
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Computers in Biology and Medicine 138 (2021) 104866

Available online 17 September 2021
0010-4825/© 2021 Elsevier Ltd. All rights reserved.

A novel cluster detection of COVID-19 patients and medical disease 
conditions using improved evolutionary clustering algorithm star 

Bryar A. Hassan a,b,*, Tarik A. Rashid c, Hozan K. Hamarashid d 

a Department of Computer Networks, Technical College of Informatics, Sulaimani Polytechnic University, Sulaimani, 46001, Iraq 
b Kurdistan Institution for Strategic Studies and Scientific Research, Sulaimani 46001, Iraq 
c Computer Science and Engineering Department, University of Kurdistan Hewler, Iraq 
d Information Technology Department, Computer Science Institute, Sulaimani Polytechnic University, Sulaimani 46001, Iraq   

A R T I C L E  I N F O   

Keywords: 
Improved evolutionary clustering algorithm 
star 
iECA* 
Evolutionary clustering algorithm star 
ECA* 
Coronavirus disease 2019 
COVID-19 
Medical conditions 

A B S T R A C T   

With the increasing number of samples, the manual clustering of COVID-19 and medical disease data samples 
becomes time-consuming and requires highly skilled labour. Recently, several algorithms have been used for 
clustering medical datasets deterministically; however, these definitions have not been effective in grouping and 
analysing medical diseases. The use of evolutionary clustering algorithms may help to effectively cluster these 
diseases. On this presumption, we improved the current evolutionary clustering algorithm star (ECA*), called 
iECA*, in three manners: (i) utilising the elbow method to find the correct number of clusters; (ii) cleaning and 
processing data as part of iECA* to apply it to multivariate and domain-theory datasets; (iii) using iECA* for real- 
world applications in clustering COVID-19 and medical disease datasets. Experiments were conducted to 
examine the performance of iECA* against state-of-the-art algorithms using performance and validation mea-
sures (validation measures, statistical benchmarking, and performance ranking framework). The results 
demonstrate three primary findings. First, iECA* was more effective than other algorithms in grouping the 
chosen medical disease datasets according to the cluster validation criteria. Second, iECA* exhibited the lower 
execution time and memory consumption for clustering all the datasets, compared to the current clustering 
methods analysed. Third, an operational framework was proposed to rate the effectiveness of iECA* against other 
algorithms in the datasets analysed, and the results indicated that iECA* exhibited the best performance in 
clustering all medical datasets. Further research is required on real-world multi-dimensional data containing 
complex knowledge fields for experimental verification of iECA* compared to evolutionary algorithms.   

1. Introduction 

Data mining techniques have a crucial role in decision-making and 
prediction. In particular, clustering organises observations in a dataset 
by grouping related observations in the same cluster and dissimilar 
observations in distinct clusters. Clustering algorithms are used in 
several areas, including medical patient records, web text mining, and 
business market analysis. Numerous clustering algorithms have been 
suggested, but each technique is mainly devoted to a particular form of a 
problem [1]. For example [2], concluded that K-means exhibits reduced 
performance on datasets with a large number of clusters, small cluster 
sizes, or cluster imbalances. Clustering algorithms have different per-
formances in different datasets and real-world applications. Therefore, it 
is essential to analyse the sensitivity of an algorithm to a range of 

benchmarking and real-world problems. Thus, almost all clustering 
techniques have a range of disadvantages. First, it is difficult to deter-
mine the optimal number of clusters [3]. Second, clustering algorithms 
are susceptible to the random sorting of cluster centroids. Selecting 
insufficient cluster centroids can easily result in ineffective clustering 
solutions [4]. Third, because virtually any clustering algorithm involves 
a hill-climbing process to achieve its goal, local optima will easily be 
stuck, resulting in suboptimal clustering results [5]. Fourth, the evi-
dence cannot be isolated from noise and outliers; we conclude that 
clusters have common distributions and near-identical masses. As a 
result, noise and outliers lead to excellent clustering outcomes, where 
noise sources and outliers are present. Fifth, there are few studies 
demonstrating the vulnerability of clustering algorithms to dataset co-
horts and real-world implementations. Finally, most of the previous 
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Fig. 1. The detailed flowchart of ECA* for numerical datasets (adapted from Ref. [7]).  
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algorithms use a deterministic-based approach [1]; thus, their clustering 
results are primarily dependent on their initial states and inputs, and the 
output generation process is affected by the starting conditions and 
initialisation parameters. In addition, clustering algorithms are inca-
pable of quickly capturing both local and global optimal spaces [6]. 

Furthermore, clustering is important in helping medical experts 
group a specific type of disease. Current clustering algorithms have been 
developed for various real-world applications, such as science, image 
processing, medicine, and decision-making agents [7,8]. For instance, 
dataset samples provided via diagnosis in the medical field are required 
for disease analysis, and are analysed by a doctor or pharmacist to 
determine the stage of the disease. As the number of patients increases, 
more time is required to examine the samples. Hence, a systematic 
method is needed to automatically or semi-automatically evaluate the 
sample dataset for each patient. The data samples of medical conditions 
can be categorised by applying a systematic method involving clustering 
algorithms. 

There has been insufficient research to effectively cluster COVID-19 
and other medical disease datasets using clustering algorithms. As an 
exception, the study in Ref. [9] introduced an overlapping k-means al-
gorithm for medical applications, despite the limitations of this algo-
rithm. Another study [10] examined the potential of extending ensemble 
clustering methods to the field of medical diagnostics. Recently, a new 
evolutionary clustering algorithm, called ECA*, was proposed in Ref. [7] 
for heterogeneous and numerical datasets. ECA* was developed based 
on statistical and evolutionary algorithms [6,11]. This newly introduced 
algorithm was examined using state-of-the-art clustering algorithms, 
and the results indicated that better clustering results were obtained 
with ECA* compared to other competitive techniques. Moreover, an 
adaptive version of ECA* has been developed to reduce the size of 
concept hierarchies from corpora [12]. According to the same study, the 
resulting lattice was homoeomorphic to the original one, preserving the 
structural relationship between the two definition lattices through the 
prism of the experiment and outcome analysis. Compared to the basic 
concept lattice, this resemblance between the two lattices maintained 
the consistencies of the resulting definition hierarchies by 89%, with a 
loss of 11%. Thus, the quality of the resulting concept hierarchies is 
promising. Nonetheless, ECA* do not have limitations. Adapting ECA* to 
different practical problems is a challenge that needs to be addressed. 
Furthermore, ECA* can be exploited under the assumption of no prior 
input information. As a result, we used an enhanced ECA* to create a 
proper exercise protocol and a novel research method for blended 
multi-variance datasets. Thus, we improved ECA* to effectively cluster 
real datasets in COVID-19 and other conditions. The proposed algorithm 
is called improved ECA* (iECA*). Our newly introduced algorithm has 
four significant advantages over the standard ECA*: (i) the elbow 
technique is used to determine the optimum number of clusters; (ii) the 
input datasets are cleaned and processed as part of the iECA*; (iii) unlike 
ECA*, iECA* works on multivariate and domain-theory datasets with 
different attribute characteristics, such as integer, real, and categorical 
data attributes; (iv) iECA* can be used in real-world applications for 
diagnosing medical disease datasets. 

This study aims to effectively cluster real-world datasets involving 
COVID-19 symptom checkers, liver disorders, diabetes, and kidney and 
heart diseases using iECA*. To evaluate the effectiveness of iECA* on the 
actual medical data, we examined iECA* against seven modern algo-
rithms (ECA*, genetic algorithm for clustering++ (GENCLUST++), k- 
nearest neighbours algorithm (KNN), deep KNN, learning vector quan-
tisation (LVQ), support vector machine (SVM), and artificial neural 
network (ANN)). In addition, the performance of the methods was 
compared and analysed. 

The remainder of this paper is organised as follows: Section 2 reviews 
previous works related to evolutionary clustering algorithms; Section 3 
presents the newly suggested algorithm based on ECA*; Section 4 dis-
cusses the research methods of the study; in Section 5, the results of the 
algorithms are deliberated based on performance and validation 

measures; finally, Section 6 draws the concluding remarks and describes 
future research efforts. 

2. Related works 

Numerous clustering methods have been developed over the last few 
years. ECA* is one of the most recently developed evolutionary clus-
tering algorithms that addresses the limitations of the currently avail-
able clustering methods. ECA* is an ensemble evolutionary clustering 
algorithm used for clustering heterogeneous and multi-featured real 
datasets and practical applications, and it integrates several approaches 
[7,13]: statistical, heuristic, and evolutionary methods. Thus, it has been 
used for analysing multi-featured and heterogeneous datasets. ECA* 
comprises five parts: (i) initialisation, (ii) clustering I, (iii) mut-over, (iv) 
clustering II, and (v) evaluation. Fig. 1 shows the detailed flowchart of 
ECA* for the numerical datasets. In addition to that, the pseudo-code of 
ECA* is available in Ref. [14]. 

The components and mathematical formulations of ECA* are 
explained below:  

1. Initialisation. The input dataset consists of many records, and each 
one has several numerical properties. Assume that the input data 
(dataset) is represented by N chromosomes Chi, and each chromo-
some contains a collection of genes (Gi0, Gi1, Gi2, … Gij). 

For i = 0, 1, 2, ….., N and j = 0, 1, 2, ….., D, where N and D are the 
number of records and attributes, respectively. 

At this step, the following parameters should be initialised:  

A. Social class ranks (S) and number of clusters (K), as presented in 
Equation (1): 

K = Sj (1)    

B. Minimum cluster density threshold (Cdth).  
C. Random walk (F).  
D. Crossover type (Ctype). 

Subsequently, the percentile rank (Pij) for each data point and its 
average percentile rank (Pi) for each chromosome should be determined. 
Finally, each chromosome is assigned to a cluster (K) based on its rank.  

2. Clustering-I. This component consists of the following steps:  
A. The number of real clusters is computed using Equation (2): 

Knew =K − Kempty − Kdth (2)  

where Kempty is the number of empty clusters and Kdth is the number of 
low-density clusters.  

B. The initial cluster centroids are calculated using Equation (3): 

Ci =mean quartile
(
Chij

)
(3)  

where Chij is a set of chromosomes.  

C. The old cluster centroids are computed using Equation (4): 

oldCi ∼ U (lQuartile, uQuartile) (4)    

D. For each cluster, the intraCluster and oldIntraCluster are determined. 
Similarly, for the current clustering solution, the interCluster and 
oldInterCluster are calculated. Equations (5) and (6) present the 
mathematical formulas of intraCluster and interCluster calculations 
for clusters A and B, respectively: 
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intraclass of A=
1

|A|. (|A| − 1)
∑n

x, y ∈ A

x ∕=y

{d(x, y)} (5)  

InterCluster  of  (A,  B)= 1
|A| + |B|

{
∑

x ∈A
d(x, vb)+

∑

y ∈B
d(y, va)

}

(6)  

where va = 1
|A|

∑

x ∈ A
x and vb = 1

|B|
∑

y ∈ B
y.  

E. Finally, new cluster centroids are calculated as presented in Equation 
(7): 

newCi∶=
{

Ci intraClusteri < oldIntraClusteri
oldCi otherwise (7)    

3. Mut-over. This strategy consists of a recombination operator of 
mutation and crossover.  
A. Mutation: Mutate each cluster centroid of i to relocate it to the 

densest region of the cluster. The cost of mutating each cluster is 
computed using Equation (8): 

Mutanti∶= Ci + F (HI) (8)  

where F is the random walk initialisation and HI is the historical infor-
mation, which is calculated as expressed in Equation (9): 

HI ∶=
{

oldCi − Ci If intraClusteri < oldIntraClusteri
Ci − oldCi Otherwise (9)    

B. Crossover: Using a uniform crossover operator, a new cluster 
centroid is created from the current and previous cluster centroids. 
The new cluster centroid (newCi) for cluster i is computed as illus-
trated in Equation (10): 

newCi ∶= oldCi + Ci (10) 

In addition, there is a switch operator between crossover and mu-
tation in ECA* that generates the final trial of centroids between mu-
tation and crossover using objective functions, as defined in Equation 
(11): 

MOi : =

{
Mutanti if oldInterClusteri > interClusteri
newCi Otherwsie (11) 

As a result of the mutation technique, certain cluster centroids pro-
duced after the crossover process may exceed their search space con-
straints. The mut-over operator in ECA* is comparable to the boundary 
control technique in backtracking search optimisation algorithm [15]. 
Moreover, the boundary control method of ECA* successfully creates 
population diversity, which guarantees that effective searches for clus-
tering and cluster centroid findings are generated.  

4. Clustering-II. After generating the mut-over operator, the clusters 
are merged according to their diversity, and the cluster centroids are 
recalculated. At this stage, the clusters that are close are merged. In 
turn, the distance between closed clusters should be considered. 
Several distance metrics exist between clusters that are frequently 
used [16]. The minimum and maximum distance methods, centroid 
distance method, and cluster-average method are used in this algo-
rithm [17]. Therefore, the minimum distance between two clusters 
can be defined in Equation (12) [17] as follows: 

Dmin (X,Y)∶=min{d
(
Ax, Ay

)}
(12)  

where Ax ∈ X, Ay ∈ Y. 

The diversity between Ci and Cj is represented in Equation (13) [17] 
as follows: 

σij =min
{(

Dmin
(
Ci, Cj

)
− R(Ci)

) (
Dmin

(
Ci, Cj

)
− R

(
Cj
))}

(13)  

where R(ci) and R(Cj) are the average distances of the intraCluster and 
Dmin (Ci, Cj) is the minimum distance between Ci and Cj. 

The criteria for merging two clusters should be one of the following:  

A. If the result (σ ≤ 0) is less than or equal to zero, these two classes are 
closely related and highly interrelated. As a result, classes Ci and Cj 
may be combined into a single class (Cij). That is, once a low-density 
class is created, it will be empty;  

B. The average intraCluster distance between these two clusters is 
smaller than the shortest distance. This principle implies that Ci and 
Cj continue to exist as distinct clusters. 

Finally, the number of clusters is recalculated to eliminate empty 
clusters generated owing to the lower-density clusters. 

5. Fitness evaluation. This component is used to determine the clus-
ters. The interCluster and intraCluster distances of the produced 
clusters are used as inputs, and the output is the fitness. The algo-
rithm will terminate if the interCluster distance achieves its most 
significant value and the intraCluster distance reaches its minimum 
value (optimal). However, this criterion is not feasible. If the 
following conditions are satisfied, the halting requirements are 
satisfied:  
A. The method completes the number of iterations specified in the 

initialisation;  
B. The interCluster and intraCluster values remain constant during 

each cycle. The value of the interCluster does not increase, and 
the value of the intraCluster does not decrease throughout each 
iteration. 

3. iECA* 

One of the advantages of ECA* is the use of stochastic and random 
procedures. The stochastic method* of ECA is advantageous because it 
strikes a balance between navigating the search space and using the 
search space learning process to focus on global and local optima. 
Moreover, the superior efficiency of ECA* is a product of the use of 
operators with meta-heuristic algorithms in three aspects [7,11]. First, 
the adaptive control parameter (F) is implemented using Levy flight 
optimisation to balance the exploitation and exploration of the algo-
rithm. Second, to enhance the capacity of the cluster centroids for 
learning and determine (Fig. 1) the optimal cluster centroids, the cluster 
centroids learn information from historical cluster centroids (HI). 
Mut-over may also be used to describe a recombination technique 
involving mutation-crossover. Third, mut-over can resolve the issue of 
global and/or local optima that might arise in other clustering tech-
niques [18] when F and HI are used. This recombined approach confers 
consistency and robustness to the proposed algorithm [19]. As a result, 
these methods maintain an adequate balance between global and local 
optima. 

However, the experimental findings of [7] demonstrate some 
shortcomings of the ECA*:  

1. Finding the ideal pre-defined value for the variables of ECA*, such as 
the number of social class levels and the cluster density criterion, is 
challenging. Selecting the ideal number of social class ranks may 
preclude determining the ideal number of clusters;  

2. Changing the number of social class ranks may alter the definition of 
the cluster threshold density. A limited number of social class ranks 
may result in a small number of clusters and a high threshold for 
cluster density. In contrast, many social class ranks may result in a 
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large number of clusters and a low threshold for cluster density. 
Because social class rankings and the cluster density criterion are 
pre-defined values, balancing these two factors might be 
complicated;  

3. ECA* has been previously used for numerical data, but it has not 
been used for multi-variance data and real-world applications;  

4. Data cleaning and processing is not considered a part of ECA*. 

In this research, we improved the ECA* in four aspects: 
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1. We utilise the elbow method to find the ideal number of clusters. The 
elbow method is perhaps the most well-known approach for deter-
mining the optimum cluster number. This method is a heuristic 
method used in cluster analysis when calculating the number of 
clusters in each dataset [20]. The method relies on the number of 
clusters and involves plotting the explained variance and selecting 
the elbow of the curve to use the cluster numbers. The same 
approach can be used to select the number of parameters, such as the 
number of principal components used to define the data collection, in 
other data-driven models. As stated in Ref. [15], the elbow method 
has a faster execution time than other methods (gap statistic, 
silhouette coefficient, canopy) to find the optimal number of clusters;  

2. The input dataset is cleaned and processed in two steps. (i) Data 
cleaning: The input dataset may include many unnecessary and 
missing elements. Data cleansing is performed to address this issue, 
and includes the management of missing data and noisy data. (ii) 
Dataset processing: This step is used to convert the data into a format 
suitable for mining. This process is accomplished using normal-
isation and de-normalisation processes to scale data values within a 
defined range, such as − 1.0 to 1.0 or 0.0 to 1.0;  

3. Unlike ECA*, iECA* is applied to multivariate and domain-theory 
real datasets with different attribute characteristics, such as 
integer, real, and categorical data attributes;  

4. iECA* is used for real-world applications in clustering COVID-19 and 
medical disease datasets. 

On this premise, iECA* includes five parts: (i) initialisation, (ii) pre- 
processing, (iii) realignment of mutation and crossover, (iv) post- 
processing, and (v) evaluation. Algorithm 1 shows the pseudo-code of 
the iECA* for COVID-19 and medical disease records. 

Algorithm 1. Pseudo-code of iECA* 
The pseudo-code mut-over strategy for iECA* is also presented in 

Algorithm 2. 

Algorithm 2. Pseudo-code of the mut-over strategy of iECA* 
Furthermore, the iECA* Java code is available in Refs. [21,22]. Also, 

the components and mathematical formulations of iECA* are presented 
below.  

1. Initialisation. This component, a categorised or/and numerical 
input dataset (N × D), is initialised into the algorithm. Subsequently, 
the parameters listed below should be initialised.  
A. Number of clusters (K).  
B. Minimum cluster density threshold (Cdth).  
C. Random walk (F).  
D. Crossover type (Ctype). 

Subsequently, the percentile rank (Pij) for each data point and its 
average percentile rank (Pi) for each chromosome should be determined. 
Finally, each chromosome is assigned to a cluster (K) based on its rank.  

2. Pre-processing. This component consists of the following steps:  
A. During the first iteration, the following steps are conducted:  

i. Data cleaning: The data may include many unnecessary and 
missing elements. Data cleansing is performed to address this, 
and includes the management of missing and noisy data; 

ii. Data normalisation: This step is used to transform the cate-
gorical dataset into numerical data to be suitable for the 
Euclidean distance clustering process. Normalising data is 
used to scale the data values. For example, Table 1 presents the 
categorical data of three attributes. 

After using data normalisation process, the multiple variables pre-
sented in Table 1 can be converted to numeric values. Table 2 shows the 
new data matrix constructed using numeric columns rather than facto-
rial columns.  

iii. The elbow method is used to calculate the number of clusters. The 
variance (sum of squared errors (SSE) inside clusters) is plotted 
against the number of clusters in the elbow method. The initial 
few clusters provide a large amount of variation and information, 
but the information gain decreases with time, and the shape of 
the graph becomes angular. The optimum number of clusters is 
determined; this is referred to as the “Elbow criteria”. However, 
this point cannot be permanently established without ambiguity. 
The elbow technique is utilised in this study as a visual method 
for determining the consistency of the optimal number of clusters 
[23,24]. The idea is to determine the number of clusters, add 
clusters, and then calculate the SSE for each cluster until the 
maximum number of clusters is determined. Then, by comparing 

Table 1 
Sample table of categorical data.  

x1 x2 x3 

a E x 
b D x 
c E x 
d D x 
e E x 
f D x  

Table 2 
Numerical representation of Table 1.  

x1 x2 x3 

1 2 1 
2 1 1 
3 2 1 
4 1 1 
5 2 1 
6 1 1  
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the difference in SSE for each cluster, the most extreme difference 
in the elbow angle indicates the optimal cluster number. The SSE 
formula is given by Equation (14): 

SSE =
∑k

i=1

∑

xj ∈ Ci

⃒
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒
⃒

xj − μi

⃒
⃒
⃒
⃒
⃒
|
2 (14)  

where Xj is an object in each cluster and Ci is the centroid of the cluster. 
The elbow algorithm is presented in Algorithm 3 to calculate the 

optimal value of clusters. 

Algorithm 3. The Elbow method   

B. The number of real clusters is computed using Equation (2);  
C. The initial cluster centroids are calculated using Equation (3);  
D. The old cluster centroids are computed using Equation (4);  

E. For each cluster, the intraCluster and oldIntraCluster are determined. 
Similarly, for the current clustering solution, the interCluster and 
oldInterCluster are calculated. Equations (5) and (6) present the 
mathematical formula of intraCluster and interCluster calculations 
for clusters A and B, respectively; 

F. Finally, the new cluster centroids are calculated as shown in Equa-
tion (7).  

3. Mut-over. Similar to ECA*, this component consists of mutation and 
crossover operators. The equations for this step are presented in 
Section 2.  

4. Post-processing. Following the generation of the mut-over operator, 
the following steps are performed:  
A. Merging clusters according to their diversity using Equations (12) 

and (13);  
B. Recalculating the cluster centroids;  
C. De-normalising the dataset if the termination requirements are 

met. This step de-normalises the numeric data into the original 
data (categorical dataset). 

Fig. 2. The proposed methodology.  
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5. Fitness evaluation. The halting requirements are satisfied if the 
following conditions are satisfied:  
A. The procedure completes the given number of iterations;  
B. The values of the interCluster and intraCluster remain constant 

during each cycle. This means that the interCluster value does not 
increase, and the intraCluster value does not decrease throughout 
each cycle. 

4. Methods 

The proposed methodology is depicted in Fig. 2, in which COVID-19 
and medical disease datasets are used as inputs to the proposed iECA* 
algorithm and other algorithms. Then, the clustering results are vali-
dated using three performance and validation measures. Finally, the 
success and failure ratios of the methods on each dataset are depicted to 
demonstrate the performance of each algorithm. 

4.1. Datasets 

The real-world datasets of COVID-19 symptoms checker, Liver dis-
orders, Diabetes, Kidney and Heart diseases are used to evaluate the 
adaptive ECA* against its predecessor algorithms. 

1. The COVID-19 symptoms checker: This dataset can aid in deter-
mining whether an individual has coronavirus disease based on a set 
of pre-defined typical symptoms. This dataset is taken from Ref. [25]. 
These signs are based on the Indian government and the World 
Health Organisation (WHO). The findings of these data analyses 
could be construed as medical recommendations. The dataset in-
cludes seven main variables that would affect whether anyone has 
coronavirus disease. A combination will be created for each mark in 
the variable with all these categorical variables, resulting in 316800 
variations. The whole dataset encompasses raw and cleansed data-
sets. We have used the cleansed and reprocessed version of the 
dataset with the same number of instances and attributes.  

2. Medical datasets: The second sets of data include four real datasets:  
A. The Liver disorder’s real-world dataset is collected from the UCI 

Machine Learning Repository and donated by Richard [26]. This 
dataset consists of 341 instances with seven categorical, integer, 
and real attributes. The first five factors pertain to blood samples, 
which are vulnerable to Liver Disorders caused by heavy alcohol 
intake. Meanwhile, each record in the dataset corresponds to a 
single male person. Blood samples are used to determine the 
mean corpuscular volume (MCV), alkaline phosphatase (Alk 
Phos), alanine aminotransferase (SGPT), aspartate aminotrans-
ferase (SGOT), and gamma-glutamyl transpeptidase (Gammage) 
activity, as well as the number of half-pint equivalents of alco-
holic beverages drunk each day (drinks). The 341 samples are 
divided into two distinct groups based on liver disorders: class 1, 
which contains 142 samples, and class 2, which contains 199 
samples.  

B. The Diabetes dataset is collected from the United States of 
America and Turkey, accessible online [27]. It has 768 instances 
and 9 data attributes, such as Glucose, Blood pressure, Insulin, 
Age and Outcome. This dataset aims to check the patients 

whether have Diabetes or not. This grouping is conducted via the 
value of the ‘Outcome’ attribute (1: The patient has diabetes; 0: 
The patient does not have Diabetes).  

C. The Kidney dataset is gathered in India over two months [28]. It 
contains 400 rows and 25 characteristics, including red blood 
cells, sugar, and pedal oedema. This data aims to ascertain 
whether or not a patient has chronic kidney disease. This type is 
determined by the value of an attribute called ‘Group’, either 
chronic kidney disease (CKD) or not-CKD. We have cleansed the 
dataset, including mapping the text to numbers and making a few 
other improvements.  

D. Additionally, the Heart disease dataset is owned by David Lapp 
and collected on 04/06/2019 from four different databases 
(Hungary, Cleveland, Long Beach V, and Switzerland) [29]. It 
consists of 1025 instances and 14 attributes. This dataset can be 
clustered based on the presence of heart disease in the instance of 
patients. Zero means no heart disease, while one means there 
exist heart disease in the instance record. Table 3 presents the 
characteristics of the used datasets. 

4.2. Experimental setup 

We conducted experiments to evaluate the results of iECA* 
compared to those of seven state-of-the-art methods. The primary ob-
jectives of this experiment were: (i) clustering COVID-19 and real-world 
patient datasets effectively; (ii) evaluating the performance of iECA* 
using the performance and validation measures of the clustering 
algorithms. 

We run iECA* and its counterpart algorithms 30 times on every 
dataset to determine the cluster consistency and cluster objective func-
tion for each run. The clustering solutions of the algorithms varied be-
tween runs. Each run consisted of 50 iterations. For each dataset 
problem, Weka 3.9 was used to run the counterpart algorithms of iECA*. 
We also report the average outcomes for each technique for the 30 
clustering solutions for each dataset problem. Uniform crossover was 
used as part of the mut-over strategy, as it is an efficient and powerful 
operator form in evolutionary algorithms to reduce joint problems [30]. 
It is also challenging to initialise the optimal value for the pre-defined 
ECA* variables. iECA* also lacks the correct cluster density threshold 
to be chosen, which should be sufficient for compound and 
multi-featured issues. The cluster density threshold may differ depend-
ing on the type of benchmarking issue. For example, a cluster density 
threshold of 0.001 may be suitable for one type of dataset but not for 
another one. Nonetheless, the cluster density threshold can be calculated 
based on the scale and characteristics of the dataset. As a result, we 
conclude that the initial values mentioned in Table 4 are optimal for 

Table 3 
Dataset characteristics.  

Datasets Dataset characteristics Attribute characteristics Number of instances Number of attributes Missing values? Date donated 

COVID-19 symptoms checker Multivariate, real Real, Integer, Categorical 316800 7 N/A 21/03/2020 
Liver disorders Multivariate, real Real, Integer, Categorical 345 7 No 15/05/1990 
Diabetes dataset Multivariate, real Real, Integer, Categorical 769 8 No 13/06/2020 
Kidney disease Multivariate, real Real 400 25 Yes 03/07/2015 
Heart disease Multivariate, Domain-Theory Real, Integer Categorical 1025 14 N/A 06/06/2019  

Table 4 
The criteria and parameters for running iECA*.  

Criteria Initial value 

Initial number of clusters 1 
Cluster density ratio 0.001 
Alpha (random walk) 0.001 
Maximum number of runs 30 
Maximum iterations 50 
Crossover operator type Uniform crossover  
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addressing the dataset issues found during this study. Table 4 presents 
the criteria and parameters for running iECA*. 

As described in Weka 3.9, the primary criteria for running the 
competitive algorithms of iECA* are presented in Table 5. 

Additionally, Table 6 provides the parameters used for running each 
counterpart algorithm of iECA* and the reason for choosing these 
parameters. 

4.3. Performance and validation measures 

4.3.1. Validation measures 
According to Ref. [39], clustering assessment and validation are 

almost as crucial as clustering itself. Numerous quality measures and 
objective function measures are available to evaluate clustering per-
formance. In our study, we utilised five cluster validation measures to 
evaluate iECA*.  

1. Accuracy: Accuracy is equal to the ratio of the number of correct 
matching pairs to the total number of matching pairs. A true positive 
(TP) result places two pairs connected in the same cluster; a true 
negative (TN) result places two pairs of dissimilar data points in 
separate clusters. A false positive (FP) result allocates two data points 
that are distinct to the same cluster. A false negative (FN) result 
classifies two similar points to distinct clusters [40]. The accuracy 
was calculated using Equation (15). 

Accuracy =
TP + TN

TP + TN + FP + FN
(15)    

2. Normalised mutual information (NMI): NMI is an external metric for 
determining the quality of clustering. Because this approach is nor-
malised, we may compare the NMI across clusters with varying 
numbers of clusters. Consider the set of clusters K, class label C, 
entropy H(.) and mutual information I (C: K). The NMI is then 
determined using Equation (16): 

NMI (C, K) =
2 X I (C : K)

[H(C) + H(K)]
(16)  

where I(C : K) = H(C) − H((C|K)).  

3. Adjusted Rand index (ARI): The ARI uses the global hypergeometric 
distribution as the random model. In other words, the V and U par-
titions are randomly chosen such that the number of objects in the 
clusters remains constant. Let nij be the total number of items in 
classes ui and vj. Consider the numbers ni and nj to represent the 
number of items in classes ui and vj, respectively [40]. Therefore, ARI 
is defined in Equation (17): 

ARI =

∑
i, j(2ni,j ) −

[∑
i(ni2 )

∑
j(2nj )

]/
(2n)

1
2

[∑
i(2ni )

]
−

[∑
i(2ni )

∑
j(2nj )

] /

(2n)

(17)    

4. Normalised mean squared error (nMSE): The mean squared error 
(MSE) is used to calculate the average of squared errors as well as the 
average squared difference between the actual and estimated values. 
As in Ref. [2], nMSE was employed in this study, as shown in 
Equation (18): 

Table 5 
The primary criteria for running counterpart algorithms of iECA*.  

Criteria Initial value 

Number of clusters Depends on the dataset 
Maximum number of runs 30 
Maximum iterations 50 
Input centre file and debug vectors file Weka 3.9  

Table 6 
The parameters used for running each counterpart algorithm of iECA*.  

Algorithms Parameters Reasons 

ECA* Cluster density threshold: 
0.001 
Alpha (random walk): 
1.001 
Number of social class rank: 
2-10 
Type of crossover operator: 
Uniform crossover 

The pre-defined parameters are 
initialised to be implemented 
following the dataset’s size and 
characteristics [14]. 

GENCLUST++ Number of clusters: 
climbing hill 
Initial population size: 30 
Seed: 10 

We adhere to the initial values 
suggested by the original 
publications [31]. 

LVQ Number of clusters: 
Depends on the dataset 
Learning rate: 1.0 
Normalise attributes: True 

On several problems, the initial 
parameter settings for the 11 LVQ 
classifiers showed LVQ’s superior 
performance [32]. 

SVM Number of hyperplanes: 2- 
10 
Gamma: From 0.0001 to 10 
C parameter: From 0.1 to 
100 
Batch size: 10 

Many SVM parameters, including 
the c and gamma parameters, 
should be selected [33]. The 
optimum values for these 
parameters utilised in Ref. [34] are 
employed in this study to reduce 
the training error. 

ANN Input layer size: Depends on 
the features of the datasets. 
Hidden layer size: 2 
Output layer size: 2-4 
Threshold range: [-1.1] 
Weight range: [-1, 1] 
Learning coefficient: 0.2 
Activation function: 
Sigmoid 
Momentum: 0.8 

These parameters are initialised 
based on the previous protocol 
presented in Ref. [35]. 

KNN Number of 
neighbourhoods: 3-10 
Distance function: 
Hamming distance 

Selecting the optimum value for K 
is best accomplished by examining 
the data first. A high K value 
generally results in greater 
precision since it lowers total 
noise, although this is not a 
guarantee. Cross-validation is 
another technique for determining 
a suitable K value retroactively by 
comparing it to an independent 
dataset. Historically, the optimum 
K value for most datasets was 
between 3 and 10 [36]. This gives 
much more accurate results than 
1NN. 
Additionally, it should be 
emphasised that Euclidean, 
Manhattan, and Minkowski 
distance measures are valid only 
for continuous variables. When 
categorical variables are included, 
the hamming distance should be 
employed [37]. 

Deep KNN The same parameters of 
KNN with feature 
extraction. 

Due to the nonparametric nature 
of KNN, it is challenging to include 
KNN classification into feature 
extractor learning [38]. presents 
an end-to-end learning method for 
integrating KNN classification and 
feature extraction. We have 
utilised the same procedure of the 
mentioned study since 
experiments showed that the 
proposed deep KNN outperforms 
KNN and other strong classifiers.  
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nMSE =
SSE
N. D

(18)  

where SSE is the sum of squared errors, N is the number of populations, 
and D is the number of attributes in the dataset. 

The SSE calculates the squared differences between each observa-
tion, its cluster centroid, and the variance within a cluster. If all the cases 
in a cluster are identical, the SSE is equal to zero. That is, the lower the 
SSE value, the better the work of the algorithms. For instance, if one 
method returns an SSE of 7.44, and another returns an SSE of 17.26, we 
may infer that the former approach performs better than the latter. 
Equation (14) illustrates the SSE. 

5. Davies–Bouldin index (DBI): The DBI is a clustering method evalu-
ation measure used to measure the average similarity of each cluster 
with its most similar cluster. This is an internal assessment method in 
which the quality of the clustering is determined using dataset- 
specific variables and characteristics [41]. The MATLAB imple-
mentation of DBI is available via the MATLAB Statistics and Machine 
Learning Toolbox, using the “evalclusters” command [42]. 

4.3.2. Statistical benchmarking 
As part of the performance validation of iECA* against the state-of- 

the-art algorithms, we evaluated the overall performance of the algo-
rithms in terms of running time against memory usage for each medical 
dataset. We also compared the average execution time with memory 

Fig. 3. Accuracy results of iECA* compared to other algorithms on COVID-19 and medical disease datasets.  

Fig. 4. NMI results of iECA* compared to other algorithms on COVID-19 and medical disease datasets.  
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consumption for the 30 solutions obtained by iECA* and the other 
algorithms. 

4.3.3. Performance ranking framework 
To determine the performance ranking level of each algorithm ac-

cording to each dataset and each performance validation metric (accu-
racy, NMI, ARI, nMSE, and DBI), we evaluated the effectiveness of iECA* 
with the current methods in two manners: (i) we assessed the perfor-
mance of each algorithm with respect to each dataset using all the 
validation metrics. The ranking level varied from 1 (the best algorithm) 
to 8 (the worst algorithm). (ii) We ranked the performance of each al-
gorithm for each performance validation metric using all datasets. The 
ranking level is represented by three colours: green (good performance), 

yellow (moderate performance), and red (poor performance). 

5. Results 

This section is divided into three sub-sections: performance result 
analysis, statistical performance benchmarking, and performance rating 
framework. 

5.1. Performance result analysis 

The accuracy of all five datasets is shown in Fig. 3. The results ob-
tained indicate that the suggested iECA* method outperformed current 
algorithms such as ECA* in terms of the validation controls utilised 

Fig. 5. ARI results of iECA* compared to other algorithms on COVID-19 and medical disease datasets.  

Fig. 6. nMSE results of iECA* compared to other algorithms on COVID-19 and medical disease datasets.  
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(accuracy, NMI, ARI, nMSE, and DBI) in nearly all situations. The iECA* 
algorithm improved the accuracy by 3.5% in the COVID-19 symptoms 
checker and kidney datasets and by 4.7% in the liver disorder dataset. 
On the diabetes dataset, the accuracy was almost the same as that of the 
current methods, whereas it was improved by 4.5% in the heart disease 
dataset. 

The NMI comparison is shown in Fig. 4. As a result, we conclude that 
the proposed clustering method provides superior performance in all 
cases. The NMI value of iECA* fully agreed with the ground truth results 
for the current liver disorder, diabetes, and heart disease datasets. In 
addition, there was a relative increase of 1% in the NMI for COVID-19 
symptom checker and kidney disease datasets with a slight difference. 

Fig. 5 shows the ARI comparison. The iECA* method outperformed 
the previous data clustering algorithms, providing an increase of 1% in 
the ARI values in the COVID-19 symptoms checker, liver disorder, and 
kidney disease datasets. The suggested method provided similar results 
as those of the current techniques in terms of ARI for diabetes and heart 
disease datasets. 

In terms of nMSE, in all datasets except the diabetes dataset, iECA* 
outperformed the other approaches analysed. In contrast, in the diabetes 
dataset, ANN had superior performance, followed by deep KNN. Fig. 6 
shows the nMSE results. 

Fig. 7 presents the DBI comparison. It is observed that the iECA* 
outperformed the current data clustering methods, providing an 
improvement of 3% for the COVID-19 symptoms checker and liver 

disorder datasets, 2% for diabetes and kidney disease datasets, and 5% 
for the heart disease dataset compared to the other data clustering 
approaches. 

5.2. Statistical performance benchmarking 

This section analyses the overall performance benchmarking of the 
algorithms (execution time/memory consumption) based on the data-
sets. Table 7 presents the execution time with memory consumption for 
the 30 solutions obtained by iECA* and other algorithms. We observe 
that iECA* exhibited a shorter execution time for clustering all the 
datasets. Similarly, the proposed method consumed less memory than 
the other techniques. Surprisingly, on the kidney disease dataset, iECA* 
required a higher memory allocation than deep KNN. In general, the 
proposed iECA* technique had a faster execution and consumed less 
memory than the other clustering methods. 

Additionally, Fig. 8 illustrates the average execution time for the 30 
solutions obtained by iECA* and its competitive algorithms. 

5.3. Performance ranking framework 

We ranked the algorithms according to their effectiveness on the five 
datasets according to the clustering validation measure. The ranking 
level ranged from 1 (the best algorithm) to 8 (the worst algorithm). 

Table 8 presents the ranking of the algorithms for the COVID-19 

Fig. 7. DBI results of iECA* compared to other algorithms on COVID-19 and medical disease datasets.  

Table 7 
Average execution time with memory consumption for the 30 solutions obtained by iECA* and other algorithms.  

Datasets Benchmarking criteria iECA* ECA* GENCLUST++ Deep KNN LVQ SVM ANN KNN Winner 

COVID-19 symptoms checker Execution time 567.129 601.484 724.937 589.937 701.937 665.937 711.847 602.873 iECA* 
Memory consumption 86.134 96.283 142.928 104.918 151.9282 98.283 102.817 114.273 iECA* 

Liver disorder Execution time 48.273 54.1832 50.384 50.283 64.184 61.827 49.173 55.183 iECA* 
Memory consumption 19.481 23.168 31.384 26.184 29.474 26.833 29.857 28.437 iECA* 

Diabetes Execution time 71.273 82.383 89.638 79.1737 96.174 94.8173 88.371 83.239 iECA* 
Memory consumption 36.244 39.172 51.761 44.183 50.819 49.128 41.347 47.127 iECA* 

Kidney disease Execution time 38.284 42.8173 54.183 46.283 53.173 51.827 49.718 43.718 iECA* 
Memory consumption 18.177 21.661 29.384 17.987 23.817 24.981 19.384 18.341 Deep KNN 

Heart disease Execution time 79.274 84.134 93.193 87.283 94.184 97.287 91.827 90.073 iECA* 
Memory consumption 42.387 46.126 56.128 48.128 54.128 53.383 45.651 50.841 iECA*  
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Fig. 8. Average execution time for the 30 solutions obtained by iECA* and other algorithms. Furthermore, Fig. 9 illustrates the average memory consumption for the 
30 solutions obtained by iECA* and its competitive algorithms. 

Fig. 9. Average memory consumption for the 30 solutions obtained by iECA* and other algorithms.  

Table 8 
Ranking level of the algorithms for the COVID-19 symptoms checker dataset.  

Criteria/Statistics iECA* ECA* GENCLUST++ Deep KNN LVQ SVM ANN KNN 

Accuracy 1 2 6 3 7 8 5 4 
NMI 2 4 8 1 7 6 5 3 
ARI 1 6 2 4 3 7 6 5 
nMSE 1 3 2 7 3 8 5 6 
DBI 1 6 5 2 7 8 4 3 
Average 1.20 4.20 4.60 3.40 5.40 7.40 5.00 4.20  
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symptom checker. We notice that the iECA* scored 1.2 on average, 
followed by deep KNN, KNN and ECA*. Conversely, SVM was the worst 
algorithm for clustering the COVID-19 dataset. 

For the liver disease dataset, iECA* outperformed all other algo-
rithms, whereas SVM failed to surpass all the others. Both ECA* and 
GENCLUST++ had an average rank of 3.4. The rank of the algorithm 
and total rank are listed in Table 9. 

iECA* had an average rank of 1.2 in the diabetes dataset, followed by 
ECA* and deep KNN. Table 10 summarises the criteria and the ranking 
of each method for the diabetes dataset. 

Additionally, Table 11 provides the ranking level of the algorithms 

for the kidney disease dataset. On average, iECA* was a superior clus-
tering method for kidney data, followed by ECA*, deep KNN, GEN-
CLUST++, LVQ, ANN, KNN, and SVM. 

The ranking levels for the heart disease dataset are listed in Table 12. 
On average, iECA* was the best algorithm, followed by ECA*. 
GNELCUST++, deep KNN, KNN, and LVQ performed similarly well. 
Nonetheless, ANN and SVM algorithms were the least effective. 

Generally, we empirically assessed the performance of these algo-
rithms in a framework over the five datasets according to the five cluster 
validation measures (accuracy, NMI, ARI, nMSE, and DBI). Fig. 10 de-
picts the outcome rating scale for iECA* compared to five real-world 

Table 9 
Ranking level of the algorithms for the liver disorder dataset.  

Criteria/Statistics iECA* ECA* GENCLUST++ Deep KNN LVQ SVM ANN KNN 

Accuracy 1 2 6 4 8 7 3 5 
NMI 1 2 3 4 6 7 8 5 
ARI 1 3 4 6 2 7 5 8 
nMSE 1 7 2 4 5 8 3 6 
DBI 1 3 2 4 7 8 6 5 
Average 1.00 3.40 3.40 4.40 5.60 7.40 5.00 5.80  

Table 10 
Ranking level of the algorithms for the diabetes dataset.  

Criteria/Statistics iECA* ECA* GENCLUST++ Deep KNN LVQ SVM ANN KNN 

Accuracy 1 2 5 3 8 6 4 7 
NMI 1 2 5 4 3 6 8 7 
ARI 1 2 3 7 5 8 4 6 
nMSE 2 8 7 3 5 6 1 4 
DBI 1 4 5 2 6 8 3 7 
Average 1.20 3.60 5.00 3.80 5.40 6.80 4.00 6.20  

Table 11 
Ranking level of the algorithms for the kidney disease dataset.  

Criteria/Statistics iECA* ECA* GENCLUST++ Deep KNN LVQ SVM ANN KNN 

Accuracy 1 3 7 2 8 5 6 4 
NMI 1 2 6 3 7 8 5 4 
ARI 1 3 2 6 5 7 4 8 
nMSE 1 3 2 6 4 8 5 7 
DBI 2 3 5 4 1 8 6 7 
Average 1.20 2.80 4.40 4.20 5.00 7.20 5.20 6.00  

Table 12 
Ranking level of the algorithms for the heart disease dataset.  

Criteria/Statistics iECA* ECA* GENCLUST++ Deep KNN LVQ SVM ANN KNN 

Accuracy 1 2 7 6 8 5 3 4 
NMI 1 3 6 4 2 7 8 5 
ARI 1 2 3 8 5 6 4 7 
nMSE 1 4 2 3 7 8 5 6 
DBI 1 2 6 5 4 7 8 3 
Average 1.00 2.60 4.80 5.20 5.20 6.60 5.60 5.00  

Fig. 10. Heatmap for the performance ranking framework of iECA* (Green: good performance; Yellow: moderate performance; Red: poor performance).  
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patient datasets. The values presented in Fig. 10 are aggregated from the 
average ranking level of the algorithms presented in Tables 8–12 for the 
COVID-19 symptoms checker, liver disorder, diabetes, kidney disease, 
and heart disease datasets. The green colours indicate that the algorithm 
performed well (ranked first) for a particular dataset value. The red 
colours indicate that the technique exhibited poor performance (ranked 
as a third class). The yellow colours represent that the current technique 
performed moderately for its corresponding medical data (ranked as a 
second class). Specifically, the colour areas were numbered from 1 
(green) to 8 (red) inclusively as follows:  

• Green: from 1.000 to 3.332 (good performance).  
• Yellow: from 3.333 to 5.665 (moderate performance).  
• Red: from 5.666 to 8.000 (poor performance). 

We interpret those values with diverging scales of colour to 
demonstrate colour development in two directions [43]: progressively 
toning down the first hue from one end to a neutral colour at the 
midway, then increasing the opacity of the second hue to the other end. 

The findings indicate that iECA* outperformed the other algorithms 
in clustering all medical datasets, followed by ECA* and deep KNN. 
GENCLUST++ was the fourth most successful algorithm, with an 
average score of 4.44. Deep KNN, ANN, and GENCLUST++ were 
considered algorithms with reasonable performance to cluster all the 
datasets, whereas SVM and KNN could not detect most of the clusters of 
the medical data. As stated, iECA* did not outperform the other algo-
rithms in a few cases. There are two main reasons for this result. First, 
according to the no-free-lunch theorems [44], any algorithm that per-
forms exceptionally well on one set of objective functions (datasets) 
must perform poorly on all other sets. Other factors, such as the cohort of 
the problem, type of dataset, and difficulty of the problem, might affect 
the performance of an algorithm on a specific type of problem [6]. This 
means that a definitive evaluation about the absolute success of iECA* 
and other algorithms in grouping dataset issues cannot be made solely 
on their difficulty scores. As a result, there is no inherent connection 
between the performance of these algorithms and the complexity of 
clustering medical datasets. Overall, for all five fundamental data 
properties, the algorithms were ranked as follows: iECA*, ECA*, deep 
KNN, GENCLUST++, ANN, LVQ, KNN, and SVM. 

6. Conclusions 

In this study, we proposed iECA* by (i) utilising the elbow method to 
determine optimal cluster numbers and (ii) cleaning and processing data 
as part of the algorithm. iECA* was utilised to cluster real datasets of 
COVID-19 and other medical diseases. We also evaluated iECA* based 
on the aforementioned datasets and compared it with seven other 
modern clustering algorithms. The evaluation process was conducted for 
iECA* using five cluster validation measures (accuracy, NMI, ARI, 
nMSE, and DBI), statistical benchmarking in running time against 
memory usage, and performance ranking. Three significant findings 
emerged from the evidence of experimental studies. First, iECA* out-
performed the other competing algorithms in clustering the selected 
medical disease datasets using cluster validation criteria. Second, iECA* 
outperformed the existing clustering algorithms in terms of execution 
time and memory usage for clustering all datasets. Third, an operational 
methodology was proposed to compare the efficacy of iECA* with that of 
other algorithms in the datasets analysed. The framework showed that 
iECA* exhibited a better performance compared to the other algorithms 
in all medical datasets. ECA* was ranked as the second-best algorithm, 
followed by deep KNN. Following these three successful algorithms, 
GENCLUST++ was ranked fourth. Deep KNN, ANN, and GENCLUST++

were considered as methods with a reasonable performance for clus-
tering all datasets, whereas SVM and KNN were unable to identify the 
majority of clusters in the five medical datasets. Thus, the methods were 
ranked as follows for the five essential datasets: iECA*, ECA*, deep KNN, 

GENCLUST++, ANN, LVQ, KNN, and SVM. 
The main values of iECA* over its counterpart algorithms are five- 

fold: (i) the elbow technique is used to determine the optimal number 
of clusters. Perhaps the most well-known technique for finding the 
optimal cluster number is the elbow method. This is a heuristic tech-
nique for estimating the number of clusters in each dataset in cluster 
analysis. (ii) the input dataset is cleaned and pre-processed to remove 
unnecessary and missing elements and transform the categorical dataset 
into numerical data suitable for the Euclidean distance clustering pro-
cess. (iii) the output dataset is post-processed to de-normalise the 
numeric data into the original data (categorical dataset). (iv) unlike 
ECA*, iECA* applies to multivariate and domain-theory real datasets 
with various attribute characteristics, including integer, real, and cate-
gorical data attributes; (v) iECA* was used in real-world clustering 
applications. 

For further research in the future, iECA* can be used for experi-
mental verification of real-world multi-dimensional datasets containing 
complex knowledge fields to explore more deeply the advantages and 
drawbacks of the algorithm or improve its efficiency. In addition, iECA* 
can be applied to more complex and real-world applications to further 
validate its efficiency, such as engineering application problems [45], 
library management [46], e-organisation services [47], online analytical 
processing [48], web engineering [49], and ontology learning [50]. 
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