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ABSTRACT Chimeric simian/human immunodeficiency viruses (SHIVs) are widely
used in nonhuman primate models to recapitulate human immunodeficiency virus
(HIV) infection in humans, yet most SHIVs fail to establish persistent viral infection.
We investigated immunological and virological events in rhesus macaques infected
with the newly developed SHIV.C.CH848 (SHIVC) and treated with combined antire-
troviral therapy (cART). Similar to HIV/simian immunodeficiency virus (SIV) infection,
SHIV.C.CH848 infection established viral reservoirs in CD41 T cells and myeloid cells,
accompanied by productive infection and depletion of CD41 T cells in systemic and
lymphoid tissues throughout SHIV infection. Despite 6 months of cART-suppressed
viral replication, integrated proviral DNA levels remained stable, especially in CD41 T
cells, and the viral rebound was also observed after ART interruption. Autologous
neutralizing antibodies to the parental HIV-1 strain CH848 were detected, with lim-
ited viral evolution at 5months postinfection. In comparison, heterogenous neutraliz-
ing antibodies in SHIV.C.CH848-infected macaques were not detected except for 1 (1
of 10) animal at 2 years postinfection. These findings suggest that SHIV.C.CH848, a
novel class of transmitted/founder SHIVs, can establish sustained viremia and viral
reservoirs in rhesus macaques with clinical immunodeficiency consequences, provid-
ing a valuable SHIV model for HIV research.

IMPORTANCE SHIVs have been extensively used in a nonhuman primate (NHP) model
for HIV research. In this study, we investigated viral reservoirs in tissues and immune
responses in an NHP model inoculated with newly generated transmitted/founder
HIV-1 clade C-based SHIV.C.CH848. The data show that transmitted founder (T/F)
SHIVC infection of macaques more closely recapitulates the virological and clinical
features of HIV infection, including persistent viremia and viral rebound once antire-
troviral therapy is discontinued. These results suggest this CCR5-tropic, SHIVC strain
is valuable for testing responses to HIV vaccines and therapeutics.

KEYWORDS SHIV, persistent infection, viral reservoirs, autologous neutralizing Abs and
evolution, autologous neutralizing Abs, evolution

Chimeric simian/human immunodeficiency viruses (SHIVs), carrying human immu-
nodeficiency virus (HIV) envelope glycoproteins from transmitted founder (T/F)

viruses, are invaluable for testing HIV transmission, pathogenesis, and prevention strat-
egies in nonhuman primate (NHP) models (1–5). However, the majority of current
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SHIVs have limitations, including differences in coreceptor usage and a lack of sus-
tained viremia or progression to AIDS (5–11). Therefore, the development of functional
SHIV clones that better mimic the natural history of HIV infection and that reflect core-
ceptor usage of globally circulating T/F viruses resulting in establishment of persistent
viral reservoirs in animal models is of great significance for testing HIV prevention and
cure strategies.

Clade C viruses represent the predominant HIV subtype in the global HIV pandemic,
yet most SHIVs to date either have been derived from clade B (SHIVsf262P and
SHIVAD8) or utilize different coreceptors from that of HIV T/F strains (SHIV89.6P, SHIV
KU, etc.), which exclusively utilize CCR5. The new CCR5-tropic clade C SHIV (SHIV.C.
CH848 [SHIVC]) clone (12–14) encodes a clade C Env isolated from an acutely infected
Malawian man in 2008 (15) and was developed by a single amino acid substitution at
Env residue 375 to increase the affinity of CH848 Env for rhesus CD4 (16, 17). In this
study, we investigated immunological and virological events in SHIV.C.CH848-infected
animals in acute infection and on antiretroviral therapy, including CD41 T cells, neutral-
izing antibody (Ab) responses, and Env viral evolution. SHIV.C.CH848 infection resulted
in acute depletion of peripheral CD41 T cells and persistent viral infection, as indicated
by detectable proviral DNA even after 6 months of combined antiretroviral therapy
(cART) treatment, and viral rebound after cART interruption. A potent autologous (but
not heterogenous) neutralizing antibody response was detected from 5months to
2 years postinfection (p.i.). These findings suggest that this novel T/F SHIV.C.CH848 is a
promising model for HIV latency and cure studies.

RESULTS
Plasma viral load and immunological responses in SHIV.C.CH848-infected rhesus

macaques on antiretroviral therapy. Ten rhesus macaques (RMs) were intravenously
inoculated with SHIV.C.CH848, and half of the animals received anti-HIV drugs
5months postinfection. As indicated in Fig. 1a and b, plasma viral load peaked 14 days
post-SHIV infection, followed by a relatively sustained viral set point. Once cART was
initiated (5months postinfection), viremia in treated animals (n=5) rapidly declined to
undetectable levels after 2 weeks, compared with untreated controls (n=5) that in
large part maintained the set point viral load. Notably, viral rebound was detected in
4/5 of the animals after cART interruption, except for 1 animal that remained aviremic
up to 6months after cART cessation. Further, SHIVC infection resulted in significant
depletion of peripheral CD41 T cells by 14 days postinfection and progressive reduc-
tions of rectal CD41 T cells while peripheral CD201 B cells and GC T follicular help (Tfh)
cells (PD-1high CXCR51 cells gated CD41 T cells) expanded in untreated animals by
5months postinfection. In contrast, cART-treated animals significantly recovered CD41

T cells in blood and rectum while maintaining baseline levels of peripheral CD201 B
cells and GC Tfh cells (Fig. 1c to f). Since PD-1 upregulation reflects CD81 T cell exhaus-
tion during viral infection (18, 19), we examined PD-1 expression on peripheral CD81 T
cells throughout SHIVC infection. The results showed that SHIVC infection significantly
upregulated PD-1 on CD81 T cells in untreated macaques, whereas reduced frequen-
cies of PD-11 CD81 T cells were detected in cART-treated animals (Fig. 1g), consistent
with lower simian immunodeficiency virus (SIV) Gag-specific cytotoxic T lymphocyte
(CTL) responses in untreated animals at 44weeks postinfection (Fig. 1h). These data
demonstrate that SHIV.C.CH848 recapitulates key virological and immunological char-
acteristics of HIV-1 infection.

Viral dissemination in systemic and lymphoid compartments of SHIV.C.CH848-
infected rhesus macaques on antiretroviral therapy. To evaluate the dynamics of
cell-associated SHIVC RNA/DNA in systemic and lymphoid tissues after SHIVC infection
and their response to cART, unspliced (US) SHIVC RNA, total SHIV DNA, and proviral
DNA were longitudinally measured in blood, lymph node (LN), and rectal biopsy speci-
mens from SHIVC-infected macaques. As CD41 T cells are preferentially targeted in HIV
infection, CD41 T cells were also purified from blood and lymph nodes to further assess
cell-associated SHIV RNA/DNA levels, compared with the remaining CD4-negative cell
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populations. As shown in Fig. 2, both SHIV RNA and DNA were detected in both CD41

and CD4-negative cell populations in peripheral blood mononuclear cells (PBMCs) and
lymph node-derived mononuclear cells. Antiretroviral therapy suppressed SHIVC repli-
cation in both cell populations in blood and lymph nodes compared with that in
untreated controls. Levels of US SHIVC RNA decreased to undetectable levels in both
cell populations by 3months of cART treatment, although LN-derived CD41 T cells still
had detectable viral RNA (vRNA) at this time point. At 1 month of cART interruption, US
SHIVC RNA increased in both cell populations (Fig. 2a and b). Similarly, cART also
reduced levels of total SHIVC DNA and proviral DNA in both CD41 and CD4-negative
cell populations within 3months of treatment (Fig. 2c to f). However, total and proviral
DNAs were still detectable in CD41 T cells throughout SHIVC infection, regardless of

FIG 1 Plasma viral load and immunological events in SHIV.C.CH848-inoculated rhesus macaques on
antiretroviral therapy. (a and b) Plasma viral load in SHIV-infected macaques subsequently treated
with anti-HIV drugs for 6months, initiated 5months post-SHIV infection (n=5 [a]), compared to
untreated controls (n= 5 [b]). (c to f) Changes in peripheral CD201 B and CD41 T cells, rectal CD41 T
cells, and T follicular helper cells in untreated and treated animal groups. (g) PD-1 expression on
peripheral CD81 T cells. Note that viral rebound was observed in 4 of 5 animals after cART
interruption. (h) SHIV.C.CH848 gag-specific cytokine (TNF-a and IFN-g) responses of peripheral CD81 T
cells in two animal cohorts with (red) or without ART (black) at 44weeks post-SHIV infection. Error
bars indicate SEM. Paired t tests were used to compare ART-treated with untreated groups. *,
P, 0.01.

SHIV.C.CH848 Infection in RMs Journal of Virology

May 2021 Volume 95 Issue 9 e02198-20 jvi.asm.org 3

https://jvi.asm.org


treatment duration. Notably, there was no significant reduction of proviral DNA levels
in LN-derived CD41 T cells in treated animals. However, there was no detectable provi-
ral DNA in the corresponding CD4-negative cells after treatment (Fig. 2e and f). These
data show that CD41 T cells are the major reservoir for SHIV.C.CH848 persistence, espe-
cially in organized lymphoid tissues (LN), mimicking the hallmark qualities of HIV infec-
tion in humans.

Cell-associated SHIV RNA/DNA was also measured from rectal lymphocytes in SHIV.C.
CH848-infected macaques, with or without cART. As shown in Fig. 3a to c, the dynamics
of rectal lymphocyte-associated SHIV RNA/DNA were very similar to those in blood and
LN-derived CD41 T cells, and cART did not significantly reduce levels of rectal cell-associ-
ated proviral DNA. Cell-associated viral nucleic acids were compared prior to treatment
(5months postinfection) and after 6months of cART (Fig. 3d to f). Combined, these results
showed that changes in SIV RNA/DNA were similar in lymphocytes from the blood, LNs,
and rectum and that SHIV.C.CH848 infection results in viral persistence and stable, latent
viral reservoirs in both systemic and lymphoid tissue compartments on treatment, which
result in viral resurgence after treatment withdrawal.

FIG 2 Dynamics of cell-associated SHIV RNA and DNA in CD41 T cells from PBMCs and lymph nodes
of SHIV.C.CH848-infected macaques on antiretroviral therapy, compared with CD4-negative cells.
Shown are results of longitudinal analysis of unspliced SHIV RNA (US SHIV RNA) (a and b), total SHIV
DNA (c and d), or integrated proviral SHIV DNA (e and f) in CD41 T cells and CD4-negative cell
populations derived from peripheral blood and lymph nodes of SHIV-infected macaques with or
without cART. Note that proviral DNA was detectable even under cART, especially in purified CD41 T
cells. Cell-associated SHIV RNA and DNA are expressed as copies per 1 million cells. The dotted line
represents the limit of detection (LOD) calculated as described in Materials and Methods. Error bars
indicate SEM. *, P, 0.01, determined by two-tailed paired t test in either blood or lymph node tissue
of treated and untreated animals; #, P, 0.01, compared between pretreatment (month 5 p.i.) and
after treatment in both tissues at different time points.
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Plasma neutralizing antibody responses in SHIV.C.CH848-infected macaques.
We next performed TZM-bl neutralization assays to characterize neutralizing antibody
responses in these macaques at 5, 15, and 24months postinfection (Table 1). These
animals developed autologous neutralizing antibody against SHIV.C.CH848 with vari-
able potency (50% inhibitory dilution [ID50] titers ranged from less than 1:50 to more
than 1:300) at 5months postinfection, consistent with previous reports that autologous
neutralizing antibody responses are common and arise relatively early in viremic maca-
ques in the first few weeks to months postinfection (9, 20–22). At 2 years postinfection,
regardless of cART, the plasma neutralization titers against SHIV.C.CH848 increased in 6
of 9 macaques (animal number 9 died before this time point), exhibiting neutralization
ID50 titers of$1:300.

In contrast, none of the animals developed heterogenous neutralizing antibodies
against the seven heterologous HIV-1 strains tested across clades A, B, and C at
15months postinfection. At 2 years postinfection, there were no appreciable cross-re-
active neutralizing antibodies in the 6 animals with CH848 ID50s of$1:300, except for
animal number 7, in which the plasma cross-neutralized the clade A strain Q23.17 with
an ID50 of ;1:300 and weakly neutralized the clade C strain ZM109.4 with an ID50 of
;1:50 (Table 1). In summary, 9 out of 10 SHIV.C.CH848-infected macaques mounted
potent autologous neutralization antibody responses against the CH848 Env, whereas
there were limited heterologous antibodies elicited in 1 infected animal.

FIG 3 Cell-associated SHIV RNA and DNA in total PBMCs and rectal lymphocytes in SHIV.C.CH848-
infected rhesus macaques on antiretroviral therapy. (a to c) Changes in levels of US SHIV RNA (a),
total SHIV DNA (b), and proviral SHIV DNA (c) in rectal lymphocytes. (d to f) Levels of US SHIV RNA,
total SHIV DNA, and proviral SHIV DNA in PBMCs at pretreatment (month 5 p.i.) and in cART-treated
and untreated groups at 6months. Error bars indicate SEM. *, P, 0.01 (paired t test was used to
compare groups); #, P, 0.01 (comparison between pretreatment [month 5 p.i.] and after treatment in
rectal tissue at different time points); ##, P, 0.05 (comparison with pretreatment or untreated
controls in blood).
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Viral diversity in SHIV.C.CH848-infected macaques. Single-genome sequencing
(SGS) of SHIV.C.CH848 gp160 env was used to characterize sequence diversity 5months
postinfection. A total of 31 sequences (median= 5 sequences per animal) were gener-
ated from 7 infected rhesus macaques. Sequences were aligned to the human CH848
T/F Env. As indicated in Fig. 4, 2 conserved sites of selection pressure were identified in
Env: V3M or M4T/R mutations were detected in 3 of 7 macaques, and the P195S/L
mutation was detected in 4 of 7 macaques. Further, while sites of selection pressure
across V1V2 were identified in all 7 animals, no mutations were conserved across the
entire cohort. These results suggest that at 5months postinfection, there was minimal
sequence evolution in Env in this cohort of SHIV.C.CH848-infected rhesus macaques.

DISCUSSION

SHIVs have been widely used to explore HIV transmission, pathogenesis, latency,
and cure strategies in NHP models of HIV/AIDS for over 20 years. In this study, we char-
acterized the key features of a novel T/F SHIV.C.CH848 infection in rhesus macaques on

TABLE 1 Plasma neutralization ID50 titers of SHIV.C.CH848-infected rhesus macaquesa

Plasma
ID

ID50 at:

5 mo postinfection 15 mo postinfection 2 yrs postinfection

CH848 (C) CH848 (C) CH848 (C) Du156.12 (C) ZM109.4 (C) Q23.17 (A) BG505 (A) Yu2 (B) JR-FL (B) AD17 (B)
1 (cART) ,20 ,25 27 ND ND ND ND ND ND ND
2 (cART) 57 97 214 ND ND ND ND ND ND ND
3 (cART) 96 272 316 ,25 ,25 ,25 ,25 ,25 ,25 ,25
4 (cART) 34 508 1,350 ,25 28 ,25 ,25 ,25 ,25 ,25
5 (cART) 57 100 472 ,25 ,25 ,25 ,25 ,25 ,25 ,25
6 342 215 113 ,25 ,25 ,25 ,25 ,25 ,25 ,25
7 149 554 392 ,25 51 336 26 ,25 26 ,25
8 21 183 347 ,25 ,25 36 ,25 ,25 ,25 ,25
9 22 267 ND ND ND ND ND ND ND ND
10 48 369 630 ,25 ,25 ,25 ,25 ,25 ,25 ,25
aPlasma samples from SHIV.C.CH848-infected RMs at 5 months, 15months, and 2 years postinfection were tested against a panel of autologous and heterogeneous viruses
in TZM-bl cells. Clades are indicated in parentheses. Potency of 50 to 99 is indicated by italics; 100 to 999, underlining; and$1,000, underlining and boldface type. ND, not
detected.

FIG 4 Viral Env evolution in SHIV.C.CH848-infected macaques. Shown are amino acid highlighter plots showing
single-genome env sequences from SHIV.C.CH848-infected RM at 5months postinfection. Nonsynonymous
substitutions compared to the TF sequence are indicated by a red line, and deletions are shown as a black line.
Each horizontal line shows one single-genome sequence. Two common sites of selection pressure (Env residues
3/4 and 195) were identified in infected animals.
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cART. Our results indicated that SHIV.C.CH848 infection leads to the recapitulation of
key immunological and virological characteristics that are hallmarks of HIV-1 infection.

HIV infection establishes a long-lived latent reservoir extremely early after infection
(23). However, combined antiretroviral therapy (cART) basically fails to eliminate HIV la-
tency characterized by integrated intact viral genomes, allowing the virus to persist for
the lifetime of people living with HIV-1 (24–27). SHIV strains are very useful in NHP
models for testing antiviral drugs, HIV vaccines, and functional cure strategies, espe-
cially if a small number of replication-competent viral reservoirs/latency are main-
tained. Although several SHIVs have been used in macaques (7, 28), their low viral
persistence and often spontaneous clearance in macaques limit their potential for
studying HIV latency in an NHP setting (6, 11). Recently developed CCR5-tropic SHIV.C.
CH848 and SHIV.CH505 strains, encoding Env from a transmitted founder HIV-1 sub-
type C strain, with an increased affinity for rhesus CD4 have shown promise for viral
replication kinetics more closely resembling those of HIV infection in humans (16, 17,
29). In this study, we analyzed neutralizing antibody responses and cellular reservoirs
in systemic and lymphoid tissues of rhesus macaques infected with T/F SHIV.C.CH848,
before and after cART treatment and interruption. These data demonstrate that this
novel T/F SHIV.C.CH848 clone is promising as a candidate for testing HIV treatment
and cure strategies.

T/F SHIV.C.CH848 infection in rhesus macaques during early and chronic infection
closely mirrors HIV infection, as indicated by high peak viremia in primary infection, rel-
atively stable viral set point of 104 to 105 viral RNA copies/ml of plasma, massive gut-
associated mucosal CD41 T cell depletion, stable proviral DNA in systemic and lymph-
oid tissues even after 6 months of cART, and viral rebound after treatment interruption.
Recrudescence of SHIVC is observed within 4months of treatment interruption, con-
sistent with the viral rebound that occurs in most HIV1 patients after ART interruption,
ranging from;5 days to 48 days (30, 31). However, viral rebound was not still observed
in one animal at 6months after ART cessation, compared with the stable viremic set
point in untreated animals. Unlike SIV-infected macaques, which show rapid viral
rebound after analytic treatment interruption, some SHIV.C.CH848-infected animals
showed a delayed viral recrudescence, which might be attribute to limited chronic acti-
vation and latency reactivation, as indicated by lower levels of plasma inflammatory
cytokines and chemokines (e.g., interleukin 8 [IL-8] and MIP-1b) at 3weeks after treat-
ment discontinuation, compared with those at pretreatment (data not shown). CCR5-
tropic SHIV.C.CH848 efficiently infects rhesus macaques, resulting in persistent high
levels of viremia, viral reservoir seeding, and depletion of CD41 T cells, consistent with
findings for SHIVAD8-infected macaques (8, 32, 33). However, circulating CD41 T cells
were rapidly restored in SHIV.C.CH848-infected macaques after ART was initiated.
Given that SIVmac-infected macaques show higher viremia, and contain higher propor-
tions of intact viral genome (;84% for SIV versus 11.7% for HIV) on ART (34–36), SHIV.
C.CH848, equivalent to HIV, likely shows less pathogenicity than SIVmac. In contrast to
the depletion of CD41 T cells, peripheral CD201 B cells progressively increased
throughout SHIVC infection in untreated animals, yet cART prevented B cell increases,
suggesting that persistent SHIVC infection leads to immune activation and B cell
hyperactivity if animals are untreated (37). To address the SHIV.C.CH848 latency,
chronic activation, and latency reactivation after treatment interruption, more animals
are needed for these studies.

In the HIV/SIV life cycle, the virus produces unspliced RNA (;9 kb), which is respon-
sible for gag/pol translation and packaging of the viral RNA genome, representing
bona fide viral replication (38, 39). Further, integrated proviral DNA is the reliable
marker of persistent viral reservoirs with clinical relevance, especially in patients when
plasma viremia is undetectable (27, 40–45). Since proviral DNA is a fundamental con-
stituent of the latent reservoir, measurement of this in cells is a simple approach to
estimate the persistent cellular reservoir that may fuel viral rebound, although this
method cannot distinguish defective forms. Considering that CD41 T cells are primary
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targets and predominant cell reservoirs in HIV/SIV infection (46–48), purified CD41 T
cells and non-CD41 cells were longitudinally compared for cell-associated viral RNA/
DNA in blood and lymph nodes. Although levels of SHIV RNA/DNA were significantly
different between CD41 and CD4-negative cell populations, the latter including mono-
cytes and other B and T cell lineage-negative cell subsets, the dynamics of viral RNA/
DNA in two cell populations were similar, although CD4-negative cell populations
showed levels of SHIV RNA/DNA that were at least 1 log lower.

Since non-CD4 cells can serve as reservoirs, including monocytes, dendritic cells,
and macrophages (49–54), CD141 myeloid cells were also purified to compare levels of
viral RNA/proviral DNA from chronically SHIV.C.CH848-infected macaques without
treatment. As suspected, viral RNA/DNA levels in purified CD41 T cells were much
higher than in peripheral CD42 CD141 myeloid cells (containing monocytes and mac-
rophages) (viral RNA, 8.9� 10e5 versus 6.8� 10e4; proviral DNA, 5.8� 10e3 versus
39.57), supporting the concept that CD41 T cells are the major cellular reservoirs in
HIV/SIV infection but also that myeloid cells are an additional source of viral persist-
ence (55). CD41 T cells constitute the predominant reservoir in HIV infection, yet recent
advances highlight the existence of HIV reservoirs in tissue-resident myeloid cells (52,
53, 56–58). However, myeloid cells in the blood and colon likely contain HIV transcripts
but few proviruses in a large fraction of HIV1 patients, compared with CD41 T cells
with readily detectable proviral DNA (59, 60). Myeloid cells, including monocytes and
macrophages, are infected by HIV/SIV, while circulating monocytes might not be con-
sidered reservoirs due to their infrequent HIV infection, low levels of proviral DNA, and
short life span (60). Macrophages likely represent long-lived myeloid reservoirs for viral
persistence, viral rebound, and reestablishment of productive HIV infection when treat-
ment is interrupted (61–67). Interestingly, the decay of both SHIV RNA and DNA in
lymph nodes was slower than in blood under cART, consistent with the notion that
lymphoid tissues may have suboptimal anti-HIV drug concentrations and thus serve as
sanctuary sites, resulting in viral persistence and viral resurgence after treatment is dis-
continued (68–71). Importantly, cART did not significantly reduce levels of proviral
DNA in blood, LNs, and rectum, suggesting that proviruses exist in multiple tissue sites,
which may need to be addressed in HIV cure strategies. As our and other studies report
that GC Tfh cells are expanded and impaired in chronic SIV/HIV infection (72–74), LN-
derived Tfh cells also increased in untreated SHIV.C.CH848-infected animals yet
decreased when cART was initiated.

People living with HIV often generate autologous neutralizing antibodies against
transmitted/founder viruses within weeks to months postinfection. Similarly, high lev-
els of autologous neutralizing antibodies were observed against SHIV.C.CH848 in 6 of 9
animals postinfection (ID50 titers $1:300). Studies indicate that the appearance and
persistence of neutralizing antibodies are mostly determined by the duration of HIV/
SIV infection (75, 76), yet heterogenous neutralizing antibodies were essentially unde-
tectable after 2 years of SHIV.C.CH848 infection. This is also consistent with previous
reports and suggests that the quality of GC Tfh cells and subsequent maturation of
antibody responses may be compromised (77, 78). GC Tfh cells represent a subset of
CD41 T cells that mainly reside in the GC of follicles and involve iterative interaction
with GC B cells in the GC reactions for neutralizing antibody generation (79). However,
GC Tfh cell loss or functional impairment, in spite of accumulation of GC Tfh cell at the
chronic stage while serving as a major source of the latent and productive viral reser-
voirs in persistent HIV/SIV infection, might be associated with defective Ab responses
(68, 74, 80, 81). Further, virus evolution in HIV-infected patients occurs concomitantly
with the emergence of selective pressures such as host CD8 T cell and antibody
responses in the first weeks postinfection (82, 83), as described in the report of the
source patient infected with the SHIV.C.CH848 T/F isolate, who developed first autolo-
gous and then heterologous V3-targeting antibodies (15). However, conserved sites of
selection pressure in V3 were not observed in any animal 5months postinfection,
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which may have been too early to generate Env mutations in response to cell or neu-
tralizing Ab responses.

In summary, here we characterize immunological and virological events in rhesus
macaques infected with the novel T/F SHIV.C.CH848, in combination with cART and in
response to treatment withdrawal. These findings demonstrate that this novel T/F
SHIV.C.CH848 clone has promising applications in NHP models to address questions
with regard to HIV reservoirs and persistence as well as relevant HIV vaccine and cure
strategies.

MATERIALS ANDMETHODS
Ethics statement. All animals in this study were housed at the Tulane National Primate Research

Center in accordance with the Association for Assessment and Accreditation of Laboratory Animal Care
International standards. All studies were reviewed and approved by the Tulane University Institutional
Animal Care and Use Committee under protocol number P0305R. Animal housing and studies were car-
ried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory
Animals of the National Institutes of Health (NIH, AAALAC number 000594) (84) and with the recommen-
dations of the Weatherall report The Use of Nonhuman Primates in Research (85). All clinical procedures
were carried out under the direction of a laboratory animal veterinarian. All procedures were performed
under anesthesia using ketamine, and all efforts were made to minimize stress, improve housing condi-
tions, and provide enrichment opportunities (e.g., objects to manipulate in cage, varied food supple-
ments, foraging and task-oriented feeding methods, and interaction with caregivers and research staff).

Animals and virus. A total of 10 adult Indian-origin rhesus macaques (Macaca mulatta; RMs) were
intravenously inoculated with 1,000 50% tissue culture infective doses (TCID50) of SHIV.C.CH848 (1:10
diluted stocks containing 4.4� 106 infectious units as determined by TZM-bl cells), in which SHIV.C.
CH848.375H.dCT was constructed and generated as described previously (16). After 20weeks, 5 animals
received combined antiviral drugs (tenofovir [TFV] at 20mg/kg of body weight/day, emtricitabine [FTC]
at 30mg/kg/day, and dolutegravir [DTG] at 2.5mg/kg/day) for 6months. TFV and FTC were kindly pro-
vided by Gilead, Inc., and DTG was kindly provided by ViiV Healthcare. Blood, lymph node, and rectal bi-
opsy specimens were collected at the time scheduled, processed into single-cell suspensions, analyzed
by flow cytometry, and examined by quantitative cell-associated viral DNA/RNA analysis.

Cells and plasmids. The TZM-bl cells and the HIV-1 SG3Denv backbone were obtained from the NIH
AIDS Reagent Program (86, 87). The HIV-1 clade A, B, and C reference rev-env expression plasmids were
obtained from the NIH AIDS Reagent Program (88–91). HIV-1 Env pseudoviruses were generated by
cotransfecting 293T clone 17 (ATCC, Manassas, VA) with Env plasmids, including the parental HIV-1 clade
C CH848 rev-env expression plasmid, along with the SG3Denv backbone.

Tissue collection and phenotyping. Flow cytometry for surface and intracellular staining was per-
formed using standard protocols (92). Cells were stained with CD3 (SP34), CD4 (OKT4; BioLegend), CD8
(SK1), CD20 (2H7), and the LIVE/DEAD fixable aqua dead cell stain kit (Invitrogen, Grand Island, NY).
Isotype-matched controls were included in all experiments. All antibodies and reagents were purchased
from BD Biosciences Pharmingen (San Diego, CA) unless otherwise noted. Samples were resuspended in
BD stabilizing fixative (BD Biosciences) and acquired on a FACS FORTESSA (Becton, Dickinson). Data
were analyzed with FlowJo software (Tree Star, Ashland, OR).

Measurement of gag-specific CD8+ T cells in blood. SHIV Gag-specific CD81 T cells were detected
as we previously described (93). In brief, PBMCs were stimulated by a pool of 15-mer Gag peptides
(5mg/ml of each peptide), medium (negative control), or phorbol-12-myristate-13-acetate (PMA; 5 ng/
ml; Sigma) plus ionomycin (50mg/ml) (positive control) for 6 h. The cultures also contained brefeldin A
(Sigma) and 1mg/ml of anti-CD49d and anti-CD28 costimulatory molecules (BD Biosciences). Cultured
cells were stained with monoclonal antibodies specific for surface molecules (CD3, CD4, CD8, and LIVE/
DEAD cell staining kit). After fixation and permeabilization with Cytofix/Cytoperm solution (BD
Biosciences), cells were further stained with antibodies specific for gamma interferon (IFN-g; clone 4S.B3)
and TNF-a (clone MAB11) and washed with Perm/Wash buffer (BD Biosciences). Finally, labeled cells
were fixed in 1.5% paraformaldehyde and acquired with a FACSA Verse cytometer (Becton Dickinson,
San Jose, CA), and data were analyzed using FlowJo software (Tree Star, Ashland, OR). The background
level of cytokine staining varied within different samples and different cytokine patterns but was typi-
cally ,0.05% of total CD81 T cells (median, 0.01%). Only samples in which the percentage of cytokine-
staining cells was at least twice that of background were considered positive.

Purification of CD4+ T cell subsets. Fresh PBMCs or LN mononuclear cells (LNMCs) were incubated
with anti-CD4 microbeads (Miltenyi) for 30min, washed, and resuspended in magnetically activated cell
sorting (MACS) buffer to purify CD41 T cells following the manufacturer’s instruction.

Genomic DNA and total RNA extraction. Fresh single-cell suspensions isolated from EDTA-treated
venous blood by density gradient centrifugation with lymphocyte separation medium (MP Biomedicals,
Santa Ana, CA) and lymph nodes at different time points were processed to extract total genomic DNA
and cellular RNA using the AllPrep DNA/RNA minikit (Qiagen) according to the manufacturer’s instruc-
tions. Viral RNA in plasma was directly isolated using the QIAamp viral RNA minikit (Qiagen). The
extracted cellular DNA and RNA samples were stored at280°C for use.

Quantification of plasma viral load and cell-associated SHIV RNA. The extracted RNA was reverse
transcribed into cDNA using the SuperScript III first-strand synthesis system (Invitrogen) according to
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the manufacturer’s protocol. RT reactions were performed in a thermocycler at 25°C for 5min and 50°C
for 60min, followed by an enzyme inactivation step at 70°C for 15min. For quantification of targets, all
primer/probe sets were synthesized by Integrated DNA Technologies (IDT; Coralville, IA) to target the
SIVmac239 gag region (forward primer, GTC TGC GTC ATC TGG TGC ATT C; reverse primer, CAC TAG GTG
TCT CTG CAC TAT CTG TTT TG; and probe, 6-carboxyfluorescein [FAM]-CTT CCT CAG TGT GTT TCA CTT
TCT CTT CTG CG-BHQ-1). Plasma viral loads were measured by real-time PCR as we previously described
(68). cDNA from cell-derived RNA was used to quantify unspliced RNA transcripts by digital droplet PCR
(QX100 droplet digital quantitative PCR [qPCR] system; Bio-Rad) as recently described (94). Samples
were run in duplicate in a 20-ml volume containing Supermix, 250 nM primers, 900 nM probe, and 2ml of
undiluted cDNA under the following cycling conditions: 10min at 95°C, 40 cycles of 94°C for 30 s and
63°C for 60 s, and then 98°C for 10min. Droplets were analyzed by the QuantaSoft software in the abso-
lute quantification mode. Copies of SIV transcripts expressed as copies per 1 million cells were measured
and normalized to cellular input, as determined by copies of genomic CCR5 (single-copy rhesus maca-
que CCR5 DNA per cell) (95–99). The limit of detection (LOD) was based on three or more replicates and
calculated using GenEx 5 (MultiD Analyses AB).

Quantification of cell-associated SHIV DNA. To ensure that quantifications of total SHIV DNA and
proviral DNA were comparable, a series of specific standards (plasmids containing SIV U5 DNA or CCR5
DNA fragment) were prepared to perform nested PCR. Since HIV preferentially integrates into regions of
the chromosome close to Alu repeats, two Alu primers were used to amplify the segments of integrated
proviral DNA (100). Two-step PCR amplification was run in parallel to quantify viral DNA as described
previously (94). Briefly, the preamplification reactions were performed using SIV long terminal repeat
primer and two outward Alu primers or using primer pairs of U5 (forward primer, AGG CTG GCA GAT
TGA GCC CTG GGA GGT TC; reverse primer, CCA GGC GGC GAC TAG GAG AGA TGG GAA CAC; and probe,
FAM-TTC CCT GCT AGA CTC TCA CCA GCA CTT GG-BHQ-1) on 7900HT sequence detectors (Life
Technologies). The reactions were performed as follows: 25 ml of the reaction mixture, containing 1�
PCR buffer, 0.2mM deoxynucleoside triphosphates (dNTPs), 2mM MgCl2, 0.8 mM each primer, and 0.5 U
of Taq DNA polymerase (Invitrogen Life Technologies), was programmed to perform a 5-min hot start at
95°C, followed by 20 cycles of denaturation at 95°C for 30 s, annealing at 63°C for 30 s, and extension at
72°C for 3 min. Volumes of 2.5ml of these amplicons were further amplified in triplicate with each
primer/probe pair by real-time PCR using 40 cycles at 95°C for 15 s and 63°C for 1 min. The highly repro-
ducible calibration curves were generated by plotting quantification cycle (Cq) values against log-trans-
formed concentrations of serial standard. Internal standard curves were also generated using the known
copy number of target plasmids (1 to 500 copies) diluted in cellular DNA from SIV-naive RMs. The cali-
bration curves and the internal regression curves were used for interpolating initial copies of each target
in unknown samples. A nontemplate control (NTC) and extracted cellular DNA from the HUT78/
SIVmac239 cell line (positive control) were included in the qPCRs. As described above, quantification of
SHIV RNA/DNA was expressed as copies per 1 million cells, in which cell numbers were determined by
copies of genomic CCR5 DNA per cell.

Antibody neutralization assays. TZM-bl neutralization assays were performed using single-round
infection of TZM-bl cells with Env pseudoviruses as described previously (16, 101–103). For each of the
10 SHIV.C.CH848-infected rhesus macaques, plasma neutralization was tested at 3 time points: 5months,
15months, and 2 years postinfection. Briefly, TZM-bl cells were seeded at 10,000 per well. After 24 h,
plasma was serially diluted 5-fold, starting at a dilution of 1:20, and incubated with 4,000 IU of virus stock
as measured via titration on TZM-bl cells. The sham medium was used in place of plasma in specified
control wells. The autologous infectious molecular SHIV clone, SHIV.C.CH848, and the pseudotyped HIV-
1 CH848 were used to assess the neutralizing antibody titers. Pseudotyped murine leukemia virus (MLV)
was used as a negative control. Antibody-virus mixtures were coincubated for 1 h and then added in
triplicate to preseeded TZM-bl cells. After 48 h, cells were simultaneously lysed and mixed with luciferase
substrate via the addition of Bright-Glo (Promega). Background-corrected luciferase activity for each
sample was determined. Neutralization curves were fitted by the 5-parameter nonlinear regression built
in Prism 8.0. The 50% inhibitory dilution (ID50) values were determined by the plasma reciprocal dilutions
required to inhibit viral infection by 50%.

Viral sequencing. Single-genome full-length gp160 env sequences were generated as described
previously (16). Briefly, up to 20,000 viral RNA copies were extracted from 400ml of plasma virus from
5months postinfection using the Qiagen BioRobot EZ1 workstation with EZ1 virus minikit v2.0 (Qiagen).
Eluted vRNA was subsequently used as a template for cDNA synthesis and reverse transcribed using the
reverse primer SHIV.Env.R1 (59-TAC CCC TAC CAA GTC ATC A-39) and SuperScript III reverse transcriptase
(Invitrogen Life Technologies). cDNA was serially diluted in a 96-well plate (Applied Biosystems) to iden-
tify the dilution at which ,30% of wells contained PCR amplicons of the correct size. The SHIV gp160
env genome was amplified via nested PCR with primers as follows: first-round forward primer SHIV.Env.
F1 (59-CGA ATG GCT AAA CAG AAC A-39), second-round forward primer SHIV.Env.F2 (CTA CCA AGG GAG
CTG ATT TTC), first-round reverse primer SHIV.Env.R1 (59-TAC CCC TAC CAA GTC ATC A-39), and second-
round reverse primer SHIV.Env.R2 (59-TAT TTT GTT TTC TGT ATGCT-39). PCR conditions were as follows
for the first round of nested PCR: 94°C, 2min; 37 cycles of 94°C for 20 s, 55°C for 30 s, and 68°C for 3min
30 s, and then 68°C for 10min. For the second round of nested PCR, the PCR conditions were as follows:
94°C for 2min; 42 cycles of 94°C for 20 s, 54°C for 30 s, and 68°C for 3min 30 s, and then 68°C for 10min.
Amplicons were sequenced via the MiSeq platform (Illumina). Raw reads were aligned to the SHIV.C.
CH848 T/F reference using Geneious R9. Sequences that contained mixed bases at a frequency of .25%
per nucleotide position were excluded from further analysis. Single-genome sequences were not able to
be generated for 3 of 10 rhesus macaques, likely due to a sample storage issue.
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Statistics. Statistical analyses were performed by GraphPad Prism 7.0 software (GraphPad).
Nonparametric tests were used for all statistical comparisons within animal tissues under cART. The
Mann-Whitney test was used to test for differences in set point viral loads, cell-associated SHIV RNA/
DNA, and specific cell subsets in animals before and after cART. Significant statistic differences (P ,
0.05) are indicated in figures with asterisks. The data are presented as means and standard errors of the
means (SEM).
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