana by the SPMMV. SPMMV infection results in viral P1 protein and
vsRNA production. Activity of the de novo AGO1-vsRNA complexes might be neutralized
by the P1 protein. As the association of P1 with AGO1-miRNA pre-assembled RISC
complexes inhibits miRNA (including miR403) driven RNA silencing, AGO2 mRNA could
escape repression by AGO1-miR403 leading to AGO2 protein production. Thus, AGO2
might take over the place of AGO1 and being expressed in infected cells could provide
the necessary and sufficient RNA silencing activity that leads to attenuate symptoms in N.
benthamiana. This model is supported by our recent results that the physical interaction
between AGO2 and P1 proteins did not lead to the inhibition of the target cleavage activity
of AGO2 [18]. Of note was that AGO1-miR403 regulation might occur in a sweet potato as
well because the 3’ UTR of the AGO2 mRNA also contains an miR403 target site therefore
our model on N. benthamiana could be extended to a sweet potato. As symptoms upon
SPMMYV infection on a sweet potato are milder than that of N. benthamiana, it could not be
excluded that a defense mechanism other than miR403-AGO1 driven RNA silencing might
be involved in antiviral defense against the SPMMYV in a sweet potato.

4. Materials and Methods
4.1. Plant Materials

Nicotiana benthamiana wt and AGO2~/~ mutant plants were grown at 23 °C in a plant
growth chamber under a photoperiod of 16 h light/8 h dark.
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4.2. Plant Inoculation

Sap from the SPMMYV 130 isolate (originally from Tanzania, partial sequence available
at GenBank: GQ353374.1) was obtained. The infected leaves were freshly extracted in a
phosphate buffer of pH9.0 and supplemented with carborundum powder and were used
to inoculate 18 day old N. benthamiana plants. Samples were collected at 15 and 30 dpi.

4.3. RNA Analysis

RNA was isolated using the 2 x PK buffer (200 mM Tris-HCI pHS8.0, 300 mM NacCl,
20 mM EDTA pHS8.0) supplemented with 10 pg/mL proteinase K. The reactions were
incubated at 55 °C for 10 min then extracted with phenol-chloroform and nucleic acids
were precipitated with 2 volumes of EtOH. The RNA was separated by 2.2 M formaldehyde
and 1.2% w/v agarose gels and blotted to an Amersham Hybond-N membrane. The
membranes were hybridized with 500 base [«x-32P]-UTP-labeled single stranded in vitro
transcribed RNA probes corresponding with the negative strand of the P1 coding region of
the SPMMYV genome.

4.4. Small RNA Analysis

RNA was isolated with a 2 x PK buffer (200 mM Tris-HC] pH8.0, 300 mM Nac(l,
20 mM EDTA pH8.0) supplemented with 10 pug/mL proteinase K from leaves or the eluates
of immunoprecipitations and then separated on a 10% acrylamide and 8 M urea containing
denaturing gel and blotted to an Amersham Hybond-N membrane. The membranes were
hybridized with [y-32P]-ATP-labeled LNA or DNA oligonucleotides.

4.5. Protein Analysis

Proteins were isolated using the 4 M urea, 50 mM Tris-HCI, 100 mM NaCl and 20 mM
EDTA pHS8.0 containing buffer. A total of 20 ug protein was loaded to a 6% or 10%
acrylamide SDS-PAGE gel then transferred to an Immobilon-P membrane (Millipore). The
membranes were incubated with AGO1 (Agrisera) or AGO2 antibodies (19) in a TBS-TT
buffer (50 mM Tris-HCl, pH7.6, 150 mM NaCl, 0.25% Tween 20 and 0.1% Triton X-100).

4.6. Immunoprecipitation

Extracts were prepared in an IP buffer (50 mM Tris-HCl pH7.5, 100 mM NaCl, 5 mM
MgCl,, 5 mM DDT and 0.5% Tween 20) and were incubated with AGO1 (Agrisera) or
AGO2 antibodies [19]. Eluates were used to isolate AGO-small RNA complexes. For
inputs, 5% of the native extracts and 50% of the eluates were used to isolate proteins or
small RNAs.

4.7. Quantitative Reverse Transcriptase PCR (qRT-PCR)

RNA was isolated with a Trizol reagent (Sigma) from mock and infected systemic
leaves at 10 dpi. qRT-PCR experiments were performed as described by [18].
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