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Abstract: Ferromanganese nodules are an important mineral resource in the seafloor; however, the
genetic mechanism is still unknown. The biomineralization of microorganisms appears to promote fer-
romanganese nodule formation. To investigate the possible mechanism of microbial–ferromanganese
nodule interaction, to test the possibility of marine microorganisms as deposition template for ferro-
manganese nodules minerals, the interactions between Jeotgalibacillus campisalis strain CW126-A03
and ferromanganese nodules were studied. The results showed that strain CW126-A03 increased
ion concentrations of Fe, Mn, and other metal elements in solutions at first. Then, metal ions were
accumulated on the cells’ surface and formed ultra-micro sized mineral particles, even crystalline
minerals. Strain CW126-A03 appeared to release major elements in ferromanganese nodules, and
the cell surface may be a nucleation site for mineral precipitation. This finding highlights the po-
tentially important role of biologically induced mineralization (BIM) in ferromanganese nodule
formation. This BIM hypothesis provides another perspective for understanding ferromanganese
nodules’ genetic mechanism, indicating the potential of microorganisms in nodule formation.

Keywords: ferromanganese nodules; microorganisms; biomineralization

1. Introduction

Marine ferromanganese nodules represent an important mineral resource on the
seafloor, containing a wide variety of elements, such as Fe, Mn, Cu, Co, Ni, Mo, and
Li. Ferromanganese nodules are spherical and irregular in size (1–15 cm) and typically
distributed in the abyssal plains with water depths of 4000–6000 m [1]. The manganese
minerals in nodules are usually composed of barium magnesia manganese ore, hydro
manganese ore, and sodium manganese ore. Iron minerals are mainly composed of
goethite and hematite [2]. The reserves of ferromanganese nodules are enormous, more
than 3 trillion tons, with high economic value. Ferromanganese nodules, together with
ferromanganese crusts, are evaluated as potential metal resources [3]. There are many
previous types of research on ferromanganese nodules.

The confounding issue is that the ferromanganese nodules’ genetic mechanism is
complex. The formation of ferromanganese nodules was once considered as an abiotic
process, which may be influenced by many factors, such as submarine tension and fluid
activity, tectonic movement, submarine current changes, carbonate compensation depth
(CCD), terrigenous clastic supply rate, and marine primary productivity [4]. It was be-
lieved that ferromanganese nodules were formed by the precipitation of trace elements
in seawater under the control of physiochemistry, colloidal chemistry, and biochemistry.
The colloids formed by adsorbing trace elements precipitate on the seabed bedrock in
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the form of hard crusts of amorphous oxides or hydroxides [5]. According to the genetic
mechanism, ferromanganese nodules can be divided into hydrogenetic type, diagenetic
type, and mixed type. Hydrogenetic nodules obtain all elements from marine bottom
water, while diagenetic nodules obtain elements from the redox cycle in the early diage-
netic reaction of organic matter in sediments. The transition from the diagenetic process
to the hydrogenetic process depends on the redox conditions in the environment. The
mixed-type nodules are composed of different proportions of diagenetic and hydrogenetic
end-member laminae [6]. However, Thiel [7] published the first comprehensive report on
the potential involvement of microorganisms in the precipitation of manganese nodules
and suggested that microorganisms may promote the deposition of Mn in the marine
environment. Previous work revealed biofilms and filamentous microorganisms related
to the surface of nodules by using scanning electron microscopy (SEM). Recent findings
have proposed a microbial-mediated mechanism for nodules formation because X-ray
and microscopy studies have shown that the bacterial concentration in manganese-rich
nodules is very high [8]. Microorganisms control the dissolution or formation of minerals
by catalysis or other ways [9]. Minerals and even rocks, generally formed at higher geo-
logical temperatures and pressures, can be formed in the surficial environment through
microbial-mediated biochemical and biophysical processes [10]. Due to their small size and
diverse metabolic capability, bacteria interact more efficiently with metal ions in the envi-
ronment than any other type of organism [11]. Previous studies have found that bacteria
accumulated metal ions and incorporated ions into mineral phases to promote mineral for-
mation [12–15]. This process is termed biomineralization. Biomineralization can be divided
into biologically induced mineralization (BIM) and biologically controlled mineralization
(BCM). BIM occurs outside of the microorganism. Microorganisms’ activities change the
surrounding microenvironment, resulting in pH and redox condition changes, then pro-
mote extracellular mineral precipitation [16]. In the process of BIM, microorganisms have
no apparent control over the formation of minerals, whereas, in BCM, microorganisms
directly control the formation of minerals and even control the structure and arrangement
of minerals. For example, magnetotactic bacteria form minerals by BCM [17,18]. Hassan
et al. found the biological magnetite, which may be formed by magnetotactic bacteria in
ferromanganese nodules [19]. Fe-oxidizing bacteria (FeOB) and Mn-oxidizing bacteria
(MnOB) may promote the ferromanganese nodules formation by BCM. Phylogenetically
diverse MnOB have been reported, including Bacillus, Pseudomonas, Leptothrix, Erythrobac-
ter, Pedomicrobium, and Roseobacter, with enzymatic or superoxide-mediated reactions [20].
MnOB participates in the marine manganese cycle [21–23], oxidizing Mn2+ to high valent
manganese oxides and appear to promote the formation of deep-sea ferromanganese nod-
ules [24]. Microorganisms also affect the migration, accumulation, transformation, and
precipitation of Fe-bearing minerals in nature [25,26]. These studies imply the possibility
of biomineralization during the formation of ferromanganese nodules.

Little is known about the physiology and metabolism of microorganisms associated
with ferromanganese nodules in the ocean and the possible impact of these microbial
processes on global marine metal chemistry. Based on the 16S rRNA gene sequence
analysis of the microbial community of ferromanganese nodules and the surrounding
sediments, recent studies found that the microbial community of nodules was significantly
different from that of the surrounding sediments, and the number of bacteria and archaea
in nodules was higher than that in the surrounding sediments [27,28]. In the bacterial
community composition of ferromanganese nodules [8,20,27,29,30], proteobacteria were
dominant, represented by Gammaproteobacteria. Relatives of Gammaproteobacteria, such
as Pseudomonas putida GB-1, contain two kinds of copper oxidase, which have the potential
to oxidize Mn (II) and Mn (III). Detailed phylogenetic analysis of dominant operational
taxonomic units (OTUs) associated with Gammaproteobacteria placed them in Shewanella
and Colwellia genera. Shewanella strains can reduce Mn under low oxygen conditions,
and the oxidized Mn acts as a terminal electron acceptor. No Mn-cycling bacteria such as
Shewanella and Colwellia were detected in the sediments surrounding the nodules. Other
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phylogenetic groups, such as Nitrospira, Bacteriodetes, Actinobacteria, Acidobacteria,
and Alpha-, Beta-, and Deltaproteobacteria, were also detected. The diversity of the
Archaea community is less than that of bacteria. Almost all of the obtained archaeal
clone sequences from both the ferromanganese nodule and surrounding sediment can
be assigned to the Marine Group I (MGI) Thaumarchaeota. Nayak et al. observed the
bacterial fossils in ferromanganese nodules by SEM [31]. It was found that the contents
of Mn, Ni, and Co around these bacterial fossils were relatively high, which indicated
that the bacteria played a particular role in the accumulation of Mn and specific trace
elements in these ferromanganese nodules. Jiang et al. found abundant microfossils
and biomarkers in ferromanganese nodules and crusts in the South China Sea, and the
areas rich in microfossils contain higher Mn than other areas [32]. They suggested that
microorganisms may be used as templates to induce mineral deposition in nodules and
crusts. However, there is still no solid evidence to explain how microorganisms contribute
to the formation of ferromanganese nodules. Therefore, it is meaningful to study the
Microbial-Ferromanganese Nodule Interaction for understanding the formation process of
ferromanganese nodules.

Jeotgalibacillus campisalis strain CW126-A03 was selected, and the species Jeotgalibacillus
campisalis of the family Planococcaceae in the phylum Firmicutes was first established and
combined by Yoon et al. [33,34]. This study aims to explore the role of bacterial biolog-
ical characteristics and BIM in the formation of ferromanganese nodules. The selected
experimental strain is the non-ferromanganese nodule specific and non-MnOB bacterium.
The microbial-ferromanganese nodule interaction experiments tested the possibility of
microorganisms as the nucleation site of nodules minerals. In this study, a variety of
analytical techniques, including X-ray fluorescence (XRF), inductively coupled plasma
optical emission spectrometry (ICP-OES), inductively coupled plasma mass spectrometry
(ICP-MS), transmission electron microscopy (TEM) with selected area electron diffraction
(SAED) and X-ray diffraction (XRD) were utilized to investigate the detail process.

2. Materials and Methods
2.1. Microorganism

A 50 × 50 cm2 square-corer core was obtained from the South China Sea (5◦36.51′ N,
113◦38.97′; depth: 2125 m). The sampled sediment surface temperature was 9 ◦C, the
pH was 7.4, and the Eh was 201. All the cores were opened from the side onboard, and
sub-samples were collected from the center of the core under sterile conditions for microbial
study. Then, they were stored in airtight sterile plastic bags at −80 ◦C freezer until the com-
mencement of laboratory work. Serial dilutions (1:10) of the samples were plated on an arti-
ficial seawater medium (yeast extract 1 g/L, peptone 5 g/L, and agar 15 g/L) at 25 ◦C. The
composition of artificial seawater was as follows: 24.32 g/L NaCl, 10.98 g/L MgCl2·6H2O,
4.06 g/L Na2SO4, 0.20 g/L NaHCO3, 0.027 g/L H3BO3, 0.10 g/L KBr, 0.69 g/L KCl,
1.14 g/L CaCl2. One isolate, which we designated as CW126-A03, was selected for fur-
ther characterization.

The 16S rRNA gene was amplified by the universal primers 27F and 1492R as previ-
ously described [35]. The PCR product was purified and ligated into the PMD19-T vector
(Takara) and cloned using the manufacturer’s instructions. Sequencing was performed by
BGI (Qingdao, China). The GenBank/EMBL/DDBJ accession number for the 16S rRNA
gene sequences of strain CW126-A03 is MT845653.

Strain CW126-A03 was grown by shaking in the sterile artificial seawater medium
(yeast extract 1 g/L and peptone 5 g/L) at 25 ◦C for harvesting the cell biomass. The strain
was precultured for 24 h in the 300 mL sterile growth medium, and 10 mL growing cell
preculture was then transferred to a conical flask with 300 mL sterile artificial seawater
medium. After 24 h of culture, the cells were harvested by centrifugation for 10 min at
4000 r/min. The cells were washed 3 times with 0.1 mol/L NaCl solution to eliminate
the growth medium and then resuspended in sterile artificial seawater solution used for
the microbial-ferromanganese nodule interaction experiments (hereinafter referred to as
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interaction experiments). All media were prepared in ultrapure water, and the sterilization
condition was at 120 ◦C for 30 min.

2.2. Ferromanganese Nodules

Ferromanganese nodule samples were collected from the East Philippine Sea in the
Western Pacific Ocean by the Research Vessel KEXUE Expedition 2014, with 4092 m.
Ferromanganese nodules were about 3 cm in diameter size, with black spherical and
tumorous appearance. The profile feature was the outer black crust wrapping the inner
sediments (Figure 1). The outer black crust was peeled off and ground in an agate bowl,
which was sieved to isolate the 250 µm size powder as experimental materials. The sieved
powder was ultrasonicated by ultrapure water and dried at 60 ◦C. Then it was sterilized at
120 ◦C for 30 min.
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2.3. Microbial-Ferromanganese Nodule Interaction Experiments

All interaction experiments were performed in conical flasks containing 300 mL sterile
artificial seawater solution. Experiments were performed twice under the same condition,
and the average data from the parallel experiment were shown. Bacterial groups and
no bacterial control groups were designed. For bacterial groups, the cells harvested by
centrifugation were added to the conical flasks containing sterilized artificial seawater
solution, the cell density was determined by spectrophotometer (OD600), and 3 g sterilized
Fe-Mn crust powder was added to the conical flasks. For control groups, 3 g sterilized
crust powder was added to the conical flasks containing sterile artificial seawater solution.
Both groups were performed for 21 days at 120 rpm and 25 ◦C in the shaking incubator.
Samples were taken at different times within 21 days to determine the ion concentration
changes in the reaction solution.

2.4. Analytical and Statistical Methods

The growth curve of strain CW126-A03 was drawn by measuring OD600 with a Spec-
trophotometer (Shanghai Metash Instruments Co., Ltd., UV-5500PC, Shanghai, China). The
elements in ferromanganese nodule samples were determined by XRF (Bruker Company,
SB Tiger Wavelength Type, Bremen, Germany).

The ion concentrations of Fe, Mn, Co, Ni, and Cu in the reaction solution were
measured by ICP-OES (PerkinElmer, Optima 7300DV, Waltham, MA, USA) and ICP-MS
(Thermo Fisher, ICAP-QC, Waltham, MA, USA). The analytical samples were prepared by
filtering a reaction solution through a 0.22 µm PTFE membrane. Each analytical sample
was measured three times, and the relative standard deviations of Fe, Mn, Co, Ni, and Cu
were about 3%, 1%, 1%, 2%, and 2%, respectively. The Wilcoxon signed-rank test was used
to classify any significant difference between bacterial and control groups.
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The morphology of strain CW126-A03 and the minerals formed on the cells’ surface
were observed by TEM (Hitachi, HT7700, Tokyo, Japan). The reaction solution was taken
out to centrifuge for 10 min at 4000 rpm and washed 3 times with ultrapure water. After
that, a small amount of solution was dropped onto the copper mesh and dried at room
temperature, then observed by TEM.

The mineral composition changes of ferromanganese nodules were analyzed by XRD
(Bruker D-8, Bremen, Germany). The crust powder in solution was collected by centrifuga-
tion for 10 min at 4000 rpm and dried at 60 ◦C.

All statistical analyses were done with R statistical software and Microsoft Excel.

3. Results
3.1. Growth Curve

Strain CW126-A03 was grown by shaking in the incubator at 120 rpm under 25 ◦C. The
growth curve of strain CW126-A03 was in the lag phase for the first 2 h, where bacteria are
metabolically active. From 2–24 h, the growth curve was in the log phase, an exponential
growth period of bacteria. After 24 h, the growth curve was in the stationary phase, and
the number of dying cells equals the number of dividing cells. Finally, the growth curve
was in the death phase, and the number of living cells began to decrease (Figure 2).
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Figure 2. Growth curve of strain CW126-A03.

3.2. Elemental Changes of Ferromanganese Nodules

The elemental composition of the ferromanganese nodule samples is shown in Table 1.

Table 1. Elemental composition of the crust powder.

Element Si Fe Al Ca Mg Na K Mn Cl S

Content (PPM) 194,180 202,440 24,122.4 30,773.4 9120 8904 5808.6 104,174.6 132 229.1
Element Ti P Ni Co Ba Pb Ce Sr Cu V

Content (PPM) 10,483.9 4431.9 2117.8 2125.4 321 1277.7 1285.3 1098 1285.3 764.2
Element Zr Zn As Nd La Mo Y Cr W Nb

Content (PPM) 541 496.8 489.6 445.9 321 297 160.6 83 67.2 45.6
Element Th Sb Hf Cd Bi Rb Sc Ga U Br

Content (PPM) 42.1 12 14.8 — 8.4 7.2 4.5 2.7 0.1 0

The outer crust of ferromanganese nodules is usually composed of ferromanganese
minerals. Fe and Mn are essential metal elements. Ni and Cu are also significant elements
in ferromanganese nodules, since they generally exist in ferromanganese minerals in the
form of isomorphic substitution and coexist with Fe and Mn oxide aggregates. The changes
of these metal elements reflect the changes in the mineral composition of ferromanganese
nodules to a certain extent.

The total ion concentrations of Fe, Mn, Co, Ni, and Cu in the bacterial and control
groups’ reaction solution were measured for 7 days of interaction experiments (Figure 3).
The Wilcoxon signed-rank test results between bacterial and control groups were shown in
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Table 2. Combined with the results of ion concentration and statistical test, the changes of
ion concentration were speculated as follows:
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Table 2. The Wilcoxon signed-rank test results between bacterial and control groups.

Fe Mn Co Ni Cu

0.4922 ns 0.04883 * 0.03654 * 0.625 ns 0.001953 *
(* for p < 0.05; ns for p > 0.05).

Fe: The total ion concentration of Fe in the bacterial groups increased within one day
and then decreased. The ion concentration in the bacterial groups approached that in the
control groups after one day. Probably because strain CW126-A03 promoted the dissolution
and reduction of Fe (II)(III) in ferromanganese nodules powder, the concentration of iron
ions in solutions increased. Meanwhile, iron ions’ concentrations decreased due to the
accumulation and precipitation effect by strain CW126-A03. Overall, the dissolution and
reduction effect of Fe approached the accumulation and precipitation.

Mn: The total ion concentration of Mn in the bacterial groups increased rapidly and
then decreased within one day. The ion concentration in the bacterial groups was lower
than that in the control groups after one day. Probably because strain CW126-A03 promoted
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the dissolution and reduction of Mn (II)(IV) in ferromanganese nodules powder; thus, the
concentration of manganese ions in solutions increased rapidly in a short time. Meanwhile,
manganese ions concentration decreased rapidly due to the accumulation and precipitation
effect by strain CW126-A03. Overall, the dissolution and reduction effect of Mn is less than
the accumulation and precipitation. Therefore, a large number of dissolved manganese
ions were accumulated and precipitated, resulted in the rapid decline of manganese ions
concentration, which was lower than that in the control groups.

Co: The total ion concentration of Co in the bacterial groups increased rapidly and
then decreased within one day. The ion concentration in the bacterial groups approached
that in the control groups after one day—probably because strain CW126-A03 promoted
the dissolution and reduction of Co in ferromanganese nodule powder; thus, the concen-
tration of cobalt ions in solutions increased rapidly in a short time. Meanwhile, cobalt
ions in solutions decreased rapidly due to the accumulation and precipitation effect by
strain CW126-A03. Overall, the dissolution and reduction effect of Co approached the
accumulation and precipitation.

Ni: The total ion concentration of Ni in the bacterial groups decreased continuously,
which was lower than that in the control groups after one day—probably because the
dissolution and reduction effect of Ni is less than the accumulation and precipitation, so a
large number of dissolved nickel ions were accumulated and precipitated, resulting in the
continuous decline of nickel ion concentration, which was lower than that in the control
groups.

Cu: The total ion concentration of Cu in the bacterial groups increased continuously,
which was higher than that in the control groups after one day. This is probably because
strain CW126-A03 promoted the dissolution and reduction of Cu in ferromanganese
nodule powder; thus, the concentration of copper ions in solutions increased continuously.
Overall, the dissolution and reduction effect of Cu was greater than the accumulation and
precipitation. Therefore, the copper ions concentration increased continuously and much
greater than that of the control groups.

By summarizing the changes of main ions concentration in the bacterial and control
groups, it can be seen that the dissolution and reduction of Fe by strain CW126-A03 were
strong, the accumulation and precipitation were strong, and the dissolution and reduction
effect approached the accumulation and precipitation. The dissolution and reduction of
Mn were strong, the accumulation and precipitation were strong, and the dissolution
and reduction effect was less than the accumulation and precipitation. The dissolution
and reduction of Co were strong, the accumulation and precipitation were strong, and
the dissolution and reduction effect approached the accumulation and precipitation. The
dissolution and reduction of Ni were weak, the accumulation and precipitation were strong,
and the dissolution and reduction effect was less than the accumulation and precipitation.
The dissolution and reduction of Cu were strong, the accumulation and precipitation
were weak, and the dissolution and reduction effect was greater than the accumulation
and precipitation.

3.3. TEM Observation and Analysis of the Cells

The morphology of strain CW126-A03 was observed by TEM (Hitachi, HT7700). The
cells were about an elliptical rod (0.6–1.0 × 0.9–1.6 µm, Figure 4A,B). The mineral particles
formed on the cell’s surface in the bacterial groups were observed on the first and fourth
day during the interaction experiments. Figure 4C,D constitutes different cell images
observed on the 1st day. There were ultra-micro-sized mineral particles on the cell surface,
which were about 0.2–0.3 µm in size (shown in the red box in the figure). Figure 4E,F
shows different cell images observed on the 4th day. The size of mineral particles on the
cell surface increased to about 1 µm (shown in the red box in the figure), embedded in the
cell, and had a crystal shape.
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medium; (C,D), cells morphology on the 1st day of interaction experiments; (E,F), cells morphology
on the 4th day of interaction experiments.

The results showed that there were no mineral particles on the surface of cells cultured
in the growth medium. In the interaction experiments, ultra-micro-sized mineral particles
were formed on the cells’ surface. These observations implied the biomineralization process
of strain CW126-A03. With the increase of reaction time, the size of mineral particles
increased, and crystalline minerals formed.

TEM images with the selected area electron diffraction (SAED) patterns were used to
analyze and identify formed ultra-micro-sized mineral particles (Figure 5). The multi-point
determination of multiple samples and the same sample was carried out. The results of
element composition in energy dispersive spectroscopy (EDS) are similar, the element
strength is slightly different. The early formed nano-precipitates were amorphous, and
the EDS spectrum showed that Ca content was high, as shown in Figure 5A(a). They
transformed to crystalline minerals with time changes, and the EDS spectrum showed
the elemental composition of the minerals, including Na, Al, Si, K, and Fe (Figure 5B(b)).
According to the electron diffraction patterns analysis of the mineral particles, the speciation
of the minerals showed a polycrystalline phase. Combined with the EDS analysis, it
may be silicate minerals containing Fe. Some minerals with good crystallinity showed a
strong bright spot in the electron diffraction figure. Based on the d-spacing analysis of the
electron diffraction patterns, we speculated that there were iron-containing silicate minerals,
such as Pyroxene [Ca (Mg, Fe, Al) (Si, Al)2O6], Esseneite (CaFeAlSiO6), Clinopyroxene
[(Ca, Mg, Fe)2Si2O6].
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3.4. XRD Analysis of Ferromanganese Nodules Mineral Composition

After the interaction experiments, the ferromanganese nodule powder in the solution
was collected by centrifugation, and the mineral composition of the nodules was analyzed
by XRD, as shown in Figure 6. The goethite content increased slightly in the interaction with
J. campisalis CW126-A03, which may be related to biomineralization. Bacteria can form the
amorphous iron hydroxide or oxide, such as ferrihydrite, in the iron-containing solution.
The ferrihydrite must be converted into stable minerals such as hematite or goethite.
Although hematite is a relatively stable mineral, the goetherization of hematite still exists in
nature. Iron exists in Fe2+ firstly, then oxidizes to Fe3+, forms goethite or jarosite, and then
converts to FeOOH. The reaction formula is Fe2O3 + H2O = 2Fe (OOH) [36]. Combined
with the changes in ion concentrations in solution and TEM results, we speculated that
there is biomineralization in the interaction experiments.
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4. Discussion
4.1. The Mechanism of Microbial-Ferromanganese Nodule Interaction

Mineral nucleation involves the spontaneous growth of many nuclei that are large
enough to resist rapid dissolution. The formation of these ‘critical nuclei’ requires a certain
degree of supersaturation, in which the ion concentration in solution exceeds the solubility
product of the mineral phase [37]. After the formation of critical nuclei, the continuous
addition of ions is accompanied by the decrease of free energy, leading to the growth of
minerals. This process is spontaneous until the system reaches equilibrium. However, a
certain amount of energy is needed to form a new interface between the potential mineral
nucleus and the aqueous solution. The required energy is an activation energy barrier.
Microorganisms can reduce the activation energy barrier and promote mineral nucleation
and growth. The enzymes secreted by microorganisms are highly catalytic, reducing the
Gibbs free energy of some thermodynamic reactions and overcoming the kinetic obstacles
of chemical reactions [38]. Microorganisms can also reduce the free energy by the cell
surface abundant functional groups [39].

The microbial-ferromanganese nodule interaction in this paper comprises two pro-
cesses: mineral dissolution promoted by microorganisms and biomineralization.

Microorganisms can decompose almost all types of minerals and rocks and release
various mineral elements [40]. Microorganisms extract nutrients by attaching and dissolving
minerals with the effect of produced surface polymers, enzymes and siderophores [41,42].
The critical properties of siderophores include dissolving iron minerals, supporting bacterial
growth, and decreasing the Gibbs energy of iron oxide dissolution reactions. Siderophores
can dissolve several manganese oxides via reduction and nonreduction pathways to form
siderophore-Mn (III) complexes in several aquatic environments [43,44]. The growth curve of
strain CW126-A03 (Figure 2) and the ion concentration curves (Figure 3) were compared and
analyzed. Within 2 h of the interaction experiments, the growth curve of strain CW126-A03
was in the lag phase, and the cells were few, and the ion concentration of elements in bacterial
and control groups has not changed much. Within 2–24 h of the interaction experiments, the
growth curve was in the log phase, and cell number increased rapidly. Bacteria cells may
attach to mineral surfaces and secrete metabolic secretions such as extracellular polymeric
substances (EPS), enzymes, and siderophores to promote mineral dissolution [45,46]. On
the first day of the interaction experiments, the concentration of Fe, Mn, and Co ions in
the bacteria groups increased rapidly and then decreased (Figure 3), of which the strain
CW126-A03 secretions may promote the release of elements. The ocean was rich in iron for
a long time in the past [47], and the concentration of dissolved Fe (II) was estimated to be
0.02 mM [48,49], which was about 1000–10,000 times the modern seawater concentration. The
content of Mn and Fe in modern seawater is relatively low; the average concentration of Mn
ranges from 0.02 to 10 µg/L [50], whereas the average concentration of Fe is approximately
3 µg/L [51]. The maximum Fe and Mn concentrations in our bacterial groups were about
70 µg/L and 210 µg/L, respectively (Figure 3). Although this value cannot be compared with
ancient seawater, it was still much higher than modern seawater. The ion supersaturation’s
critical nuclei may occur, followed by decreased ion concentration in the bacteria groups.
Generally, the amorphous solid phase is easy to form in mineral growth because of its
high degree of hydration, high solubility, and lack of intrinsic form [52]. If the solution
composition exceeds its solubility, minerals such as ferric hydroxide [Fe (OH)3] will easily
nucleate. In most natural systems, ferric hydroxide is a more stable precursor of iron oxides,
such as goethite (FeOOH) and hematite (Fe2O3). The ferric hydroxide associated with the
microbial surface can be transformed to the iron oxide encrusted in the cell surface [53]. The
increase of goethite content in XRD results (Figure 6) may be related to this mechanism.
The formation of iron oxide needs higher interfacial free energy, of which the bacteria may
contribute significantly to the mineral precipitation by biomineralization.

The bacterial cell wall is commonly overlaid by additional organic layers, such as
EPS, sheaths, and S-layers, which differ in hydration, composition, and structure [54]. The
bacterial cell surface acts as a highly reactive interface and provides a nucleation site for



Microorganisms 2021, 9, 1247 11 of 14

mineral precipitation [55]. The cell surface has organic ligands, such as carboxyl, hydroxyl,
amine, and phosphate functional groups. Most of these organic ligands can deprotonate,
making the cell surface negatively charged [53] and thus become reactive towards charged
cations [56,57]. Some cations preferentially bind to different sites on the cell surface, such
as trivalent and divalent metal cations that are firmly bound to the cell wall of various
bacteria. Subsequently, the interfacial energy of solid phase heterogeneous nucleation
decreases, and the surface area of the nucleus in contact with the bulk solution, decreases.
These cations react with more ions and may lead to mineral precipitation. Bacteria promote
the precipitation of minerals on the cell surface [58] and form microbial-mineral complexes.
The mineralization goes through a series of stages, usually from the adsorption to EPS or
wall material, followed by the nucleation of small (<100 nm in diameter) grains, and with
sufficient time, the complete encrustation of the cell [13]. In the interaction experiments,
metal ions such as Fe, Mn, Co, and Ni in bacterial groups appeared to precipitate on the
surface of bacterial cells to form ultra-micro-sized mineral particles (Figure 4C,D). With
time increase, newly crystalline minerals gradually formed (Figure 4E,F). Due to the high
ion concentrations of the biophilic elements such as Fe and Mn in the reaction solution,
they are easier to be biomineralized by strain CW126-A03 to form Fe-containing or Mn-
containing minerals. The possible existence of Fe-containing silicate minerals, such as
pyroxene, esseneite, and clinopyroxene, is shown in TEM results (Figure 5). The bacterial
wall contains a large amount of mineral precipitate by biomineralization, and the cell
becomes the core of the newly formed mineral [24].

4.2. Biomineralization Promote the Formation of Ferromanganese Nodules

Microorganisms play an important role in the precipitation of iron and manganese in
marine sediments and may accelerate the formation of ferromanganese nodules. Much of
the previous work focused on the BCM effect in nodules formation, but data for BIM were
largely not considered. We conducted the interaction experiments to verify the possible
BIM effect of microbial cell characteristics in the formation of ferromanganese nodules.
Non-ferromanganese nodules and non-MnOB bacterium were selected as experimental
strain; the results indicated that the microbial-ferromanganese nodule interaction was
the process of dissolution and re-mineralization. The bacterial cells may act as templates
to induce nodules’ mineral precipitation when the ion concentration in the surrounding
environment was over-saturated. Wang et al. succeeded in identifying microorganisms
covered with S-layers in the nodules, increasing the possibility of forming ferromanganese
nodules by BIM [59]. The ion concentration of Fe and Mn in the ocean was very high, and
the supersaturation is more likely to occur to form the critical nucleus, and the marine
microorganisms may promote the deposition and formation of ferromanganese nodules’
mineral through biomineralization. Combined with the total biomass of marine microor-
ganisms, biomineralization may play an important role in distributing metal elements from
the hydrosphere to the marine sediment. For example, the extensive records of banded iron
formation (BIF) from 3.8 to 0.5 billion years ago demonstrated the enormous magnitude of
ferric iron deposition to the seafloor. Indirect evidence suggested that microbial activity
was involved in the initial deposition of iron deposits, followed by consolidation to form
BIF [60–62]. We speculated that the BIM of microorganisms, i.e., bacteria, may promote the
formation of marine ferromanganese nodules.

5. Conclusions

The microbial-ferromanganese nodule interaction is as follows: microorganisms pro-
mote the dissolution of ferromanganese nodules via secretions produced, and release major
elements such as Fe and Mn; the cell surface as a nucleation site of minerals precipitation
when the ion concentration over-saturated. The biomineralization process begins from ions
adsorption on the cell wall, then to tiny mineral grains nucleation, and finally to complete
encrustation. The BIM appeared to promote the formation of ferromanganese nodules’
minerals. This BIM hypothesis provides another perspective for the further understand-
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ing of the formation of ferromanganese nodules in the deep ocean, and may be of great
significance for future nodule exploration.
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