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Natural selection has shaped the strategies for survival and growth of microor-

ganisms. The success of microorganisms depends not only on slow evolutionary

tuning but also on the ability to adapt to unpredictable changes in their environ-

ment. In principle, adaptive strategies range from purely deterministic

mechanisms to those that exploit the randomness intrinsic to many cellular

and molecular processes. Depending on the environment and selective press-

ures, particular strategies can lie somewhere along this continuum. In recent

years, non-genetic cell-to-cell differences have received a lot of attention, not

least because of their potential impact on the ability of microbial populations

to survive in dynamic environments. Using several examples, we describe the

origins of spontaneous and induced mechanisms of phenotypic adaptation.

We identify some of the commonalities of these examples and consider the

potential role of chance and constraints in microbial phenotypic adaptation.
1. Microbial biodiversity and phenotypic plasticity: one of life’s
many marvels

Microorganisms occupy an enormous number of niches on Earth; they are its

most abundant life form. This evolutionarily success points to the remarkable

flexibility and adaptability of microorganisms, not the least because their

niches vary greatly. Although niches can be stable on a long time scale,

many of them are characterized by highly dynamic conditions, with frequent

fluctuations in environmental variables (e.g. nutrients, temperature, osmolarity

etc.). Microbes are therefore forced to continuously adapt their phenotype to

changing conditions, to survive and to prevent being out-competed by other

species or genetic variants. The mechanisms for phenotypic adaptation are con-

tinuously tinkered by evolution, via mutation and selection. Their variety

underscores the intriguing resourcefulness of microbe subpopulations in

coping with environmental dynamics. Adaptation to new niches and sustaining

their occupancy, therefore, relies on phenotypic adaptation, on a short time

scale, and its slow evolutionary tuning, via mutations on a longer time scale [1].

Our view of microorganisms, and in particular of their amazing phenotypic

plasticity, is also still evolving. The classical view, which emphasizes the deter-

minacy of the phenotype from the genotype and the environment, has in the

past decade been challenged by observations of partial indeterminacy, as

underscored by phenotypic heterogeneity [2,3]. Single-cell studies invariably

indicate that the molecular state varies between isogenic cells, even at constant

conditions for sister cells, sharing the same mother cell [4]. This heterogeneity is

caused by various stochastic phenomena in a cell, which can even lead to the
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emergence of subpopulations of cells with qualitatively

different phenotypes, known as phenotypic diversification

[5]. Population diversification can be a potent fitness enhan-

cer for a population of microorganisms. For instance, to

survive sudden extinction-threatening conditions, bacteria

can enter a dormant, resilient physiological state to become

a ‘persister cell’ [6]. Stochastic phenomena can also be fit-

ness-reducing. They can distort information transmission

and perturb regulatory mechanisms in cells to such an

extent that adaptation dynamics to a new state is affected,

possibly leading to maladaptation [7].

Phenotypic heterogeneity indicates that an understanding

of microbial phenotypic adaptation requires studies of single

cells. Inevitable molecular stochasticity can cause isogenic

cells to adapt differently. The precise state that a cell is in,

when conditions change, therefore determines its adaptation

dynamics; whether it successfully adapts or not, and, if it

does, how long this adaptation takes [8]. This is probably

even more pronounced for eukaryotic microorganisms.

Their phenotype is cell-cycle-stage dependent, which consti-

tutes an additional ‘deterministic’ factor of phenotypic

variability [9]. Cell-to-cell differences in adaptation dynamics

force us to revisit ‘understood’ classical environmental tran-

sitions studies, such as nutrient transitions, which were

mostly population-based, and take into account the impact

of molecular stochasticity [7,8,10,11]. Below, we discuss how

this new paradigm has led to surprising insights and novel

systemic relations between cellular growth and stress tasks.

Eludicating how the stochasticity of specific molecular cir-

cuits influences fitness is not a simple task. This is perhaps

surprising given the simplicity of the definition of microbial

(geometric) fitness; which is the factor of increase in the

number of viable offspring during some period of particular

(dynamic) environmental conditions [12–14]. The complication

arises from the fact that phenotypic heterogeneity in the context

of fitness is still poorly understood and difficult to quantify, with

many open questions that are hard to answer. Is phenotypic het-

erogeneity an evolved trait or is it the inevitable consequence of

physico-chemical constraints and limitations in molecular cir-

cuits? In other words, how much of the cell-to-cell variability

we observe in phenotypic traits arises from selection of noise-

generating mechanisms (e.g. because it enhances fitness under

certain conditions) and how much of it is due simply to phy-

sico-chemical limits in molecular circuits that cannot easily be

improved by evolution (because it will result in a trade-off)?

What are the selective pressures that promote heterogeneity?

To what extent are the fitness consequences of phenotypic het-

erogeneity dependent on time scales and subpopulation sizes?

First efforts to answer these questions have been undertaken

[12,15–18], but it remains a challenge for modern biology to

expand on them and finally give definite answers.

Natural selection enhances the occurrence of microorgan-

isms with phenotypic adaptation mechanisms, including

those that generate stochasticity, provided that they confer a

fitness advantage. Such mechanisms may involve different

types of molecular circuits that contribute to fitness such as sig-

nalling, metabolism, motility and stress. So even though fitness

itself is one-dimensional (it is a single number), a cell sets this

number via a multidimensional mechanism, which resembles

a ‘single-objective, multi-task optimization’ problem. Similar

problems occur in other disciplines such as in control engineer-

ing and finance. The resemblance is even deeper; the theories

used in evolution to understand the fitness of organisms in
dynamic environments have many similarities with theories

used in other disciplines [12,13,17,19].

A successful fitness theory allows for descriptions of pheno-

typic adaptation ‘strategies’ at various levels of abstraction;

from coarse and phenomenological descriptions to detailed

molecular-mechanistic models [12,17,20]. Such a theory allows

for the evaluation of adaptive strategies in terms of the fitness

benefits of different molecular circuits and their fitness costs,

associated with their consumption of limited biosynthetic

resources [21,22] and inevitable stochastic disturbances. In our

opinion, such an integrative, systemic view is ultimately

required to understand the phenotypic adaptation of a bacterial

species. It appears that, with existing fitness theories and

experimental capabilities, this can indeed be achieved [13,15–

20,23,24]. Much development is still required to achieve a com-

prehensive understanding of phenotypic adaptation, which we

shall return to in the closing section of this review.

In this review, we address several aspects of the role of

stochasticity in phenotypic adaptation by microorganisms; i.e.

how it influences fitness, given the adaptational challenges

that microbes face in their dynamic environments. We focus

on phenotypic adaptation, hence on the process of a cell with

a fixed genome that is changing its physiological behaviour.

We will discuss several cases of phenotypic heterogeneity. In

some examples, the fitness consequences are evident while for

others they are more speculative. We aim to describe many of

the possible roles of non-genetic heterogeneity in the adaptation

strategies of microorganisms in dynamic environments.
2. Pioneering single-cell work
Nowadays, we exploit fluorescence microscopes and fluor-

escent reporters to study the surprising behaviours of single

cells. This was not possible decades ago. However, already in

the 1950s many researchers started asking questions about

the functioning of single cells. The questions they asked are

very similar to those that are most pressing now. For instance,

they realized that the behaviour of individual cells in isogenic

populations could deviate from the population average. The

existence of subpopulations, that they likely form via chance

events, that single cells vary in molecule copy numbers and

show variable birth and division length, instantaneous

growth rates and generation times were all being considered

experimentally and theoretically [25–33]. How we study

single cells now, using fluorescence microscopy and fluorescent

reporters [34], saw an enormous growth after the introduction

of several influential papers in the early 2000s [35–38]. Then,

the focus was mostly on noise of molecular circuits, without

much consideration of the cellular effects of molecular chance

events. Recent work is mostly dealing with how systemic

behaviour with a fitness effect varies from cell to cell. This

review will be mostly concerned with the latter work.
3. Individuality in the responses of isogenic cells
to nutrient transitions

Real-time imaging of growth and fluorescent reporter-protein

expression by single cells, with fluorescence microscopy [34],

has drastically changed the way we think about populations

of isogenic microbial cells (figure 1) [2,5,37]. These popu-

lations turn out to be inhomogeneous, with cells behaving

as ‘individuals’. The molecular states of cells vary, in a
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Figure 1. Conceptual framework for single-cell growth and phenotypic diversification upon a sudden nutrient transition in isogenic populations. During steady-state
exponential growth of a population of isogenic cells, at constant environmental conditions, the total cell number increases exponentially. Individual cells progress
asynchronously through their cell cycle. Cells vary in size, molecular composition and doubling time, due to inevitable stochastic effects, even those that are at the
same cell-cycle progression and were born from the same mother [4,35,36]. When individual cells are suddenly confronted with a nutrient transition, not all of them
have the capacity to adapt, even though they do have the metabolic machinery to grow on the new carbon source. This can lead to lag phases, temporary growth
arrest [39] or maladapted states [7], and even the formation of persister cells in bacteria [11,40,41].
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dynamic, spontaneously fluctuating manner [4,35,36] (this

aspect has been reviewed earlier [37,42]). A recent insight is

that populations of isogenic cells can diversify into subpopu-

lations with distinct phenotypes [5]. Such an adaptation

strategy can be analysed in terms of a framework for fitness

in dynamic environments [12,20]. A diversifying response

may either be an evolved strategy or purely result from mol-

ecular noise, causing variation in cellular responses. In this

section, we will discuss some striking examples that are

provided by nutrient transition studies (figure 1).

3.1. A chance event can determine whether a cell
adapts

A surprising finding was made with the lactose operon in

E. coli [43], a system which was thought to be well understood.

Whether a single cell initiates growth on lactose turns out to

depend purely on a chance event in its recent past. This insight

was gained by tagging the lactose permease with a fluorescent

protein and tracking its expression in single cells. At intermedi-

ate induction of the lac operon a colony consists of two

different phenotypes: cells with high and low expression

[44]. A cell has to reach a threshold permease level in order

to commit to lactose growth. Only when the expression level

is high enough, a positive feedback mechanism becomes

active that enhances permease expression to a level required

for growth. This expression threshold has to occur before the

cell is aware of lactose in its environment, because it lacks sen-

sors for it and lactose cannot pass the membrane by diffusion.

At intermediate induction, the lac repressor dissociates

randomly from the lac promoter and occasionally leads to a

burst of transcription activity that, if it lasts long enough,

can lead to the threshold level expression of permease, priming

the cell for lactose growth when it is present. As a result of this,

the response times of E. coli cells to a sudden lactose addition

are very broadly distributed, because it can take a long time

before cells reach the threshold expression level of the per-

mease [10]. Chance therefore decides when cells adapt. This
is an example of stochastic adaptation. Evolution simulations

indicate that bistability of the lac operon may not be so

prominent in natural settings [45].

3.2. Responsive adaptation leads to more homogeneous
responses of all cells

When cells perceive the extracellular environmental change,

e.g. via a dedicated sensor, cells can respond much more

homogeneously. This is illustrated by a study with the bud-

ding yeast, Saccharomyces cerevisiae, in which the number of

transcripts of the gene MET5 was counted in single cells.

MET5 is required for the synthesis of methionine, when it

is absent from the environment [46]. By changing the sulfur

source in the medium from methionine to sulfate, the

dynamics of MET5 induction could be monitored. It was

observed that individual cells exhibited nearly identical

response times. Although there were still differences in adap-

tation times (i.e. the time needed to induce gene expression)

between individual cells, all cells eventually adapted. The

spread in adaptation times is mostly a consequence of tran-

scriptional noise and much less due to differences in the

timing of perception. Clearly, cells perceived the presence

and absence of methionine with high precision. The entire

population shifts uniformly to the new state within a rela-

tively short time period (compared to the generation time).

The presence of an initial variability in transcription activity

is expected to have only a minor influence on cellular fitness.

3.3. The phenotypic state of a cell can cause
it to maladapt

Examples exist that indicate that a subpopulation of cells is

not able to initiate growth on a new carbon source, or one

that is suddenly increased in concentration. When yeast

cells are, for instance, exposed to a glucose transition, a

small fraction arrests growth, because they were in a deviat-

ing metabolic state [7]. Different metabolic states are most
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probably caused by varying enzyme concentrations and can

result in depletion of cellular adenosine triphosphate (ATP)

when the rate of upper glycolysis exceeds the rate of lower

glycolysis by too much. Similar behaviour is observed with

E. coli cells [11,40,41], although this behaviour probably

originates from a different molecular mechanism.
publishing.org
J.R.Soc.Interface

14:20170141
3.4. Distinguishing generalist from specialist adaptation
strategies

When discussing different phenotypes, we usually dis-

tinguish subpopulations that vary greatly in growth rate,

e.g. growing versus non-growing [7,11,40,41]. The situation

can also be more subtle. A nice example exists where different

phenotypes show varying capacities for growth [47]. In this

study, yeast cells were exposed to alternating levels of glu-

cose and maltose. Fluorescent labelling of an enzyme

required for using maltose, combined with time-lapse

microscopy allowed the tracking of different phenotypes. It

was shown that the phenotypes that initiated growth on mal-

tose grew slower when they were switched back to glucose,

compared to the phenotype that never performed the

switch to maltose. This means that adapting to a new

environment may depend on the cell’s history. Different

wild yeast strains displayed differences in lag time after the

switch [47,48]. It was proposed that this is due to different

levels of catabolite repression and that two different strategies

could be identified. A ‘specialist’ strain has high levels of cat-

abolite repression, which gives it a growth rate advantage on

a specific nutrient, while a generalist grows slower on specific

substrates, but switches faster and achieves higher growth

rates on other substrates.
3.5. Cell density-dependent subpopulation formation
Solopova et al. [39] grew Lactococcus lactis in the presence of

two different carbon sources, glucose and cellobiose. Glucose

is the preferred carbon source. Cells sense when the glucose

concentration drops below some threshold (figure 2a) and

initiate gene expression to prepare them for growth on

alternative substrates, such as cellobiose. What Solopova

et al. [39] found was that cell density determined the fraction

of cells that successfully make the transition from glucose to

cellobiose growth. Specifically, the higher the cell density, the

lower the fraction of cells that resume growth on cellobiose.

The explanation for this finding probably lies in the time

required for individual cells to prepare for a transition from

a substrate like glucose to another, such as cellobiose. Imple-

menting the physiological changes required for growth on

cellobiose (e.g. expression of new metabolic genes) takes

time, and any differences between individual cells, at the

moment that low glucose is sensed, will result in some cells

needing more or less time than others to prepare (figure

2b). The time available to all cells is determined by how

quickly the remaining glucose disappears from the environ-

ment. At high cell densities, this will happen very quickly

and only a small fraction of cells will manage to make the

necessary changes for growth on cellobiose before glucose

is depleted; cells that fail to do so will be stuck in a physio-

logical state that is incompatible with cellobiose

consumption. If, on the other hand, cell densities are low

when the threshold is sensed, the rate at which glucose
disappears will be slow and most cells will have sufficient

time to prepare for the new condition.
4. Chance events that can impact the fate
of a cell

The previous examples of phenotypic adaptation indicate

that chance events co-determine the fate of single cells

upon an environmental change. The types of chance events

found so far can be categorized into four classes: (i) molecular

origins, (ii) cellular and systemic effects, (iii) cell-cycle stage

and DNA-replication dependencies and (iv) history effects

(figure 3).

4.1. Molecular stochasticity
Biochemical reactions are inherently stochastic, which leads

to fluctuations in concentrations of macromolecules [49]. At

large numbers of reactant molecules, the behaviour of bio-

chemical reactions is predictable, because fluctuations in

copy numbers are negligible (box 1). Stochasticity in molecule

copy numbers can make systems inherently non-determinis-

tic when those numbers are low. Transcription factors and

mRNAs are typically present at such low numbers. The life-

times of these molecules determine the rate and duration of

fluctuations [50,51]. While fast fluctuations typically average

out during one cell cycle, slow fluctuations that exist on

time scales equal to or longer than the cell cycle can provide

a ‘molecular memory’ [52–55]. The size of a fluctuation in the

copy number of a molecule is set by the size of the imbalance

between the synthesis and degradation rate of a molecule,

and how quickly the system dissipates the fluctuation [49].

The fluctuation size can be quantified as the relative width

(dispersion) of the probability distribution that describes

the copy number of a molecule in each cell and is called

noise. Noise can propagate in networks [56], and get ampli-

fied or attenuated along the way, leading to systemic

phenotypic variations in populations of clonal cells. In

box 1, we briefly summarize the great variety of molecule

stochasticity effects that have been discovered.

4.2. Chance events at cell division
In symmetrically dividing bacteria, such as E. coli and Bacillus
subtilis, division produces, on average, two equally sized

new-born daughter cells. While mechanisms exist that

ensure the equal partitioning of DNA content [76], other mol-

ecules are partitioned in a more random manner such as via

random diffusion in the cytosol, or based on cellular

localization (like membrane or pole proteins [77,78]).

Freely diffusing molecules are inherited in approximately

equal concentrations by the daughters, even if they differ in

birth volumes, provided their copy numbers are high. The

noise (variance divided by the mean squared) in the

number of proteins that a daughter with birth volume V1

received from its mother, with N molecules and volume V,

equals (1/N )((V/V1) 2 1), which quickly becomes negligible

for large N. Differences in the size of the two daughters will

lead to differences in their absolute molecule numbers, which

can diversify their behaviour.

An interesting example of non-diffusive partitioning is

that of RNA polymerase (RNAP). Bakshi et al. [79] showed

that �82% of RNAP is bound to DNA; the remainder
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concerns two pools, which are in equilibrium with the bound

pool. RNAP abundance therefore correlates strongly with

DNA content (and not with cell volume). Volume differences

between two daughter cells will therefore result in RNAP

concentration differences, with higher concentrations of

RNAP in the smallest daughter. Yang et al. [80] showed

that cell-to-cell variability in the RNAP concentration leads

to heterogeneous protein expression across cells.

The partitioning of molecules during division, be it

through active or passive processes, nearly always has a

chance component. For molecules present at low numbers,
partitioning errors can be large in the absence of mechanisms

that coordinate segregation [77,78]. Eukaryotic cells, like

yeasts, contain a variety of specialized organelles, including

mitochondria, vacuoles and lysosomes, that are present at

much lower numbers than most proteins and metabolites.

Cells can partition those low abundant structures more

evenly, using dedicated actin-dependent transport processes

[81,82]. Even if segregation involves such coordinated

mechanisms, Huh & Paulsson [83] showed that accurate

partitioning of this class of low abundant organelles and mol-

ecules is extremely difficult to achieve and that cell-to-cell



Box 1. Molecular stochasticity.

Quantification of stochasticity: the noise measure Noise measures the magnitude of cell-to-cell variability. For an isogenic popu-

lation, it quantifies the dispersion (relative width) of the distribution of measured cellular characteristics as var/m2 with var

as the variance and m as the mean of those measured values. As variances of independent events are additive, variance is

used rather than standard deviation. To get an idea: a system with constant synthesis and first-order degradation,

i.e. !ks X �!kdnX
, gives as steady-state noise for the number of protein X, nX: m/var2 ¼ 1/m ¼ kd/ks, indicating that noise is

high when molecule copy numbers are low. The noise measure we refer to in the text is defined at a particular moment

in time (called static noise).

Transcription stochasticity and bursts The copy numbers of transcription factors, genes and mRNA are generally low in

microbial cells; transcription stochasticity is therefore significant. As mRNAs are synthesized when the promoter is in its

‘ON state’, two time scales exist in mRNA dynamics; waiting times for consecutive mRNA synthesis events and for OFF

to ON transition events. When this time-scale separation is pronounced, the gene is defined as ‘bursty’: then during the

ON state mRNA is produced and degraded and during the OFF state it is only degraded, leading to much greater noise

than when mRNA would be produced at a constant rate.

Promoter design Promoter design influences noise in mRNA and protein numbers [57–61]. Different designs affect the

sizes and frequencies of transcription bursts due to, for instance, fluctuations in transcription factor (un)binding and DNA

looping [62,63]. In yeast, the precise sequence and structural properties of the TATA-box influence noise [57,59,64].

Chromatin effects in higher eukaryotes As chromatin reorganization is a slow step involved in gene activity switching, tightly

packed regions of the chromosome exhibit more noisy expression [65]. Genes under the control of nucleosome-free promoters

are expected to exhibit lower (Poissonian) noise [66,67].

Noise in protein copy numbers and network design The extent to which fluctuations in mRNA levels are propagated to protein

levels, and thus potentially lead to phenotypic diversification, is largely determined by mRNA translation efficiency and the

ribosome-binding site [68] or particular mRNA codons [69]. While fluctuations in mRNA levels are typically fast, and average

out during the cell cycle, fluctuations in protein levels are slower and can persist over several generations [35]. The number of

transcription binding sites in the promoter region also affects noise [60,70]. The noise in transcription factor numbers can pro-

pagate to the expression of their target genes [56]. Regulatory motifs, for example, a negative feedback, can attenuate noise or

shift it to different components of the regulatory network [71–74]. The noise characteristics of a gene sometimes reflect the

dynamics of its modulators [75].
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variability is almost inevitable. This conclusion is experimen-

tally supported by the finding that cell-to-cell variability in

mitochondrial content probably arises from errors in parti-

tioning during cell division [84].

Asymmetric partitioning of molecules or organelles also

has a biological function. For example, yeast differentially

enriches particular proteins in mother and daughter cells,

using an active sorting mechanism [85]; a process that has

been linked to ageing in these cells. Mother cells age because

they retain damaged, or lifespan limiting, proteins such that

their daughters start with a younger, ‘reset’ physiology.

Levy et al. [86] found that replicative ageing influences cell-

to-cell variability in protein expression: the abundance of a

protein involved in trehalose biosynthesis, TSL1, correlated

with the number of divisions a cell has undergone and that

this, in turn, correlated with its survival chance upon

sudden heat stress. Others have shown age-related asymme-

try in mitochondrial function [87]. These findings suggest a

general functional role of asymmetry in partitioning as a

means of rejuvenation, but more importantly underscores

the fact that cells of different chronological ages differ

physiologically.

Age-related asymmetric protein partitioning has also

been described in E. coli [88–91]. Escherichia coli cells are

rod-shaped, with two poles. Upon division, each daughter

cell receives an old and a new pole. A cell’s age can be quan-

tified by the number of times its old pole has been inherited.

In the case of E. coli, cell age correlates with growth rate and

older cells appear to accumulate protein aggregates [88–90].

Beyond growth rate effects, the consequences of age-
dependent protein aggregation in bacteria remain unclear,

but the finding that in Mycobacterium smegmatis cell age and

antibiotic susceptibility correlate (albeit weakly) [92] suggests

a possible role in physiological heterogeneity.
4.3. DNA replication and gene dosage
Symmetrically dividing cells double their molecular content

from birth to division at steady-state, exponential growth

(i.e. balanced growth). While the abundance of most mol-

ecules increases in proportion with cell volume, gene copy

number (i.e. gene dosage) is an exception, due to the discrete

nature of DNA replication [93]. As cells generally grow

asynchronously—some have just been born, while others

are halfway through their cell cycle or are about to divide—

DNA content and gene copy number vary between cells at

different stages of the cell cycle. This can cause cell-to-cell

variability in their molecular constitution if the

production rates of proteins are sensitive to changes in

gene dosage [94].

In bacteria, the circular genome is copied in a bi-direc-

tional linear manner; starting from the origin of replication

(oriC) towards the terminus (terC). This is a more or less

continuous process [94], although periods without active repli-

cation are observed under slow growth. DNA replication leads

to a sudden discrete increase in gene copy number. In bacteria,

this change in gene dosage propagates to protein content

[93,94], and the chromosomal position of a gene determines

the concentration dynamics of the associated protein [94]. In

eukaryotes, where replication occurs exclusively during the
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S-phase of the cell cycle, gene dosage-dependent effects

appear to be suppressed by some mechanism, probably

involving chromatin modifications [93].

4.4. Cell-cycle effects in eukaryotes
The eukaryotic cell cycle comprises distinct stages, consisting

of growth (G1 and G2), DNA synthesis (S), mitosis and cyto-

kinesis (M). Cell-cycle progression is achieved by a complex

protein network that imposes checkpoints to ensure orderly

transitions from one stage to the next. In S. cerevisiae, studies

have shown that progression through these stages is

accompanied by global rearrangements in almost all cellular

processes and that structured cell cycle-dependent changes

occur across many layers of organization, including the tran-

scriptome [95–97] and the metabolome [98,99], as well as in

protein localization [100] and organelle morphology [100].

Distinct cell-cycle stages (growth, DNA synthesis, mitosis

and cytokinesis), at which metabolism is different [9],

enhance the cell-to-cell variability in an asynchronously

growing population of cells. Individual cells will be in differ-

ent physiological states according to their position in the cell

cycle. In yeast, cell cycle-dependent gene-expression variation

exceeds variability due to stochastic fluctuations in gene

expression, even for noisy promoters [101].

4.5. Molecular memory and history effects
Cell-to-cell variability is not only influenced by spontaneous

fluctuations inside a cell but also by its history, including that

of its (immediate) ancestors [35,55]. The molecular compo-

sition of a newborn cell is determined by that of its mother

at division.

The inheritance of molecules from their ancestor cell gives

microorganisms a ‘molecular memory’ that can confer a

fitness advantage [24,43,55]. Once again, the lac operon in

E. coli has proved to be an excellent model to demonstrate

this effect. Escherichia coli cells that passed the expression

threshold of lac permease (lacY) in the past were more

likely to commit to phenotype switching upon reinduction

after several generations of growth in the absence of lacY
induction [24,43]. In the absence of an inducer, no new lacY
proteins are produced; the existing proteins dilute by

volume growth and are partitioned into daughter cells.

Owing to the long lifetime of lacY , in comparison with the

generation time, the lacY levels decrease only slowly over sev-

eral generations. Cells that have been repeatedly induced will

commit faster to growth on lactose than cells whose ancestors

did not express lacY in their recent history.

A similar history dependence has been observed during cell

fate decisions by B. subtilis. Cells are primed for differentiation

to a new phenotypic state several generations before they actu-

ally commit to it [102,103]. Alternatively, they can maintain a

phenotypic state for a predetermined period of time [54].

The phenomenon of molecular memory is not limited to

bacteria. Recent studies indicate that the ability of yeast cells

to respond to nutrient changes depends on past nutrient avail-

ability, several generations earlier. This was found during

repeated switches between glucose and galactose [104]. The

underlying mechanism involved the inheritance of cyto-

plasmic proteins and particular chromatin modifications [104].

With this universal mechanism of ‘passive transmission’

of stable molecules from mother to daughter in mind, it is

not difficult to envisage that cell-cycle and environment-
independent (long-term) oscillations in gene expression or

metabolism will have an effect on phenotypic heterogeneity

[9,105–107]. While these oscillations can introduce synchrony

among cells of an extant population [105,106], cells born in

different phases of the oscillations will show variations in

their molecular make-up and probably react differently to

environmental cues due to their distinct phenotypic state.
5. Persister cells: a case study for the fitness
consequences of chance events

The previous sections considered examples of phenotypic

diversification upon changes in nutrient availability. In the

context of nutrient shifts, it is often not clear whether sub-

populations emerge as part of a fitness-enhancing strategy

or whether a fraction of the population maladapts. While

theoretical arguments are often offered to support claims

that phenotypic heterogeneity improves the adaptive flexi-

bility (which is implied to be fitness-enhancing) of cell

populations, experimental demonstrations are limited in

scope and difficult to generalize. In the paragraphs that

follow, we consider the phenomenon of bacterial persistence,

which is an example of non-genetic phenotypic heterogeneity

that confers a fitness enhancement.

5.1. The role of stochasticity in persister cell formation
Isogenic populations of bacteria can contain subpopulations of

cells that are slow-growing and generally highly tolerant to anti-

biotics and other stresses (figure 4); these cells are called

persisters [109,110]. Their formation appears to be a survival

mechanism that protects the population from extinction,

when sudden harsh conditions occur. Most often, but not exclu-

sively, these antibiotic tolerant subpopulations are formed via a

mechanism called stochastic phenotype switching [6,108]. This

is a spontaneous process that occurs even during exponential

growth and is a prime example of stochastic adaptation [5].

Owing to continuous switching, a subpopulation of persister

cells is always maintained. Persisters can, however, also be

formed via responsive adaptation; i.e. in response to particular

environmental conditions such as stresses [111], nutrient tran-

sitions [11,40,41] and at the onset of the stationary phase,

when at least one nutrient is depleted [112].

That persister cells are slow-growing does not fully

explain why they are less susceptible to antibiotics, not

even to antibiotics that directly influence growth processes,

because a faster growth rate can sometimes also reduce

susceptibility [113]. Persistence is therefore explained by a

distinct physiological state [41]. The physiology of persistent

cells, hence their degree of tolerance and the duration of their

persistent state, is dependent on whether they have been

formed during a nutrient transition, removal or depletion

[114]. For example, persister cells formed during a nutrient

transition show a different response to antibiotics from that

of tolerant cells formed upon a removal of a nutrient [41].

The size of these persister subpopulations can vary greatly

with conditions [6,11,40,41,108], ranging from about 1 in a

million under conditions of fast, steady-state exponential

growth [6], to almost the entire population switching to this

state in response to certain nutrient transitions [11]. While

the molecular details of the mechanisms behind persister

formation differ, stochasticity plays a central role.
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Figure 4. The fitness advantage of spontaneous formation of persister cells during steady-state exponential growth. Persister cells can form spontaneously under
constant conditions of steady-state exponential growth, conferring a fitness advantage when a sudden extinction-threatening condition occurs, such as an antibiotic
[6,108]. Normally growing cells, or persisters that switch back to a growing state, will probably succumb to the effects of the antibiotic.
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5.2. Stochasticity and persister formation during steady-
state exponential growth

The role of stochasticity in persister formation is best under-

stood during steady-state, exponential growth [6,108]. The

‘alarmone’ molecule (p)ppGpp plays a central role herein. It

is a key control molecule in E. coli that tunes the bacterium’s

physiology as a function of growth rate [115]. When it is high

in concentration, (p)ppGpp inhibits growth processes and

activates general stress and stationary-phase systems. At fast

exponential growth, i.e. on rich or mineral media sup-

plemented with glucose, the concentration of (p)ppGpp is

generally low. However, when (p)ppGpp fluctuations occur

in a cell under these conditions, concentrations can spon-

taneously rise to a threshold level and induce a non-growing

state. A self-perpetuating positive feedback mechanism then

‘locks’ this cell in the persister state, via the activation of

toxin/antitoxin (TA) systems [108,116]. In this manner,

growing and non-growing cells can stably coexist in an

environment that supports fast growth. Thus, at exponential

growth, cells switch into the persister phenotype by chance;

their conversion back is also probably a chance event, but

this is less well understood.

TA systems play a central role in the spontaneous for-

mation of persisters during exponential growth and in the

adaptive response to stress conditions. The design of TA sys-

tems allows for the coexistence of a non-growing fraction in

an exponentially growing population. The HipA toxin and

HipB antitoxin, for example, are both constitutively

expressed, generally in a balanced manner. When the ratio

of HipA toxin to HipB antitoxin exceeds a certain threshold,

be it through a random or regulatory event, persistent cells

are formed [117]. Evolutionary tuning of transcriptional

regulation, protein stability or TA interactions [118] could

therefore affect the probability of whether a particular cell

exceeds the threshold. In turn, changes in the fraction of

persisters and their lifetimes can be fitness-increasing or

-decreasing, depending on the environmental dynamics. As

a consequence, the probability for spontaneous persister

formation itself is expected to be evolvable. In fact, anti-

biotic-resistant strains are known to sometimes carry hipAB
mutations [119], and experiments have indeed shown that

evolution can shape system properties to match the antibiotic

treatment pattern [120].

5.3. Stochasticity and persister formation during
nutrient transitions

Nutrient transitions can lead to the appearance of phenotypi-

cally distinct subpopulations [7,11,39] (see §5.2), often

distinguishable as growing and non- (or slow) growing

fractions. Heinemann and colleagues [11,41] found that

non-growing subpopulations of E. coli, which appear after

transitions from glucose to gluconeogenic substrates (e.g.

acetate or fumarate), exhibited increased antibiotic tolerance

with characteristics similar to the persister phenotype. They

found elevated levels of (p)ppGpp and activation of TA sys-

tems upon a nutrient shift, indicating that the mechanisms of

persister formation during exponential growth and upon

nutrient transitions are related. Tolerant cells formed upon

nutrient removal are, however, more susceptible to an anti-

biotic treatment than those formed during a nutrient

transition, as their low catabolic capacity cannot match the

ATP-maintenance requirements. They do have in common

that the RpoS-mediated generalized stress response is acti-

vated, probably triggered by elevated levels of (p)ppGpp.

Radzikowski et al. [41] concluded that persister formation is

induced by a strong deviation from metabolic homoeostasis

upon a change in nutrient availability, such that synthesis

of new proteins required for new catabolic activity cannot

be realized. Instead, cells take a less ‘risky’ strategy and

invest into stress response and cellular maintenance, which

is apparently less costly and leaves the metabolic state of

the cells intact. The metabolic origin of this persistence state

was underscored by demonstrating that persister cells

quickly resuscitated upon re-addition of glucose.

5.4. How persister formation relates to a trade-off
between instantaneous and long-term fitness

An increase in the heterogeneity of key molecules in stress

response systems (e.g. TA system) can improve single-cell
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fitness and as a consequence, population survival. Even

though several aspects of the cellular stress response indicate

that it is optimized for speed, such as the constitutive

expression of TA systems to ensure rapid growth arrest

when needed, there is still an adaptation time. Sudden extinc-

tion-threatening conditions are therefore probably beyond the

capacity of responsive systems. Here, the continuous formation

of persister cells, via stochastic, reversible phenotype switching

provides a solution, as a subpopulation of stress-tolerant cells

renders the population always prepared for sudden adverse

conditions. However, this readiness comes with a trade-off.

It reduces the instantaneous fitness of the population; the

non- or slow-growing subpopulation of persister cells will

only make a small contribution to the generation of new

cells. Evolution therefore plays an important role here: via

tuning of the switching kinetics, this trade-off can be opti-

mized [15,17,23,24,121,122].

5.5. Other examples of phenotypic heterogeneity
with fitness consequences

Persister subpopulation formation provides an example of

how molecular stochasticity can be fitness-enhancing. A

major challenge in single-cell studies is to figure out whether,

and under which conditions, phenotypic heterogeneity has

fitness consequences. Clearly demonstrating that it impacts

fitness is not trivial. A few other examples exist, however,

that show how heterogeneity affects a population’s adaptive

capacity. These examples include the ability to invade a new

niche, better preparation for changes in a current niche and

the ability to deal with extinction-threatening conditions.

A clear model that illustrates how noisy expression can

expand or open up new niches was given by Ackermann

et al. [123]. They showed how the heterogeneous expression

of virulence factors by Salmonella typhimurium leads to two

distinct subpopulations: one that ultimately sacrifices itself

so that the other can invade a new environment. In this scen-

ario, a phenomenon called self-destructive cooperation

involves a small phenotypically distinct subpopulation that,

through expression of a particular virulence factor, can trig-

ger an inflammatory response in the gut. This results in

both the elimination of intestinal microflora and the sub-

population itself, but in doing so removes competitors and

allows the remaining S. typhimurium population to invade.

An example of phenotypic heterogeneity leading to better

preparedness in changing environments is provided by the

finding that the galactose regulatory pathway is activated in

a fraction of the cell population of S. cerevisiae, hours before

glucose is fully consumed [124]. This strategy reflects the

trade-off between the cost of being prepared, in terms of

growth rate and unnecessary enzyme expression, and the

ability to make a fast switch as a population. In contrast

with the previous example, this does not necessarily involve

any change of niche. However, once there is competition for

resources with other species within the same niche, making a

fast switch has a clear fitness advantage.

Heterogeneous gene expression can also affect fitness

negatively, as demonstrated by Deris et al. [125] in a study

on antibiotic-resistant E. coli strains. They show how molecu-

lar fluctuations underlie a bistability, via global feedback

between growth and gene expression, producing subpopu-

lations with reduced expression of proteins that protect

against antibiotic action. In this case, an isogenic population
of antibiotic-resistant individuals diversify into growing

(resistant) and non-growing (sensitive) subpopulations for a

range of drug concentrations. This is clearly an example

where chance leads to phenotypic heterogeneity that reduces,

rather than enhances, the fitness of a population.

Most probably the best understood example of how mol-

ecular noise can improve cellular fitness by improving the

functioning of a molecular circuit is bacterial chemotaxis. This

is one of the few systems in molecular biology for which we

have a mechanistic understanding of its functional systemic

properties (i.e. tumble bias and adaptation time) and we can

study how these properties affect E. coli’s fitness [18,126]. The

functional properties of the chemotactic circuit are very sensi-

tive to the concentration of its proteins, which fluctuate. For

instance, the tumble bias is a determinant of the distance that

E. coli travels and protein fluctuations cause isogenic cells to

vary in their travelled distances [18]. This cell-varying foraging

behaviour is advantageous when conditions change, e.g. from

a steep to a shallow nutrient gradient. Noise in tumble bias

then ensures that some cells search for food in small areas,

while others cover longer distances. In this case, phenotypic

heterogeneity enhances the fitness of the genotype.

That fluctuations in phenotypic behaviour can be fitness-

enhancing and evolvable is illustrated by Beaumont et al.
[127]. They showed that subjecting Pseudomonas fluorescens to

a switching environment led to the evolution of a bet-hedging

genotype, which switched randomly between phenotypes.
6. Emerging concepts in the study of phenotypic
adaptation

We have discussed examples of adaptation strategies of micro-

organisms when they are confronted with particular

environmental dynamics. We emphasized the fitness effects

of chance events. Some species adapt purely by chance, via sto-

chastic phenotypic diversification [5], in order to prepare for

future conditions. In this strategy, the size and lifetimes of

the resulting subpopulations co-determine fitness [15,17,19].

Adaptation is more deterministic when sensing–response

mechanisms are used. In these strategies, phenotypic diversifi-

cation is undesired. Noise still plays a role in the variability in

the magnitude and timing of the response [128]. Which adap-

tation strategy is best can be decided through an analysis of its

fitness effects, in experiments [16,23,24] and theory

[12,13,18,129,130]. We consider this an important research

direction that may ultimately lead to a comprehensive theory

of microbial phenotypic adaptation mechanisms and strategies.

The evaluation of the fitness of a particular adaptation

strategy involves at least two descriptions. One is systemic,

and ideally involves measuring the one-dimensional fitness

value, by challenging a microbial population with specific

changing conditions [6,7,16,23,24,39]. The other is the charac-

terization of the molecular mechanisms for adaptation,

including the stochasticity of its dynamics in single cells, to

assess cell-to-cell variability in adaptivity, including maladap-

tation and phenotypic diversification [7,16,108]. With theory

and experimental studies of carefully chosen mutant strains,

the fitness effects of the strategy can be assessed.

Figuring out the fitness contribution of stochasticity to an

adaptation strategy is a complex problem. It dates back to ear-

lier studies in population genetics [131] and several innovative

studies have recently been carried out that address this using



rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20170141

10
a combination of experiments and theory [16,23,24,39,132].

One complicating aspect is that stochasticity is an inevitable

consequence of molecular and cellular processes [35,49] and

that it is therefore often questionable to what extent its magni-

tude has evolved [133]. And, even if stochasticity is fitness

contributing, this will probably be so only in particular

environments, and we generally do not know the evolution-

ary history of microorganisms. Exploratory theory and

simulations [12,15,17,19,121] can then help in sharpening

our thoughts and intuitions, and suggest informative exper-

iments that could further reveal the surprisingly diverse

roles of stochasticity in microbial fitness [6,7,16,23,24,39].

Several constraints that shape phenotypic adaptation by

microorganisms have recently been identified. Firstly, the allo-

cation of finite biosynthetic resources has proved to be an

important limit that constrains the protein expression profile of

microorganisms [134–136]. The molecular circuits in a cell that

are responsible for different tasks, such as catabolism, anabolism

and stress systems, compete for limited biosynthetic and cellular

resources, such as transcription and translation machinery, cyto-

plasmic and membrane space [21,22]. As many reaction rates

depend linearly on enzyme concentrations, higher enzyme con-

centrations are generally advantageous for cellular processes,

enforcing resource competition [137]. A second emerging con-

straint is that cells turn out to have limited phenotypic

plasticity and sensing capabilities. Cells simply do not have all

the circuits required for growth and survival in particular

environments encoded on their genome; they may simply lack

certain metabolic pathways. Nonetheless, the metabolic plas-

ticity of some microorganisms is truly amazing. Escherichia coli,
for instance, is expected to grow on hundreds of carbon sources

[138]. Even though it has this latent capacity, it lacks sensors for

the majority of the nutrients it can in principle grow on; i.e. E. coli
does not have hundreds of carbon source sensors [139]. This

could partially explain why E. coli shows a limited capacity to

restore growth when carbon sources are suddenly changed,

where some cells fail to initiate growth [11]. On the other

hand, some cells are capable of switching, indicating that metab-

olism does have the capacity to restore growth on new carbon

sources, but this is dependent on a cell state-dependent mechan-

ism that is partially understood [41]. Limited membrane

capacity [22] and the reduction in growth rate, when proteins

are produced that are not directly needed [135], may drive micro-

organisms towards reducing their sensing capacities. Finally,

many constraints exist that prevent a cell from tracking its

environment. Molecular noise in sensing, transcription and

translation circuitry is an obvious effect that causes isogenic

cells to grow differently in the same environment [140]. Another

reason why perfect environmental tracking is impossible is that

protein synthesis is costly [135]. In short-lived environmental

states, the benefits from newly expressed proteins cannot be
reaped to recover the investment costs of biosynthetic resources,

leading to a net fitness loss [24]. The lag time, associated with

cellular responses, limits the number of offspring cells can

make during a transition to a new condition, especially when

it is of a short duration [24]. Sometimes responding fast, or

even anticipating some environmental transitions [5], can have

big fitness advantages.
7. Concluding remarks
During the last decade, it has become clear that non-genetic

heterogeneity pervades all aspects of biology. It has

prompted a re-evaluation of the way we think about many

cellular phenomena, including our views on microbial fitness

and adaptation. In this review, we discussed many mechan-

isms that are now known, or thought, to generate non-

genetic variability. However, their biological role is not

always fully understood. For example, despite numerous

studies on molecular and cellular stochasticity (both exper-

imental and theoretical), only a handful have managed to

demonstrate clear effects on fitness. It is often unclear how

much of the observed cell-to-cell molecular variability serves

a biological function, and how much of it simply reflects the

robustness (or lack thereof) of the underlying molecular

circuits. Related to this unknown is an important practical

question: to what extent can these cellular stochastic pheno-

mena be artificially manipulated? While non-genetic

phenotypic heterogeneity is fascinating from an evolutionary

perspective, randomness and unpredictability are often unde-

sirable in biotechnological or biomedical settings, where they

can significantly impact culture performance or treatment effi-

cacies. If it is simply biochemical limitations that cause much

of the variability we observe, then it may be difficult to over-

ride or steer. On the other hand, if a noise source has been

tuned by selective pressures, it seems reasonable to expect

that engineered alterations are possible. In this regard, theor-

etical approaches, combined with synthetic molecular

biology, will be pivotal in untangling the complex relationship

that exists between stochastic molecular and cellular processes

and the phenotypic characteristics of individual cells.
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