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Classical hypercorrelation and 
wave-optics analogy of quantum 
superdense coding
Pengyun Li, Yifan Sun, Zhenwei Yang, Xinbing Song & Xiangdong Zhang

We report the first experimental realization of classical hypercorrelation, correlated simultaneously 
in every degree of freedom (DOF), from observing a Bell-type inequality violation in each DOF: 
polarization and orbital angular momentum (OAM). Based on such a classical hypercorrelation, we 
have realized the analogy of quantum superdense coding in classical optics. Comparing it with quantum 
superdense coding using pairs of photons simultaneously entangled in polarization and OAM, we 
find that it exhibits many advantages. It is not only very convenient to realize in classical optics, the 
attainable channel capacity in the experiment for such a superdense coding can also reach 3 bits, which 
is higher than that (2.8 bits) of usual quantum one. Our findings can not only give novel insight into 
quantum physics, they may also open a new field of applications in the classical optical information 
process.

Quantum entanglement plays a crucial role in various quantum information processing protocols, such as the 
one-way quantum computer1, quantum teleportation2, dense coding3, and some important quantum cryptographic 
schemes4. Paired photons that are entangled in multiple degrees of freedom (DOFs), which is called as hyperen-
tanglement, have attracted a lot of interest in recent years5–9. It has been implemented in some real systems10–15. 
Due to the presence of quantum correlations in several DOFs, they offer significant advantages in quantum infor-
mation processing, in particular in tasks such as superdense coding and multidimensional quantum cryptogra-
phy5–17. For example, paired photons simultaneously entangled in polarization (spin) and orbital angular 
momentum (OAM) were shown to provide a channel capacity that exceeds the limit of standard quantum dense 
coding with linear optics13. It has been shown that the hyper-entangled state, involving two DOFs, can construct 
16 Bell-like states14. Although only 7 from the group of 16 states can be distinguished, the attainable channel 
capacity in the experiment can reach ≈ .log 2 82

7  bits. The increase of capacity using hyperentanglement may present 
many potential applications for quantum communication protocols.

On the other hand, the violation of Bell’s inequality for the correlation among two different DOFs from the 
classical optical beam has been demonstrated experimentally18–27. Such a classical correlation is called “nonquan-
tum entanglement” or “classical entanglement”28–32. Such a classical entanglement has been applied to resolve 
basic issues in polarization optics, simulate quantum walks, realize polarization metrology, implement analogy 
of quantum teleportation, perform quantum Fourier transformation and so on33–39. The problem is whether or 
not classical hypercorrelation defined as the correlation in several DOFs of the classical optical beams, which is 
analogy of quantum hyperentanglement, can be realized?

In this work, we present a method to construct classical hypercorrelation states, demonstrate their correlation 
properties from the Bell’s measurement used in tests of quantum non-locality. Based on these classical hypercor-
relation states, we study the analogy of quantum superdense coding in classical optics.

Results and Discussion
Experimental demonstration of classical hypercorrelation. The experimental setup we used to 
demonstrate hypercorrelation in classical optics is illustrated in Fig. 1. The scheme consists of two parts: the 
source generating classical hypercorrelation states (Fig. 1(a)), and the measurement insets for demonstrating the 
correlation properties (Fig. 2(b–d)). The source shown in Fig. 1(a) is constructed by two completely incoherent 
beams E1 and E2, emitted from two independent 632.8 nm helium-neon (He-Ne) CW lasers. They are trans-
formed into helical-wavefront laser beams with a spiral phase plate (SPP) which is designed to produce ,LG0 2
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-mode. In practice, our experimental setup indicates that the number of the OAM state is an arbitrary integer 
which is greater than zero. These light beams are then combined in a polarizing beam-splitter (PBS) that can 
separate horizontal ( )H  and vertical ( )V  polarized light. The fields of two light beams satisfy complete incoherent 
condition ( , ) ( , ) = ( , ) ( , ) =

   ⁎ ⁎E r t E r t E r t E r t 01 2 2 1 . Here r  and  t represent coordinates of space and time, 
respectively. The hybrid beam of E1 and E2 passes through the modified Mach-Zehnder interferometer (MZIM)40. 
The function of the reflector in one arm of the MZIM is to reverse the OAM of the beam from + (− )2 2  to 
− (+ )2 2 . A liquid crystal variable retarder (LCVR) is introduced to ensure the incoherence of two beams. After 
the MZIM, the field becomes

( , ) = ( ( , ) ) + ( , ) )) ⊗ ( + ) + − ))

= ( ( , ) , + ) + ′( , ) , − ) + ( , ) , + )
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where the OAM, horizontal and vertical polarization components of the vortex beam are described by a slightly 
modified version of the familiar bra-ket notation of quantum mechanics28. The γ is a random phase and + (− )2 2  
denotes the OAM eigenmode of order 2 for the paraxial Laguerre-Gauss modes carrying + (− )ħ ħ2 2  units. The 
symbol ⊗ denotes the tensor product between the correlated states. Here E1, ′ =

γE E ei1 1 , E2, ′ = γE E ei2 2  denote 
the fields behind the MZIM, and they satisfy complete incoherent conditions because the γ  is a random phase. 
Subsequently, using a 50-50 nonpolarizing beam-splitter (BS), a dove prism (DP) and a half-wave plate (HWP) 
with fast axes at θ = °45fast , two new outputs can be written as

( , ) =


 ( , )| , + ) + ′ ( , )| , − ) + ( , )| , + ) + ′ ( , )| , − )
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In order to analyze the hypercorrelation properties between ( , )
�� �E r ta  and ( , )

�� �E r tb , they will be divided into two 
parts. Using one of them to study the OAM correlation as shown in Fig. 1(b), the other part is used to study the 

Figure 1. Experimental setup for the creation and analysis of classical hypercorrelation. (a) The preparation 
of classical hypercorrelation. E1 and E2 are two laser beams with the wavelength λ = . nm632 8 . (b) and (c) show 
the demonstration of OAM correlation and polarization correlation, respectively. (d) Schematic picture for the 
measurement of the first-order field correlation. Legend of the main components (see also graphic symbol 
legend in the inset): SPP - spiral phase plant; PBS - polarizing beam-splitter; BS - nonpolarizing beam-splitter; 
LCVR - liquid crystal variable retarder; DP - dove prism; HWP - half-wave plate; P - polarizer; SLM A and SLM 
B - spatial light modulators; M - mirror; D1 and D2 - detectors for the intensity.
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polarization correlation as shown in Fig. 1(c). In Fig. 1(b), the beam from ( , )
�� �E r ta  is filtered by a H polarizer and 

passes through a HWP@ 45 , which can be expressed as

( , ) =


 ( , )| , + ) + ′ ( , )| , − )
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 ( , )| + ) + ′ ( , )| − )



 ⊗ | ). ( )

�� � � �

� �

E r t E r t V E r t V

E r t E r t V

1
2

1
2

2 1
2

2

1
2

1
2

2 1
2

2
4

a1 1 1

1 1

The beam from ( , )
�� �E r tb  is filtered by a V  polarizer and passes through a HWP@ 90 , which can be expressed as

( , ) =


 ( , )| , − ) + ′ ( , )| , + )
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In order to analyze the OAM correlation properties between ( , )
�� �E r ta1  and ( , )

�� �E r tb1 , we take OAM basis similar 
to those in refs 41 and 42. A Bloch sphere is to be introduced to represent the first order transverse 
Laguerre-Gaussian modes as shown in Fig. 2(a). For a vortex beam in classical optics given order 2, |+ )2  and |− )2 , 
correspond to the north and south poles, respectively. In this case, each point on the Bloch sphere stands for a 
state, which can be described as

Figure 2. (a) Poincare sphere and Bloch sphere equivalent for ±l OAM states. (b) Bell curve for one great circle 
around the poles. Each curve corresponds to normalization correlation probabilities between a state around 
Bloch sphere on SLM B (upper-right inset) and one static state on SLM A (upper-left inset). Solid lines and dots 
represent the theoretical and experimental results, respectively.
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with θ π≤ ≤0  and φ π≤ <0 2 . In our experiment, the Bloch vector κ| )  is acted as measurement basis, which 
corresponds to computer phase hologram carried by a spatial light modulator (SLM, Holoeye). With the help of 
a pin-hole (the function is filtering wave), the computer phase hologram can transform the target spatial mode 
into the pure Gaussian mode with 15% diffraction efficiency43. When the hybrid beams ( ( , )

�� �E r ta1  and ( , )
�� �E r tb1 ) 

go through the mode splitters as shown in Fig. 1(b), the fields can be expressed in the following forms:

θ θ

θ θ

( , ) =





( , )





 + ′ ( , )











⊗ | )

( , ) =





( , )





 + ′ ( , )











⊗ | ),

( )

θ φ
φ

θ φ
φ

,

,

  

  

E r t E r t e E r t

E r t E r t E r t e

1
2

1
2

sin
2

1
2

cos
2

0

1
2

1
2

cos
2

1
2

sin
2

0
7

a i a

b b i

1 1

1 1

a a
a

b b
b

where | )0  denotes the pure Gaussian mode. ( , )θ φ,
E r t

a a
 and ( , )θ φ,

E r t
b b

 correspond to projection onto a state of the 
form of Eq. (6). The states can be selected in different directions, which are represented by the Bloch vectors 
α κ θ φ= ( , )���

a a   and β κ θ φ= ( , )���
b b  , respectively. In order to perform the Clauser–Horne–Shimony–Holt (CHSH) 

Bell’s measurement, we define the following correlation function42,44:

α β
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where α β( , )�� ��P  are normalized probabilities of states on the certain measurement basis for the OAM, which can 
be expressed as
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In the experiment, the correlation probabilities cannot be directly measured. They can be obtained through 
measuring the difference of light intensities at two export positions on Mach-Zehnder (MZ) interferometer as 
shown in Fig. 1(d), because 〈 ( , ) ( , )〉 = −θ φ θ φ, ,

 ⁎E r t E r t I I1 2a a b b
. Here I1 and I2 represent the light intensities at two 

export positions of the MZ interferometer. More information about the measurement method for the first-order 
field correlation has been given in ref. 27. Then, the CHSH measurement is

α β α β α β α β= ( , ) − ( , ′) + ( ′, ) + ( ′, ′) ( )
�� �� �� �� �� �� �� ��S C C C C 10

where α κ θ φ= ( , )���
a a , α κ θ φ= ( ′ , ′ )′ ���

a a  and β κ θ φ= ( , )���
b b , β κ θ φ= ( ′ , ′ )

′ ���
b b  correspond to two different measure-

ment states, selected by the holograms on SLM A and SLM B, respectively.
Figure 2(b) shows experimental results for the normalized correlation probabilities as a function of θb at various 

patterns on SLM B over the full range of possible value (θ π φ= , , =[0 ] 0b b  and θ π φ π= , , =[ 0]b b ) with 
fixing the angle of pattern on SLM A. The dots (circle, triangular, square and pentagram) and solid lines represent 
the experimental measurements and theoretical results, respectively. Here, the theoretical results are normalized 
by the experimental data. It can be seen that the experimental results are in good agreement with the theoretical 
calculations. As expected from Eq. (9), we observe sinusoidal fringes in the correlation probabilities. The fringe 
contrast is about 91.93%, which is much larger than 70.7%, as required for verification of Bell’s inequality45. The 
errors can be attributed mostly to misalignment of the interferometer.

The maximum value is obtained at θ π θ= −b a and φ φ=b a, and the minimum value corresponds to the case 
for θ θ=a b and φ φ π= +b a . From Eq. (10) and experimental results in Fig. 2(a), Bell parameter S can be evaluated 
by selecting special angles θa, φa, θb and φb. For example, when θ = 0a , φ = 0a , θ′ = π

a 2
, φ π′ =a , θ =

π
b

3
4 , φ π=b , 

θ′ = π
b 4

 and φ π′ =b , we obtain = . ± .S 2 756 0 017OAM max
, which yields the strongest violation of Bell’s inequal-

ities in the OAM DOF.
Simultaneously, we can also test the polarization correlation using setup in Fig. 1(c). Here, the analysis of 

polarization is realized by erasing the distinguishing OAM labels. In Fig. 1(c), the combination of a SPP and a 
pin-hole, called mode splitter, is utilized to obtain pure Gaussian mode. The beams from ( , )

�� �E r ta  and ( , )
�� �E r tb  pass 

through the mode splitter, which can be expressed as
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If a HWP and a PBS are introduced in each path, two polarized beams become then four beams. And the output 
light fields are described by Ea h2 , Ea v2 , Eb h2  and Eb v2 , respectively, which can be modulated by varying the angle 
of HWPs (θA and θB). Subsequently, we perform the demonstration of classical polarization correlation. Similar 
to the method described in ref. 27, we can demonstrate that the maximum of Bell parameter reaches . ± .2 579 0 012 
(see Section I in Supplemental Material for details).

Considering the above two aspects, we are sure that the classical hypercorrelation properties exist in polarization 
and OAM, which are similar to quantum correlation properties from hyper-entangled photon pairs. This means 
that the following Bell-like state can be produced in the measurement process of the first-order correlation27.
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2 2   have been used. This is highly similar to the production 

of hyper-entangled photon pairs from spontaneous down-conversion of nonlinear crystal14, which means that the 
classical hyper-correlated state can be constructed. The problem is whether or not some unique phenomena such 
as superdense coding can be realized by applying such a classical hyper-correlated state, which is similar to the 
case in the quantum information process.

Experimental realization of classical wave-optics analogy of quantum superdense coding. In 
order to study the classical analogy of quantum superdense coding, the experimental layout shown in Fig. 3 
is considered. The experiment consists of three distinct parts: the hypercorrelation source generating nonlocal 
classical optical hypercorrelation states; Bob’s station for encoding the messages; finally, Alice’s analyzer to iden-
tify signals sent by Bob. Such an experimental scheme corresponds to that of the quantum superdense coding 
described in ref. 13.

Here the simplified form of the correlation source described in Fig. 1 has been used (see Fig. 3(a)), MZIM has 
been removed, the output fields in such a case are marked by ( , )

�� �E r tc  and ( , )
�� �E r td :
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It is notable that the classical hypercorrelation that violates the Bell-type inequality can also be demonstrated 
in such a case (see Section II in Supplementary Material). In the following, we use such a hypercorrelation source 
to study the classical wave-optics analogy of quantum superdense coding. Similar to the scheme of quantum 
superdense coding by using hyperentanglement13,14, in our scheme encoding operations are also globally performed 
by manipulating separately the two DOFs of the beam ( , )

�� �E r tc , polarization and OAM. In Bob’s encoding station, 
Bob can encode his messages by using two HWPs in two channels where up or down channel can be only chosen 
for each operation. A DP is inserted in one of the two channels and HWPs are rotated at the correct angle θHWP 
(see the Table 1 for operation details). Such operations transform ( , )

�� �E r tc  in Eq. (14) into

( , ) = ( ( , )| , + ) ± ( , )| , − ))
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These manipulations, which result in eight distinguishable messages corresponding to Eq. (15), can be com-
pleted in Bob’s encoding station.

The output beam from the Bob’s encoding station was then combined with the other beam at Alice’s analyzer 
to perform decoding. The process of decoding contains two stages. One is that the polarization-OAM analysis is 
implemented with an apparatus consisting of a ±2 -OAM splitter and a PBS on each path, as shown in Fig. 3(b). 
The splitter is composed of a binary forked grating with 30% diffraction efficiency into the first order and a pin-hole, 
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which can transform an initial state with + (− )2 2 -OAM into a Gaussian mode in the + (− )1 1  diffraction order43. 
Subsequently, the diffracting beams filtered by the pin-hole are merged by a PBS. The other is that the first-order 
correlations are measured. After the polarization-OAM analysis, the beam of port D is combined with the beam 
from port A and port B though a BS, respectively. Then each beam passes through the optical element group that 
includes BS, PBS@ 0 , and PBS@ 45 , as shown in Fig. 3(c). We adjust appropriately the path length difference ∆ of 
the two beams, which corresponds to the phase δei  by the relation δ π= ⋅

λ
∆ 2 . The distinguishable messages can 

be obtained directly by recording intensities I  at eight detectors, which has been shown in Table 1 for theoretical 
results.

In order to demonstrate the above theoretical analysis, we perform the corresponding experiment. The wave-
lengths of two independent light beams (produced by two independent He-Ne lasers) are still taken as 632.8nm. 
To characterize the observable intensity at Alice’s analyzer, we change the path length difference related to the 
phase. The results of experimental measurements are shown in Fig. 4. Three colors (blue, gray and green) of his-
togram represent the case of three-lever intensity output. Here the experimental data are normalized by the average 
value from all measured dates of detectors under maintaining the stability of interferometer for δ π= . Such 

Figure 3. Experimental setup for superdense coding. The experiment consists of three distinct parts:  
(a) SOURCE: source; (c) BOB: Bob’s station, and ALICE: Alice’s analyzer. (b) Polarization-OAM analyser 
(POA). The incident light from the left is first split according to its ±2-OAM content. Creating 0-OAM 
components are then combined on a PBS.

Bob’s 
encoding

Down 
channel Up channel BS 1 BS 2

θHWP1 θHWP2 θHWP1 θHWP2 H V 45 − 45 H V 45 −45
+Ec1 0 0 1 1 δ−1 cos δ+1 cos
−Ec1 0 1 1 1 1
+Ec2

π
4 δ−1 cos δ−1 cos δ−1 cos δ−1 cos

−Ec2 0 π
4 δ+1 cos δ−1 cos 1 1

+Ec3 0 0 1 1 δ−1 cos δ+1 cos
−Ec3 0 1 1 1 1
+Ec4

π
4 δ−1 cos δ−1 cos δ−1 cos δ−1 cos

−Ec4 0 π
4 δ+1 cos δ−1 cos 1 1

Table 1. Overview of possible manipulations and theoretical results for the scheme in Fig. 3. Abbreviation: 
BS, beam-splitter; HWP: half-wave plate.
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normalization is corresponding to the normalized condition ( , ) ( , ) = ( , ) ( , ) =
   ⁎ ⁎E r t E r t E r t E r t 11 1 2 2 . From 

the experimental results in Fig. 4, we can determine the message that Bob has sent according to the intensity dif-
ference of detectors. Therefore, Alice can distinguish completely the messages sent by Bob, implementing the 
information transfer of =log 32

8  bits. Such high information transfer originates from the classical hypercorrelation 
as described in the above part.

If we do not use the classical hypercorrelation, consider 
��
Ec or 

��
Ed channel separately, the unified operation is 

used to encode messages in two DOFs, the maximum channel capacity is 2 bits (demonstration has been given in 
Section III of Supplemental Materials). This means that the present work provides the first demonstration that the 
superdense coding can be realized in the classical optics, which is analogy of quantum superdense coding using 
pairs of photons simultaneously entangled in spin and OAM as described in refs 13 and 14. 

Comparing the present classical scheme with those for quantum superdense coding described in ref. 13, we 
find that present scheme posses many advantages. First, the attainable channel capacity in the experiment for such 
a superdense coding can reach 3 bits, which is higher than that ( ≈ .log 2 82

7 ) of usual quantum superdense coding 
using pairs of photons simultaneously entangled in spin and OAM. Second, it is very convenient to realize in optical 
communication, because the distinguishable messages can be directly identified from the detectors instead of 
interference and coincidence measurements.

In addition, we would like to point out that the present method is different from the signal demodulation in 
coherent optical communication although correlation properties of the classical optics have been used in the pro-
cess46–48. The traditional coherent demodulation is based on polarization-division multiplexing (PDM) to increase 
the capacity of optical communication systems. For example, in ref. 46 the information is encoded onto the electri-
cal field and modulated in orthogonal polarizations. In fact, in the present work we have presented a new method to 
improve the information capacity, which is based on the classical hypercorrelation corresponding to the quantum 
superdense coding using pairs of photons simultaneously entangled in the polarization and OAM. Such a method 
does not require the measurement of intensity difference of two outputs from BS 1 (BS 2), because it is enough to 
distinguish messages only by manipulating and measuring the optical intensity at one arm after the BS 1 (BS 2).

Conclusions
In summary, we have demonstrated experimentally the classical hypercorrelation by implementing the measure-
ment of CHSH inequality in every DOF: polarization and OAM. Such a classical hypercorrelation is similar to the 
production of hyper-entangled photon pairs from spontaneous down-conversion of nonlinear crystal. They can 
also be used to increase the information capacity of the system. We have realized experimentally the analogy of 
quantum superdense coding in the classical optics by using such classical hypercorrelation. Comparing the super-
dense coding in the quantum case using pairs of photons simultaneously entangled in polarization and OAM, it 
exhibits many advantages, for example, the attainable channel capacity in the present experiment can reach 3 bits, 
which is higher than that (2.8 bits) of usual quantum one. It is very convenient to realize in the classical optics, 

Figure 4. Experimental results of classical hypercorrelation-assisted dense coding. Normalization 
intensities were detected by Alice for each message sent by Bob. Three colors (blue, gray and green) of histogram 
represent the case of three-lever output.
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because the distinguishable messages can be directly identified from the detectors instead of interference and 
coincidence measurements. Thus, our study opens a new way to improve the information capacity in the classical 
optical communication. It not only provokes deep thought on some basic physical problems such as essence of 
entanglement and correlation, but also shows potential application in classical optical information processes.
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