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M
itochondria are at the crossroads of energy
metabolism, and they play a major role in the
regulation of cell life and death. Mitochon-
drial oxidation of fat and glucose substrates

generates a transmembrane electrochemical gradient, and
this is used to synthesize adenosine triphosphate (ATP),
the chemical fuel for cell and tissue functions. In the pro-
cess, electron transfer through the mitochondrial respiratory
chain is inevitably associated with production of reactive
oxygen species (ROS). Several physiological roles have been
described for ROS (1), but ROS generation in excess of
antioxidant defenses is harmful and may cause oxidative
stress with damage to DNA, lipids, proteins, and organelles
(1,2). Hyperglycemia is a strong inducer of oxidative stress
through enhanced ROS generation at mitochondrial as well
as nonmitochondrial levels (2–4), and pathways activated
by oxidative stress have a major role in the pathogenesis
of diabetes complications (2,5). In addition, oxidative stress
may contribute to hyperglycemia-induced impairment of
b-cell insulin secretion (2), and excess mitochondrial ROS
production has been shown to acutely and chronically
cause muscle insulin resistance in some (6–8) but not all
reports (9). Lowering oxidative stress in diabetes could
therefore beneficially modulate pathogenic disease mecha-
nisms, and it could potentially reduce morbidity and mor-
tality by limiting tissue and cardiovascular complications.

Understanding and modulating the pathways that regu-
late mitochondrial ROS production is particularly relevant,
and novel approaches involving mitochondrial dynamics
have been hypothesized in recent years. Tissue mitochon-
drial morphology is continuously reshaped by fusion into
tubular-shaped networks of interconnected organelles and
by fission into smaller, fragmented mitochondria (10,11).
Mutations of fusion or fission proteins cause disease, and
the importance of mitochondrial dynamics is underscored
by embryonic lethality of knock-out models for its major
regulators. The physiological role of fusion and fission is not
yet completely understood, but impairment of either pro-
cess leads to altered mitochondrial function, characterized
by the inability to maintain membrane potential and ab-
normal ROS production in fibroblasts (11). Diabetes is
associated with altered mitochondrial morphology, sug-
gesting excess fission in several tissues. Loss of tubular
shape has been observed in b-cells and skeletal muscle from

people with type 2 diabetes (12,13). Enhanced mitochondrial
fission has also been reported in neurons from diabetic an-
imal models (14) and in endothelium from individuals with
type 2 diabetes (15), and impaired expression of the fusion
regulator mitofusin-2 was reported in diabetic muscle (16).
In b-cells, mitochondrial fission has been shown to contrib-
ute to apoptosis (17) as well as impaired insulin secretion
(18) in the presence of hyperglycemia. Importantly, en-
hanced mitochondrial fission and fragmentation were dem-
onstrated to be causally involved in ROS overproduction
induced by hyperglycemia in liver and muscle cells (19),
thereby indicating a causal link between altered mitochon-
drial dynamics and diabetic oxidative stress.

In this issue of Diabetes, Galloway et al. (20) report the
impact of the inhibition of mitochondrial fission through
a negative mutant of its regulator dynamin-like protein
1 on mitochondrial bioenergetics and diabetic oxidative
stress. In an in vitro model, inhibiting fission in hepatocytes
caused mild proton leak across the mitochondrial mem-
brane, i.e., the partial dissipation of mitochondrial mem-
brane potential uncoupled from ATP synthase activity (20).
However, these effects were not associated with lower ac-
tivity of electron transport chain components, or with rel-
evant short-term impairment of ATP production capacity
(20). Since membrane hyperpolarization contributes to mi-
tochondrial ROS overproduction in diabetes (5), the authors
went on to test the hypothesis that impairment of mito-
chondrial fission through transgene expression of the same
dynamin-like protein 1 mutant would lower ROS generation
in a streptozotocin-induced diabetic rodent model. Under
these conditions, the authors focused on kidney and liver and
observed lower ROS production with low markers of oxi-
dative stress in both tissues (20). Importantly, improvements
of the diabetic phenotype were reported in terms of apparent
animal wellbeing and indexes of renal function (20).

The relevance of the article by Galloway et al. is twofold.
First, the article provides novel insight on the role of fission
in regulating both mitochondrial bioenergetics and function
through changes in proton leak and membrane potential.
Moreover, it demonstrates beneficial effects of inhibiting
mitochondrial fission on oxidative stress and diabetic phe-
notype in vivo. The study therefore introduces fission as a
potential target for treatment of diabetes-associated mor-
bidity triggered by oxidative stress. The authors also rec-
ognize that the relevant role of mitochondrial dynamics
in maintenance of cell and tissue homeostasis warrants
extensive additional investigations on the long-term bio-
logical impact and safety of this approach before it may be
considered for translation into clinical applications. Addi-
tional questions relate to the potential long-term conse-
quences of enhanced uncoupling on mitochondrial function,
and possibly on tissue and body energy balance. Moreover,
mitochondria are not the only source of ROS involved in the
pathogenesis of diabetes complications; the roles of NADPH
oxidases, xanthine oxidase, and cyclooxygenase have been
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described in various tissues (2,3). The long-term impact of
nonmitochondrial sources of oxidative stress could limit the
beneficial impact of lower mitochondrial ROS production,
an issue that will also need to be elucidated.

With the above considerations in mind, the findings of the
study by Galloway et al. strengthen the rationale for re-
search on mitochondrial dynamics and its alterations in
diabetes, and suggest that the sites of common diabetes
complications may be logical targets for future investiga-
tion. Further studies are also supported in pancreatic
b-cells, skeletal muscle, and liver, where altered mitochon-
drial morphology and function are associated with, and may
be causally linked to, impaired insulin secretion, altered lipid
metabolism, and insulin resistance (2,17,18,21,22). From a
molecular standpoint, the mediators linking changes in mi-
tochondrial dynamics to changes in proton leak and mem-
brane potential also need to be identified and will potentially
become key intervention targets. Addressing these issues
will likely result in useful information on the pathophysio-
logical role of mitochondrial dynamics in diabetes and di-
abetes complications that could eventually lead to innovative
and effective therapeutic approaches.
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with enhanced electron transfer through the electron transport chain, and enhanced mitochondrial fission. Higher inner membrane potential is
not completely utilized for ATP synthesis, may cause proton accumulation in the intermembrane space and hyperpolarization that may contribute to
enhanced ROS production. As demonstrated in ref. 20, partial inhibition of mitochondrial fission (C) may result in moderate proton leak with reduced
hyperpolarization and lower mitochondrial ROS production. G, glucose; e
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