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Summary: Time is of the essence in evaluating potential drugs and biologics for the treatment and prevention of

COVID-19. There are currently over 400 clinical trials (phase 2 and 3) of treatments for COVID-19 registered on

clinicaltrials.gov. Covariate adjustment is a statistical analysis method with potential to improve precision and reduce

the required sample size for a substantial number of these trials. Though covariate adjustment is recommended by

the U.S. Food and Drug Administration and the European Medicines Agency, it is underutilized, especially for the

types of outcomes (binary, ordinal and time-to-event) that are common in COVID-19 trials. To demonstrate the

potential value added by covariate adjustment in this context, we simulated two-arm, randomized trials comparing a

hypothetical COVID-19 treatment versus standard of care, where the primary outcome is binary, ordinal, or time-to-

event. Our simulated distributions are derived from two sources: longitudinal data on over 500 patients hospitalized

at Weill Cornell Medicine New York Presbyterian Hospital, and a Centers for Disease Control and Prevention (CDC)

preliminary description of 2449 cases. We found substantial precision gains from using covariate adjustment–equivalent

to 9-21% reductions in the required sample size to achieve a desired power–for a variety of estimands (targets of

inference) when the trial sample size was at least 200. We provide an R package and practical recommendations for

implementing covariate adjustment. The estimators that we consider are robust to model misspecification.
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1. Introduction

This paper builds on our report (Benkeser et al., 2020) written in response to a request

by the U.S. Food and Drug Administration (FDA) for statistical analysis recommendations

for COVID-19 treatment trials. We aim to help inform the choice of estimand (i.e., target

of inference) and analysis method to be used in future and ongoing COVID-19 treatment

trials. To this end, we describe treatment e↵ect estimands whose interpretability does not

rely on correct specification of models and that may be of particular interest in COVID-19

treatment trials involving binary, ordinal, or time-to-event outcomes. For binary outcomes,

we consider the risk di↵erence, relative risk, and odds ratio. For ordinal outcomes, we consider

the di↵erence in means, the Mann-Whitney (rank–based) estimand, and the average of the

cumulative log odds ratios over levels of the outcome. For time-to-event outcomes, we con-

sider the di↵erence in restricted mean survival times, the di↵erence in survival probabilities,

and the ratio of survival probabilities. For each estimand, we present covariate adjusted

estimators of these quantities that leverage information in baseline variables to improve

precision and reduce the required sample size to achieve a desired power. In the case of

ordinal outcomes, we propose novel covariate adjusted estimators.

To evaluate the performance of covariate adjusted estimators, we simulated two-arm,

randomized trials comparing a hypothetical COVID-19 treatment versus standard of care,

where the primary outcome is binary, ordinal, or time-to-event. Our simulated distributions

are derived from two sources: longitudinal data on over 500 patients hospitalized at Weill

Cornell Medicine New York Presbyterian Hospital prior to March 28, 2020, and a preliminary

description of 2449 cases reported to the CDC from February 12 to March 16, 2020. We

focused on hospitalized, COVID-19 positive patients and considered the following outcomes:

intensive care unit (ICU) admission, intubation with ventilation, and death. We conducted

simulations using all three estimands when the outcome is ordinal, but only evaluated the
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risk di↵erence when the outcome is binary and the restricted mean survival time and risk

di↵erence when the outcome is time-to-event.

In our simulations of trials with at least 200 participants, the precision gains due to

covariate adjustment were often substantial, equivalent to requiring 9-21% fewer participants

to achieve the same power as a trial that uses an unadjusted estimator. In our simulated

trials with 100 participants, covariate adjustment still o↵ered improvements in precision,

equivalent to requiring 4-18% fewer participants to achieve the same power as a trial that

uses an unadjusted estimator. From these simulations, we conclude that covariate adjustment

is a low-risk, high-reward approach to streamlining COVID-19 treatment trials.

After our aforementioned report (which contains the simulation results described above for

ordinal and time-to-event outcomes), the FDA released a guidance for industry on COVID-19

treatment and prevention trials (FDA, 2020). The guidance contains the following statement,

which is similar to our key recommendation regarding covariate adjustment: “To improve

the precision of treatment e↵ect estimation and inference, sponsors should consider adjusting

for prespecified prognostic baseline covariates (e.g., age, baseline severity, comorbidities) in

the primary e�cacy analysis and should propose methods of covariate adjustment.”

There is already an extensive literature on the statistical theory and practice of covariate

adjustment (e.g., Zhang et al. (2008); Jiang et al. (2019); Austin et al. (2010). However,

covariate adjustment is underutilized, particularly for trials with a binary, ordinal, or time-

to-event outcome. Since many COVID-19 treatment trials focus on exactly these types of

outcomes, our goal with this work is to demonstrate, using real data, the potential benefits

of covariate adjustment in these contexts.

The remainder is organized as follows. A background on covariate adjustment in random-

ized trials is provided in Section 2. Section 3 describes estimands and estimation strategies

when the outcome is binary, ordinal, or a time-to-event. Section 4 describes the methods
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underlying the simulation study and Section 5 presents the simulation study results. Section 6

presents our recommendations for the estimands and primary e�cacy analysis methods for

future COVID-19 treatment trials. A brief discussion is given in Section 7.

2. Background on Covariate Adjustment in Randomized Trials

The ICH E9 Guidance on Statistical Methods for Analyzing Clinical Trials (FDA and

EMA, 1998) states that “Pretrial deliberations should identify those covariates and factors

expected to have an important influence on the primary variable(s), and should consider

how to account for these in the analysis to improve precision and to compensate for any lack

of balance between treatment groups.” The term “covariates” refers to baseline variables.

Adjusting for pre-specified, prognostic baseline variables (i.e., variables that are correlated

with the outcome) is called covariate adjustment.

Though there appears to be a general agreement among regulators (EMA, 2015; FDA,

2019) that when the outcome is continuous, analysis of covariance (ANCOVA) may be used

to appropriately adjust for baseline variables, there is a dearth of specific guidance for ordinal

and time-to-event, which are of keen interest in COVID-19 treatment trials. Moreover, even

for binary outcomes, for which one possible adjustment method (Ge et al., 2011) was cited

in the recent FDA guidance (FDA, 2020), there has not been any study showing how much

precision gain is to be expected by using covariate adjusted, rather than unadjusted, methods

in the context of COVID-19 treatment trials. In this work, we evaluate the performance of

covariate adjusted estimators (hence, simply adjusted estimators) for binary, ordinal, and

time-to-event outcomes.

To understand the idea, imagine repeating a trial many times with consideration of age as a

key prognostic baseline variable. Due to chance, some trials will have more older participants

assigned to treatment than control, and some will have more younger participants assigned

to treatment than control. While the distribution of unadjusted estimates over these many
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trials will be centered at the true e↵ect, it will be a mixture of under- and over- estimates.

The variability of the estimates can be ascribed to the variability of the outcome within each

age group as well as the variability in the balance of age between treatment and control.

To understand this latter point, consider a setting where older adults are at higher risk for

a negative outcome. In this situation, the trials where more older participants are assigned

to the treatment, the treatment will tend to look worse than in trials where more younger

participants were assigned to the treatment. Unadjusted estimates ignore the important

information about imbalances with respect to age leading to greater variability. Adjusted

estimates seek to minimize this source of variability in the estimation procedure thereby

improving their e�ciency relative to the unadjusted estimator (Jiang et al., 2019).

To make these ideas more precise, consider a randomized trial involving a single, binary-

valued baseline variable (e.g., age over 85), two study arms (e.g., drug A vs. B), a binary

outcome (e.g., death by 30 days after hospitalization), and the estimand being the risk

di↵erence (probability of death under assignment to treatment minus probability of death

under assignment to control). The unadjusted estimator of the risk di↵erence is the di↵erence

between arms in the sample proportion of patients who die. The adjusted estimator of the

risk di↵erence is constructed by first computing, separately for those > 85 and 6 85, the

di↵erence between arms in the sample proportions of patients who die; next, these stratum-

specific treatment e↵ect estimates are combined into an average treatment e↵ect estimate

by taking their weighted sum with weights set to the study-wide (pooling across arms)

proportions of those > 85 and 6 85. Provided the sample size is large enough, the adjusted

estimator will have greater precision compared to the unadjusted estimator if age > 85

is correlated with death (which is likely for COVID-19 positive patients). In general, the

adjusted estimator can be interpreted as correcting for empirical confounding by baseline

variables (Moore et al., 2011).
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To clarify how the adjusted estimator gains information compared to the unadjusted

estimator, consider the same setup as the previous paragraph except where the goal is even

simpler: to estimate the probability of death under assignment to the treatment arm. The

unadjusted estimator is the sample proportion of dead patients in the treatment arm. It can

be equivalently represented as the weighted sum of stratum-specific sample proportions of

dead patients with weights set to the proportions of those > 85 and 6 85 in the treatment

arm. The adjusted estimator is the weighted sum of stratum-specific sample proportions of

dead patients in the treatment arm with weights set to the study-wide (pooling across arms)

proportions of those > 85 and 6 85. The only di↵erence between the estimators is in the

italicized text; the adjusted estimator uses a more precise estimate of the proportions in each

stratum, which propagates into a more precise estimate of the probability of death under

assignment to the treatment arm. A similar mechanism underlies the precision gains due

to covariate adjustment when estimating the risk di↵erence and the other estimands in this

paper.

3. Estimands and Analysis Methods

Throughout, we assume that treatment is randomly assigned independently of baseline

covariates. The described methods can be adapted to handle the case where treatment

assignment depends on (a subset of) the measured baseline covariates, as is the case when

stratified randomization is used. All estimands are intention-to-treat (ITT) in that they

are contrasts between outcome distributions under assignment to treatment and under

assignment to control. We let A denote study arm assignment, taking on the value 0 for

control group and 1 for treatment group. We let Y denote the outcome of interest and X

denote a vector of baseline covariates.
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3.1 Binary Outcomes

We consider three estimands, though our simulation studies only involve the first. All prob-

abilities below are marginal (as opposed to conditional on baseline variables). The outcome

is coded as “good” (1) or “bad” (0).

Estimand 1: Risk Di↵erence. Di↵erence between probability of bad outcome comparing

treatment to control arms.

Estimand 2: Relative Risk. Ratio of probability of bad outcome comparing treatment

to control arms.

Estimand 3: Odds Ratio. Ratio of odds of bad outcome, comparing treatment to control

arms.

Estimators of each estimand 1–3 above can be constructed from estimators of the proba-

bility of a bad outcome for each study arm; e.g., the risk di↵erence can be estimated by the

di↵erence between the arm-specific estimators. The unadjusted estimator of the probability

of a bad outcome under assignment to each study arm a is just the sample proportion of

bad outcomes among patients assigned to arm A = a. A covariate adjusted estimator of this

quantity can be based on the standardization approach of Ge et al. (2011), as indicated in the

FDA COVID-19 guidance (FDA, 2020). This estimator is identical to that of Moore and van

der Laan (2009) and for the risk di↵erence it is a special case of estimators from Scharfstein

et al. (1999). First, a logistic regression model is fit for the probability of bad outcome given

study arm and baseline variables. Next, for each participant (from both arms), a predicted

probability of bad outcome is obtained under each possible arm assignment a 2 {0, 1} by

plugging in the participant’s baseline variables and setting arm assignment A = 0 and A = 1,

respectively, in the logistic regression model fit. Lastly, the covariate adjusted estimator of

the bad outcome probability in arm a 2 {0, 1} is the sample mean over all participants

(pooling across arms) of the predicted outcome setting A = a.
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3.2 Ordinal Outcomes

We consider three estimands when the outcome is ordinal, with levels 1, . . . , K. Without

loss of generality, we assume that higher values of the ordinal outcome are preferable.

We comment on these estimands briefly here, and refer the reader to Appendix A of the

Supplementary Material for analytic expressions for these quantities.

Estimand 1: Di↵erence in means of a prespecified transformation of the ordinal

outcome (DIM). In most settings, this transformation will be monotone increasing so that

larger values of the ordinal outcome will result in larger, and therefore preferable, transformed

outcomes. Transformations could incorporate, e.g., utilities assigned to each level, as has been

done in some stroke trials (Chaisinanunkul et al., 2015; Nogueira et al., 2018).

Estimand 2: Mann-Whitney (MW) estimand. This estimand reports the probability

that a random individual assigned to treatment will have a better outcome than a random

individual assigned to control, with ties broken at random.

Estimand 3: Log-odds ratio (LOR). We consider a nonparametric extension of the log-

odds ratio (LOR) (Dı́az et al., 2016) defined as the average of the cumulative log odds ratios

over levels 1 to K � 1 of the outcome. In the case that the distribution of the outcome

given study arm is accurately described by a proportional odds model of the outcome

against treatment (McCullagh, 1980), this estimand is equal to the coe�cient associated

with treatment.

As is shown in Appendix A of the Supplementary Material, all of the above estimands can

be written as smooth summaries of the treatment-specific cumulative distribution functions

(CDFs) of the ordinal outcome. To estimate these quantities, it su�ces to estimate these

two CDFs and then to evaluate the summaries. This results in so-called plug-in estimators.

The unadjusted estimator of the CDF in each arm is the empirical distribution in that arm.

The resulting plug-in estimator for the DIM corresponds precisely to taking the di↵erence of
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sample means of the transformed outcomes between the two arms. Also, the resulting plug-in

estimator (denoted M) for the MW estimand is closely related to the usual Mann-Whitney

U-statistic U = n0n1M , where n0 and n1 are the total sample sizes in the two study arms.

The covariate adjusted estimator of the CDF in each arm leverages prognostic information

in baseline variables. It uses working models, i.e., models that are fit in the process of

computing the estimator but which we do not assume to be correctly specified (and for which

consistency and asymptotic normality still hold under arbitrary model misspecification).

Specifically, the adjusted estimator of the CDF for each study arm is based on an arm-

specific, proportional odds working model for the cumulative probability of the outcome

given the baseline variables. This working model posits that, conditioned on arm A = a

and a linear combination of the baseline variables, the odds of Y 6 j is proportional to the

odds of Y 6 j + 1, where the proportionality constant depends on j but not on the baseline

variables. Formally, the model for arm A = a is logit {P (Y 6 j|A = a,X)} = ↵j + �
>
X, for

each j = 1, . . . , K � 1 with parameters ↵1, . . . ,↵K�1 and �; the model for the other study

arm is the same but with a separate set of parameters. Each model is fit using data from the

corresponding study arm, yielding two working covariate-conditional CDFs (one per arm).

For each arm, the estimated marginal CDF is then obtained by averaging the corresponding

conditional CDF across the empirical distribution of baseline covariates pooled across the

two study arms. This is analogous to standardizing arm-specific mean outcomes based on

pooling baseline variables across arms as explained in the last paragraph of Section 2. The

above methods are implemented in an accompanying R package, drord, available on GitHub

at https://github.com/benkeser/drord.

The validity (i.e., consistency and asymptotic normality) of the adjusted CDF estimator

given above in no way relies on correct specification of the aforementioned working model.

The fact that our adjusted CDF estimator is robust to misspecification of the outcome
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working model is reminiscent of the fact that ANCOVA can be robustly used for covariate

adjustment when the estimand is the di↵erence in means between arms (Yang and Tsiatis,

2001; Tsiatis et al., 2008). Other model-robust, covariate adjusted estimators are available

for estimation of the MW estimand, e.g., Vermeulen et al. (2015), and for the LOR estimand,

e.g., Dı́az et al. (2016).

3.3 Time-to-Event Outcomes

We consider three treatment e↵ect estimands in the time-to-event setting, all of which are

interpretable under violations of a proportional hazards assumption. We refer the reader to

Appendix B of the Supplementary Material for analytic expressions for these quantities.

Estimand 1: Di↵erence in restricted mean survival times (RMSTs). The RMST is

the expected value of a survival time that is truncated at a specified time (Chen and Tsiatis,

2001; Royston and Parmar, 2011). Equivalently, the RMST can be expressed as the area

under the survival curve up to the truncation time.

Estimand 2: Survival probability di↵erence (also called risk di↵erence, RD).

Di↵erence between arm-specific probabilities of survival to a specified time.

Estimand 3: Relative risk (RR). Ratio of the arm-specific probabilities of survival to

a specified time.

Analogous to the ordinal outcome case, estimators of these parameters can be constructed

from estimators of the survival function at each time point. One approach to constructing

adjusted estimators, used here, involves discretizing time and then: (i) estimating the time-

specific hazard conditional on baseline variables, (ii) transforming to survival probabilities

using the product-limit formula, and (iii) marginalizing using the estimated covariate distri-

bution (pooled across arms). The adjusted approach as implemented here (and elsewhere–see

references below) has two key benefits relative to unadjusted alternatives such as using the

unadjusted Kaplan-Meier estimator (Kaplan and Meier, 1958). First, in large samples and
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under regularity conditions, the adjusted estimator is at least as precise as the unadjusted

estimator. Second, the adjusted estimator’s consistency depends on an assumption of censor-

ing being independent of the outcome given study arm and baseline covariates, rather than

an assumption of censoring in each arm being independent of the outcome marginally; see

Appendix B of the Supplementary Material for details. The former may be a more plausible

assumption.

We implemented the covariate adjusted estimator of the RMST (specifically, the targeted

minimum loss-based estimator of the RMST) from Dı́az et al. (2019), which is implemented in

the R package survtmlerct available on GitHub at https://github.com/idiazst/survtmlerct.

Time was discretized as the day level. Similar covariate adjusted estimators for the RD and

RR are also available (Moore and van der Laan, 2009; Benkeser et al., 2018, 2019). Both

Dı́az et al. (2019) and Benkeser et al. (2018) provide approaches that can be used to develop

Wald-type confidence intervals and corresponding tests of the null hypothesis of no treatment

e↵ect.

Some examples of other covariate adjusted estimators for time-to-event outcomes include

Stitelman et al. (2011); Brooks et al. (2013); Lu and Tsiatis (2011); Zhang (2014) and Parast

et al. (2014). Dı́az et al. (2019) compare the properties of these estimators.

4. Simulation Methods

4.1 Sample sizes and number of simulated trials

In each setting, we simulated trials with 1:1 randomization to the two arms and total

enrollment of n = 100, 200, 500, and 1000. In each case, 1000 trials were simulated.
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4.2 Data-Generating Distributions

4.2.1 Binary outcomes. The data generating distributions are the same as for ordinal

outcomes (below), except that we dichotomized the outcome into “bad” (ICU admission or

death) and “good” (neither ICU admission nor death).

4.2.2 Ordinal outcomes. We generated data based on (CDC COVID-19 Response Team,

2020), which reported outcomes for hospitalized and non-hospitalized individuals with COVID-

19. We focus on hospitalized patients and place additional results pertaining to the non-

hospitalized population in Appendix C of the Supplementary Material. There were three

levels of the ordinal outcome, with level 1 representing death, level 2 representing survival

with ICU admission, and level 3 representing survival without ICU admission. The following

patient age categories define the single baseline variable (which is used for adjustment):

0–19, 20–44, 45–54, 55–64, 65–74, 75–84, and >85. Lower and upper estimates were given

for probabilities of outcomes in each age group in (CDC COVID-19 Response Team, 2020);

we used the mean of these within each age group to define our data generating distributions.

For the hospitalized COVID-19 positive population, the resulting outcome probabilities for

each age group are listed in Table 1.

[Table 1 about here.]

We separately considered two types of treatment e↵ects in our data generating distribu-

tions: no treatment e↵ect and an e↵ective treatment. For the former, we randomly sampled n

age–outcome pairs according to the distribution in Table 1 and then independently assigned

study arm with probability 1/2 for each arm.

For the latter case (e↵ective treatment), we randomly generated control arm participants

as in the previous paragraph. We randomly generated treatment arm participants using a

modified version of Table 1 where the probabilities P(ICU admission and survived | age) in

column 4 were proportionally reduced; then each corresponding probability in column 5, i.e.,
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P(No ICU admission and survived | age), was increased by an equal amount. The probabilities

of death given age in column 3 were not changed. This modified table corresponds to the

treatment having no e↵ect on the probability of death but decreasing the odds of ICU

admission among those who survive by the same relative amount in each age category. This

relative reduction (and the resulting treatment e↵ect) was separately selected for each sample

size n = 100, 200, 500, 1000.

In our simulations, we used the adjusted estimator described in Section 3.2, where age is

coded using the categories in Table 1. Specifically, these age categories are included as the

main terms in the linear parts of the proportional odds working models.

For simplicity, for binary and ordinal outcomes we simulated trials with no censoring.

However, the methods we used can adjust for dropout (right censoring) as described in

Appendix A of the Supplementary Material.

4.2.3 Time-to-event outcomes. In order to mimic key predictive features of clinical out-

comes in COVID patients, our simulation data generating mechanism is based on the over

500 patients hospitalized at Weill Cornell Medicine New York Presbyterian Hospital prior to

March 28, 2020. The event of interest in this simulation is time from hospitalization to the

first of intubation or death, and the predictive variables used are sex, age, whether the patient

required supplemental oxygen at ED presentation, dyspnea, hypertension, and the presence

of bilateral infiltrates on the chest x-ray. We focus on the RMST 14 days after hospitalization,

and the RD of remaining intubation-free and alive 7 days after hospitalization.

Patient data was re-sampled with replacement to generate 1000 datasets of each of the

sizes n = 100, 200, 500, and 1000. For each dataset, a hypothetical treatment variable was

drawn from a Bernoulli distribution with probability 0.5 independently of all other variables.

A positive treatment e↵ect was simulated by adding an independent random draw from a

�
2 distribution with 4 degrees of freedom to each participant’s outcome in the treatment
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arm. This corresponds to a di↵erence in RMST of 1.06 at 14 days, and an RD of 8.7% at

seven days. Five percent of the patients were selected at random to be censored, and their

censoring time was drawn from a uniform distribution on {1, . . . , 14}.

We compare the performance of the unadjusted, Kaplan-Meier-based estimator to the

covariate adjusted estimator defined in Sections 4 and 6 of (Dı́az et al., 2019), respectively,

and implemented in the R package survtmlerct. Wald-type confidence intervals and corre-

sponding tests of the null hypothesis of no e↵ect are reported.

4.3 Performance Criteria

We compare the type I error and power of tests of the null hypothesis H0 of no treatment

e↵ect based on unadjusted and adjusted estimators, both within and across estimands. For

each estimand, we also compare the bias, variance, and mean squared error of the unadjusted

and the adjusted estimators. We report the relative e�ciency of the unadjusted relative to

the adjusted estimator (ratio of variance of adjusted estimator to variance of unadjusted

estimator). One minus this relative e�ciency is approximately the proportion reduction in

sample size needed for a covariate adjusted estimator to achieve the same power as the

unadjusted estimator, asymptotically (van der Vaart, 1998, pp. 110–111).

5. Simulation Results

For binary and ordinal outcomes, we present results that use the nonparametric BCa boot-

strap (Efron and Tibshirani, 1994) for confidence intervals and hypothesis tests. We used 1000

replicates for each BCa bootstrap confidence interval. While we recommend 10,000 replicates

in practice, the associated computational time was too demanding for our simulation study.

Nonetheless, we expect similar or slightly better performance with an increased number of

bootstrap samples. Results that use closed-form, Wald-based inference methods are presented

in Appendix C of the Supplementary Material.
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For time-to-event outcomes, we used Wald-based confidence intervals since these made the

computations faster compared to the BCa bootstrap method. For all outcome types and

estimands, the relative e�ciency of the unadjusted estimator to the adjusted estimator is

approximated by the ratio of the mean squared error of the latter to the mean squared error

of the former.

5.1 Binary Outcomes

Table 2 compares the performance of the unadjusted and adjusted estimators when the

outcome is ICU admission or death, and the estimand is the risk di↵erence. Type I error

of the covariate adjusted method was comparable to that of the unadjusted method. The

covariate adjusted method achieved higher power across all settings. Absolute gains in power

varied from 5% to 12%.

The relative e�ciency of unadjusted method relative to the adjusted method varied from

0.90 to 0.84. This is roughly equivalent to needing 10-16% smaller sample size when using

the adjusted estimator compared to the unadjusted estimator, to achieve the same power.

[Table 2 about here.]

5.2 Ordinal outcomes

Tables 3, 4, and 5 display results for the di↵erence in means (DIM), Mann-Whitney (MW),

and log odds ratio (LOR) estimands, respectively. Type I error control of the covariate

adjusted methods was comparable to that of the unadjusted methods. The covariate adjusted

methods achieved higher power across all settings. Absolute gains in power varied from 3%

to 8% for the DIM, 1% to 6% for the MW estimand, and 3% to 6% for the LOR.

The relative e�ciency of the unadjusted methods relative to adjusted methods varied

from 0.89 to 0.82 for the DIM, 0.91 to 0.82 for the MW estimand, and 0.88 to 0.82 for

the LOR. This is roughly equivalent to needing 11-18% (DIM), 9-18% (MW), and 12-18%
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(LOR) smaller sample sizes, respectively, when using the adjusted estimator compared to

the unadjusted estimator, to achieve the same power.

[Table 3 about here.]

[Table 4 about here.]

[Table 5 about here.]

5.3 Time-to-event outcomes

Table 6 displays the results for RMST estimators, where the baseline variables adjusted for

include age and sex along with the four other variables described in Section 4.2.3. Type I

error control of the covariate adjusted method was comparable to that of the unadjusted

method. The covariate adjusted methods achieved higher power across all settings, with

absolute gains varying from 3% to 8%. The value added by covariate adjustment in terms of

relative e�ciency increased monotonically as a function of sample size, from approximately

0.95 (roughly equivalent to needing 5% smaller sample size) when n = 100 to approximately

0.79 (roughly equivalent to needing 21% smaller sample size) when n = 1000 for the case

of no treatment e↵ect; the results were similar for the positive treatment e↵ect case, except

with slightly smaller precision gains.

To evaluate the importance of adjusting for multiple baseline variables, we also evalu-

ated an adjusted RMST estimator that only adjusts for age and sex in Appendix C of

the Supplementary Material. The gains of the covariate adjusted methods relative to the

unadjusted methods were more modest, with absolute gains in power of approximately 0%–

1% and relative e�ciency ranging from 0.96 to 1.00. These results suggest that there can be

a meaningful benefit from adjusting for prognostic covariates beyond just age and sex.

We also considered the risk di↵erence (RD) estimand in Appendix C of the Supplementary

Material. The results (when adjusting for age and sex along with the four other variables
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described in Section 4.2.3) are qualitatively similar, except with slightly smaller precision

gains, to those for the RMST in Table 6.

[Table 6 about here.]

6. Recommendations for Target of Inference and Primary E�cacy Analysis

(1) Estimand when the outcome is ordinal. If a utility function can be agreed upon to

transform the outcome to a score with a clinically meaningful scale, then we recommend

using the di↵erence between the transformed means in the treatment and control arms.

Otherwise, we recommend using the unweighted di↵erence between means or the Mann-

Whitney estimand. We recommend against estimating log odds ratios, since these are

di�cult to interpret and the corresponding estimators (even unadjusted ones) can be

unstable at small sample sizes; this instability occurrred in additional simulation studies

that we describe in Appendix C of the Supplementary Material.

(2) Covariate adjustment. Adjust for prognostic baseline variables to improve precision

and power. We expect improvements to be substantial since there are already several

known prognostic baseline variables, e.g., age and co-morbidities. The baseline variables

should be specified before the trial is started (or should be selected using only blinded

data from the trial using a prespecified algorithm). The number of variables adjusted

for should be no more than (roughly) the total sample size divided by 20, as a rule of

thumb to avoid model overfit.

(3) Confidence intervals and hypothesis testing.We recommend that the nonparamet-

ric bootstrap (BCa method) be used with 10000 replicates for constructing a confidence

interval. The entire estimation procedure, including any model fitting, should be repeated

in each replicate data set. Hypothesis tests can be conducted either by inverting the

confidence interval or by permutation methods — the latter can be especially useful in

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 11, 2020. .https://doi.org/10.1101/2020.04.19.20069922doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.19.20069922
http://creativecommons.org/licenses/by-nc-nd/4.0/


Improving Precision for COVID-19 Treatment Trials 17

smaller sample size trials in order to achieve the desired Type I error rate. Vermeulen

et al. (2015) present such a permutation-based test for the MW estimand based on a

di↵erent covariate adjusted estimator than presented here.

(4) Early stopping for e�cacy or futility. Rules for early stopping such as O’Brien-

Fleming boundaries can be directly applied, where z-statistics are constructed using the

covariate adjusted estimator described above and the covariance between statistics at

di↵erent analysis times is estimated using nonparametric bootstrap as described above.

The timing of analyses (including the final analysis) can be based on the information

accrued defined as the reciprocal of the adjusted estimator’s variance. In this way,

precision gains from covariate adjustment translate into faster information accrual and

shorter trial duration, even in trials with no treatment e↵ect.

(5) Plotting the CDF and the probability mass function (PMF) when the out-

come is ordinal. Regardless of which treatment e↵ect definition is used in the primary

e�cacy analysis, we recommend that the covariate adjusted estimate of the PMF and/or

CDF of the primary outcome be plotted for each study arm when the outcome is ordinal.

Pointwise and simultaneous confidence intervals should be displayed (where the latter

account for multiple comparisons). This is analogous to plotting Kaplan-Meier curves

for time-to-event outcomes, which can help in interpreting the trial results. For example,

Figure 1 shows covariate adjusted estimates of the CDF and PMF for a data set from

our simulation study. From the plots, it is evident that the e↵ect of the treatment on

the ordinal outcome is primarily through preventing ICU admission, with no impact on

probability of death.

(6) Missing covariates. We recommend handling missing covariates by imputing them

based only on data from those covariates that were observed. Importantly, to ensure

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 11, 2020. .https://doi.org/10.1101/2020.04.19.20069922doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.19.20069922
http://creativecommons.org/licenses/by-nc-nd/4.0/


18

that treatment assignment is randomized conditionally on the imputed covariates, no

treatment or outcome information should be used in this imputation.

(7) Missing ordinal outcomes. We recommend handling missing ordinal outcomes using

doubly robust methods whose validity relies on the outcomes being missing at random

conditional on the covariates and study arm assignment. One such doubly robust ap-

proach can be evaluated by applying the methods described in Appendix A.2 of the

Supplementary Material.

(8) Loss to follow up with time-to-event outcomes. We recommend accounting for

loss-to-follow-up using doubly robust methods such as those described in Benkeser et al.

(2018); Dı́az et al. (2019). These methods rely on a potentially more plausible condition

on the censoring distribution than do unadjusted methods. The covariate adjusted

estimator for the restricted mean survival time in the time-to-event setting is double

robust under censoring being independent of the outcome given baseline variables and

arm assignment.

7. Discussion

Alleviating the impact of the COVID-19 pandemic will likely require the development

of e↵ective interventions for treatments, as well as a preventive vaccine. In both cases,

there is a pressing need to bring products to market as quickly as possible without

sacrificing the validity of the analysis of trials used to evaluate therapeutics. Covariate

adjustment represents a straightforward means of significantly improving the conduct

of these trials, by more e�ciently using data that are already routinely collected in the

course of randomized trials. This in turn will allow e↵ective treatments to be discovered

with greater power and also end trials of ine↵ective treatments sooner, so that resources

can be appropriately reallocated.

Of the phase 2 and 3 trials of treatments for COVID-19 that are registered on clinicaltri-
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als.gov, there are currently 190 with target sample size above 200 (the sample size above

which substantial precision gains were consistently observed in our simulation studies).

Covariate adjustment may add value in these and future trials. Whether covariate

adjustment is useful depends on how prognostic the baseline variables are for the primary

outcome. Based on the moderate to strong correlations that drove the precision gains

in our simulation studies, we expect that many COVID-19 trials will gain precision by

adjusting for baseline variables.

Adjusting for baseline variables beyond just age and sex led to substantial improvements

in precision in our simulations involving time-to-event outcomes. Specifically, for the sim-

ulated time-to-event intubation or death outcome among hospitalized patients at Weill

Cornell Medicine, we saw meaningful gains from additionally adjusting for hypertension,

dyspnea, whether the patient required supplemental oxygen at ED presentation, and the

presence of bilateral infiltrates on the chest x-ray. For the other outcome types, i.e.,

binary and ordinal, our data generating distributions only had one baseline variable,

age; this is all that was available in the CDC data, so we were not able to investigate

the value added by adjusting for more variables.

Vermeulen et al. (2015) derived an adjusted estimator that is directly targeted at maxi-

mizing precision for the MW estimand. In contrast, our adjusted estimators for ordinal

outcomes target the entire treatment-specific CDFs. It is an open research question to

compare our methods to those of Vermeulen et al. (2015).

[Figure 1 about here.]

Supplementary Materials

Appendix A defines the estimands and estimators for ordinal outcomes. Appendix B describes

the estimands and assumptions on censoring that we make for time-to-event outcomes.
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Appendix C presents additional simulation studies, including data generating distributions

for non-hospitalized COVID-19 patients. Appendix D describes the availability of code that

reproduces our simulation experiments and that implements our estimators and confidence

intervals.
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Figure 1. Example figures illustrating covariate adjusted estimates of the CDF and PMF
by study arm with pointwise (black) and simultaneous (gray) confidence intervals. “ICU”
represents survival and ICU admission; “None” represents survival and no ICU admission.
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Table 1
Hospitalized, COVID-19 positive population: Age and conditional outcome distributions based on data from (CDC
COVID-19 Response Team, 2020) that we use for defining the control arm distribution in the ordinal outcome

simulation studies. “ICU” represents ICU admission.

Age P(age) P(death | age) P(ICU & survived | age) P(no ICU & survived | age)
0–19 0.01 0.00 0.00 1.00
20–44 0.09 0.01 0.18 0.81
45–54 0.12 0.03 0.32 0.65
55–64 0.13 0.08 0.31 0.61
65–74 0.18 0.11 0.37 0.52
75–84 0.22 0.17 0.47 0.36
> 85 0.25 0.37 0.35 0.28
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Table 2
Results for the binary outcome and risk di↵erence (RD) estimand in the hospitalized population. BCa
bootstrap is used for confidence intervals and hypothesis testing. “E↵ect” denotes the true estimand value; “MSE”
denotes mean squared error; “Rel. E↵.” denotes relative e�ciency which we approximate as the ratio of the MSE of
the estimator under consideration to the MSE of the unadjusted estimator. In each block of four rows, the first two

rows involve no treatment e↵ect and the last two rows involve a benefit from treatment.

n Estimator Type E↵ect P(reject H0) MSE Bias Variance Rel. E↵.

100 Unadjusted 0 0.043 0.010 0.003 0.010 1.000
100 Adjusted 0 0.049 0.009 0.004 0.009 0.844
100 Unadjusted -0.269 0.719 0.009 0.003 0.009 1.000
100 Adjusted -0.269 0.841 0.008 0.004 0.008 0.859

200 Unadjusted 0 0.031 0.005 0.003 0.005 1.000
200 Adjusted 0 0.043 0.004 0.004 0.004 0.885
200 Unadjusted -0.199 0.768 0.005 0.003 0.005 1.000
200 Adjusted -0.199 0.835 0.004 0.004 0.004 0.880

500 Unadjusted 0 0.047 0.002 0.001 0.002 1.000
500 Adjusted 0 0.047 0.002 0.000 0.002 0.878
500 Unadjusted -0.124 0.770 0.002 0.000 0.002 1.000
500 Adjusted -0.124 0.836 0.002 0.000 0.002 0.899

1000 Unadjusted 0 0.041 0.001 0.000 0.001 1.000
1000 Adjusted 0 0.045 0.001 0.000 0.001 0.860
1000 Unadjusted -0.090 0.796 0.001 0.000 0.001 1.000
1000 Adjusted -0.090 0.852 0.001 0.000 0.001 0.890
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Table 3
Results for the ordinal outcome and di↵erence in means (DIM) estimand in the hospitalized

population. BCa bootstrap is used for confidence intervals and hypothesis testing. “E↵ect” denotes the true
estimand value; “MSE” denotes mean squared error; “Rel. E↵.” denotes relative e�ciency which we approximate as
the ratio of the MSE of the estimator under consideration to the MSE of the unadjusted estimator. In each block of

four rows, the first two rows involve no treatment e↵ect and the last two rows involve a benefit from treatment.

n Estimator Type E↵ect P(reject H0) MSE Bias Variance Rel. E↵.

100 Unadjusted 0 0.064 0.023 -0.005 0.023 1.000
100 Adjusted 0 0.058 0.019 -0.007 0.019 0.822
100 Unadjusted 0.303 0.472 0.022 -0.007 0.022 1.000
100 Adjusted 0.303 0.553 0.019 -0.004 0.019 0.845

200 Unadjusted 0 0.049 0.010 -0.002 0.010 1.000
200 Adjusted 0 0.045 0.009 -0.003 0.009 0.862
200 Unadjusted 0.303 0.775 0.012 -0.003 0.012 1.000
200 Adjusted 0.303 0.842 0.010 0.000 0.010 0.872

500 Unadjusted 0 0.061 0.005 -0.001 0.005 1.000
500 Adjusted 0 0.057 0.004 0.000 0.004 0.837
500 Unadjusted 0.195 0.810 0.005 0.000 0.005 1.000
500 Adjusted 0.195 0.855 0.004 0.001 0.004 0.891

1000 Unadjusted 0 0.052 0.002 0.000 0.002 1.000
1000 Adjusted 0 0.042 0.002 0.000 0.002 0.849
1000 Unadjusted 0.136 0.835 0.002 0.000 0.002 1.000
1000 Adjusted 0.136 0.867 0.002 0.000 0.002 0.889
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Table 4
Results for ordinal outcome and Mann Whitney (MW) estimand in the hospitalized population. BCa
bootstrap is used for confidence intervals and hypothesis testing. “E↵ect” denotes the true estimand value; “MSE”
denotes mean squared error; “Rel. E↵.” denotes relative e�ciency which we approximate as the ratio of the MSE of
the estimator under consideration to the MSE of the unadjusted estimator. In each block of four rows, the first two

rows involve no treatment e↵ect and the last two rows involve a benefit from treatment.

n Estimator Type E↵ect P(reject H0) MSE Bias Variance Rel. E↵.

100 Unadjusted 0.500 0.054 0.003 -0.002 0.003 1.000
100 Adjusted 0.500 0.055 0.002 -0.003 0.002 0.822
100 Unadjusted 0.627 0.688 0.002 -0.002 0.002 1.000
100 Adjusted 0.627 0.753 0.002 -0.002 0.002 0.852

200 Unadjusted 0.500 0.047 0.001 -0.001 0.001 1.000
200 Adjusted 0.500 0.036 0.001 -0.001 0.001 0.864
200 Unadjusted 0.627 0.940 0.001 -0.001 0.001 1.000
200 Adjusted 0.627 0.968 0.001 0.000 0.001 0.878

500 Unadjusted 0.500 0.055 0.001 0.000 0.001 1.000
500 Adjusted 0.500 0.052 0.000 0.000 0.000 0.843
500 Unadjusted 0.582 0.946 0.001 0.000 0.001 1.000
500 Adjusted 0.582 0.959 0.000 0.000 0.000 0.905

1000 Unadjusted 0.500 0.046 0.000 0.000 0.000 1.000
1000 Adjusted 0.500 0.046 0.000 0.000 0.000 0.844
1000 Unadjusted 0.557 0.936 0.000 0.000 0.000 1.000
1000 Adjusted 0.557 0.948 0.000 0.000 0.000 0.890
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Table 5
Results for the ordinal outcome and log-odds ratio (LOR) estimand in the hospitalized population. BCa
bootstrap is used for confidence intervals and hypothesis testing. “E↵ect” denotes the true estimand value; “MSE”
denotes mean squared error; “Rel. E↵.” denotes relative e�ciency which we approximate as the ratio of the MSE of
the estimator under consideration to the MSE of the unadjusted estimator. In each block of four rows, the first two

rows involve no treatment e↵ect and the last two rows involve a benefit from treatment.

n Estimator Type E↵ect P(reject H0) MSE Bias Variance Rel. E↵.

100 Unadjusted 0 0.045 0.185 0.018 0.185 1.000
100 Adjusted 0 0.046 0.153 0.021 0.152 0.824
100 Unadjusted -0.686 0.270 0.231 0.006 0.231 1.000
100 Adjusted -0.686 0.309 0.196 0.001 0.196 0.848

200 Unadjusted 0 0.041 0.080 0.004 0.081 1.000
200 Adjusted 0 0.029 0.069 0.007 0.069 0.854
200 Unadjusted -0.686 0.554 0.111 0.000 0.111 1.000
200 Adjusted -0.686 0.612 0.096 -0.003 0.096 0.863

500 Unadjusted 0 0.062 0.035 0.002 0.035 1.000
500 Adjusted 0 0.060 0.029 0.000 0.029 0.826
500 Unadjusted -0.408 0.559 0.038 -0.001 0.038 1.000
500 Adjusted -0.408 0.623 0.033 -0.002 0.033 0.869

1000 Unadjusted 0 0.043 0.015 0.000 0.015 1.000
1000 Adjusted 0 0.040 0.013 0.000 0.013 0.851
1000 Unadjusted -0.278 0.583 0.016 0.000 0.016 1.000
1000 Adjusted -0.278 0.613 0.014 0.002 0.014 0.878
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Table 6
Results for di↵erence in restricted mean survival times (RMST) at 14 days estimand in hospitalized

population, when the adjusted estimator uses all six baseline variables from Section 4.2.3. Confidence
intervals and hypothesis tests are Wald-based. “E↵ect” denotes the true estimand value; “MSE” denotes mean

squared error; “Rel. E↵.” denotes relative e�ciency which we approximate as the ratio of the MSE of the estimator
under consideration to the MSE of the unadjusted estimator. In each block of four rows, the first two rows involve

no treatment e↵ect and the last two rows involve a benefit from treatment.

Sample Size Estimator Type E↵ect P(reject H0) MSE Bias Variance Rel. E↵.

100 Unadjusted 0 0.011 0.781 0.018 0.780 1.000
100 Adjusted 0 0.038 0.740 0.006 0.740 0.948
100 Unadjusted 1.06 0.085 0.570 -0.265 0.500 1.000
100 Adjusted 1.06 0.160 0.546 -0.251 0.483 0.957

200 Unadjusted 0 0.048 0.481 -0.013 0.481 1.000
200 Adjusted 0 0.055 0.418 -0.013 0.418 0.869
200 Unadjusted 1.06 0.326 0.328 -0.145 0.307 1.000
200 Adjusted 1.06 0.397 0.293 -0.123 0.278 0.893

500 Unadjusted 0 0.050 0.201 -0.003 0.201 1.000
500 Adjusted 0 0.052 0.164 -0.005 0.164 0.814
500 Unadjusted 1.06 0.729 0.151 -0.070 0.146 1.000
500 Adjusted 1.06 0.810 0.129 -0.065 0.125 0.855

1000 Unadjusted 0 0.048 0.100 0.001 0.100 1.000
1000 Adjusted 0 0.045 0.079 0.001 0.079 0.793
1000 Unadjusted 1.06 0.959 0.079 -0.060 0.076 1.000
1000 Adjusted 1.06 0.986 0.065 -0.058 0.061 0.819
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Summary: The Web Supplement is organized as follows. Appendix A introduces the estimands and estimators for

ordinal outcomes. Appendix B introduces the estimands and assumptions on censoring that we make for time-to-event

outcomes. Appendix C presents additional simulation studies, including for non-hospitalized COVID-19 patients.

Appendix C.1 presents the data-generating distributions for non-hospitalized COVID-19 patients. Appendix C.2

presents the results of simulation studies for the case that the outcome is binary. Appendix C.3 presents additional

simulation results for ordinal outcomes, namely the results for Wald-style inference and for the non-hospitalized

population. Appendix C.4 presents additional simulation results for time-to-event outcomes, namely when a restricted

set of covariates (age and sex) were used for adjustment and for the di↵erence of survival probabilities in the
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hospitalized population. Appendix D describes the availability of code that reproduces our simulation experiments

and that implements our estimator and confidence intervals.
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A. Estimands and estimators when the outcome is ordinal

A.1 Estimands

Let (A, Y ) and ( eA, eY ) denote independent treatment-outcome pairs, and let u(·) be a pre-

specified, real-valued transformation of an outcome. The three estimands are defined as

follows:

DIM: E[u(Y )|A = 1]� E[u(Y )|A = 0],

MW: P
⇣
eY > Y

��� eA = 1, A = 0
⌘
+

1

2
P

⇣
eY = Y

��� eA = 1, A = 0
⌘
,

LOR: argmin
�2R

PK�1
j=1 {logitP (Y 6 j|A = 1)� logitP (Y 6 j|A = 0)� �}2 .

All three estimands are smooth summaries of the cumulative distribution functions Fa(·) :=

P (Y 6 · |A = a) for a 2 {0, 1}. To see that this is the case, let fa(j) := Fa(j) � Fa(j � 1),

a 2 {0, 1}, denote the corresponding probability mass functions and note that the estimands

can be equivalently expressed as follows:

DIM:
KX

j=1

u(j){f1(j)� f0(j)},

MW:
KX

j=1

⇢
F0(j � 1) +

1

2
f0(j)

�
f1(j)

LOR: argmin
�2R

PK�1
j=1 {logitF1(j)� logitF0(j)� �}2 .

A.2 Covariate adjusted estimator

Consider a setting in which we observe n independent copies of (X,A, Y ), whereX represents

a d-dimensional vector of baseline covariates, A represents treatment, and Y represents

outcome. We assume that A ?? X. We use the subscript i to denote data specific to individual

i. We now derive an estimator for the CDF that is closely related to an estimator presented

in Scharfstein et al. (1999) and to targeted minimum loss-based estimators (van der Laan

and Rubin, 2006; van der Laan and Rose, 2011).
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For ↵ := (↵(j))K�1
j=1 2 RK�1 and � 2 Rd, define the following RK�1 ⇥ Rd function:

logitm↵,�(j, x) = ↵(j) + �
>
x.

We will consider the treatment-stratified proportional odds working model for P{Y 6 j|A =

a,X = x} in which there exist (↵0, �0) and (↵1, �1) such that P{Y 6 j|A = a,X = x} =

m↵a,�a(j, x) for all j, x, a. Importantly, we do not rely on this model being correct.

In addition to the above working model, we consider a treatment-assignment propensity

score working model. It is used to define inverse-probability weights that are used when

fitting the aforementioned proportional odds working models. Let ⇡̂(a|x) be an estimate of

P (A = a|X = x), e.g., using a logistic regression model. In the clinical trial setting that

we considered in our simulation studies, we used a logistic regression model with just an

intercept, i.e., we ignored baseline variables. This is equivalent to using no weights (i.e.,

all weights equal to a constant) when fitting the proportional odds models. At the end of

this subsection, we describe alternative approaches for estimating P (A = a|X = x) and the

implications of doing so.

Suppose that, for a 2 {0, 1}, ↵̂(a) and �̂(a) are chosen to minimize the following weighted

empirical risk in (↵, �):

�
K�1X

j=1

nX

i=1

I{Ai = a}
⇡̂(Ai|Xi)

log
�
m↵,�(j,Xi)

I{Yi6j}[1�m↵,�(j,Xi)]
I{Yi>j}�

. (1)

Each of these a-specific optimizations can be solved by running a weighted logistic re-

gression on a repeated measures dataset of size n ⇥ (K � 1). Alternatively, they can be fit

using software for a proportional odds model that allows for weights. For both levels of the

treatment a, it can be shown that ↵̂(a)1 6 ↵̂(a)2 6 . . . 6 ↵̂(a)K�1, and so, for any covariate

value x, m↵̂(a),�̂(a)(·, x) is a monotone nondecreasing function. Moreover, if our treatment-

stratified proportional odds working model is correct, then ↵̂(a) and �̂(a) are consistent and

asymptotically normal estimators of the true underlying parameters.
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Our covariate adjusted estimate of the CDF  a(j) := P (Y 6 j|A = a) is given by

 ̂a(j) :=
1

n

nX

i=1

m↵̂(a),�̂(a)(j,Xi). (2)

Becausem↵̂(a),�̂(a)(·, Xi) is monotone nondecreasing for all i = 1, . . . , n,  ̂a(·) is also monotone

nondecreasing. The above estimator also satisfies the known constraint that  ̂a(j) 2 [0, 1].

It can also be shown that  ̂a(j) is (i) doubly robust and (ii) e�cient if both the treatment

mechanism (P (A = a|X)) working model and the stratified proportional odds working model

are correctly specified. To show this, we now establish that  ̂a(j) is in fact an augmented

inverse probability weighted estimator. First, note that minimizing (1) to find ↵̂a and �̂a

implies that the following first-order condition is satisfied for all j 2 {1, . . . , K � 1}:

1

n

nX

i=1

I{Ai = a}
⇡̂(Ai|Xi)

h
I{Yi 6 j}�m↵̂a,�̂a

(j,Xi)
i
= 0.

Next, note that adding this to the right-hand side of (2) shows that

 ̂a(j) =
1

n

nX

i=1

I{Ai = a}
⇡̂(Ai|Xi)

h
I{Yi 6 j}�m↵̂a,�̂a

(j,Xi)
i
+

1

n

nX

i=1

m↵̂(a),�̂(a)(j,Xi)

=
1

n

nX

i=1

I{Ai = a}
⇡̂(Ai|Xi)

I{Yi 6 j}+ 1

n

nX

i=1

m↵̂(a),�̂(a)(j,Xi)


1� I{Ai = a}

⇡̂(Ai|Xi)

�
.

The above shows that  ̂a(j) is an augmented inverse probability weighted estimator (see

Section 7 of Robins et al., 1994) for  ̂a(j), with the estimate of the outcome regression

x 7! P{Y 6 j|A = a,X = x} given by x 7! m↵̂(a),�̂(a)(j, x).

We next discuss our estimation of the treatment probability P (A = a|X = x). Though this

quantity can always be estimated by the empirical treatment probability in our randomized

trial setting, there are generally advantages to estimating this quantity within a richer model.

For example, a logistic regression of treatment on covariates (main e↵ects only) could be used

— in a randomized trial setting, this model is correctly specified provided that it includes

an intercept term. The advantage of estimating known treatment probabilities via correctly

specified parametric models has been discussed elsewhere – see, for example, Williamson

et al. (2014) or, for a general treatment, Section 2.3.7 in van der Laan et al. (2003).
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We recommend handling missing ordinal outcomes using doubly robust methods whose

validity relies on the outcomes being missing at random conditional on the covariates and

treatment assignment. To implement this approach, one can apply the methods described

above, but with study arm recoded as 0 to indicate that a patient was both randomized to

study arm 0 (control) and had their outcome measured, 1 to indicate that a patient was both

randomized to study arm 1 (treatment) and had their outcome measured, and -1 to indicate

that the outcome is missing. When study arm is recoded in this way and the outcome is

not missing completely at random but is missing at random conditional on covariates, it is

important that the model used for ⇡̂ described above conditions on the baseline covariates,

since this recoded treatment is not fully randomized.

B. Estimands and censoring assumptions for time-to-event outcomes

Let T be a time-to-event outcome, C be a right-censoring time, A be a treatment indicator,

and X be a collection of baseline covariates. Let ⌧ be an investigator-specified truncation

time that will be used to define the RMST, and let t
⇤ be an investigator-specified time at

which a comparison between the arm-specific survival probabilities is of interest.

The three estimands are defined as

RMST: E[min{T, ⌧}|A = 1]� E[min{T, ⌧}|A = 0],

RD: P (T 6 t
⇤|A = 1)� P (T 6 t

⇤|A = 0) ,

RR:
P (T 6 t

⇤|A = 1)

P (T 6 t⇤|A = 0)
.

Unadjusted methods assume that

C ?? T |A. (3)

The adjusted methods discussed in the main text assume that

C ?? T |A,X, (4)
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which may be more plausible than (3).

C. Additional simulation studies

C.1 Data generating distributions for non-hospitalized, COVID-19 patients

We also conducted simulations to mimic a population of non-hospitalized individuals who test

positive for COVID-19 and where the primary outcome is ordinal (1=death, 2=hospitalized

and survived, 3=not hospitalized and survived) and the baseline covariate is age category. We

set the control arm probabilities of being in each age group and of hospitalization and death

as in Table 1, which was extracted from CDC COVID-19 Response Team (2020) analogous

to how this was done in Section 4.2.2 for the hospitalized population; the treatment arm

distribution was constructed similarly as in Section 4.2.2.

Analogous to the hospitalized population data generating distributions, we assumed that

a treatment would have no e↵ect on the probability of death but would decrease the odds of

hospital admission (hospitalization) by the same relative amount in each age category. For

ordinal outcome scenarios with smaller sample sizes, there were sometimes data sets that

had no participants in the lowest or highest outcome category in at least one study arm.

For these data sets, the log-odds ratio estimators are undefined. As such, we omitted these

sample sizes from our evaluations.

[Table 1 about here.]

C.2 Additional simulation studies for binary outcomes

We repeated the simulation studies in hospitalized and non-hospitalized patients for ordinal

outcomes, but collapsing the death and ICU admission outcomes (hospitalized setting) and

the death and hospitalized outcomes (non-hospitalized setting) to make a binary composite

outcome. The binary outcome in the non-hospitalized population is defined as death or

hospitalization (Y = 0) or survived and no hospitalization (Y = 1). The binary outcome for
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the hospitalized population is as defined in Section 4.2.1 of the main paper. We compared

covariate-adjusted vs. unadjusted estimates of the risk di↵erence of the binary outcome

in terms of mean squared error, bias, and variance. We also compared the probability of

rejecting the null hypothesis of 0 risk di↵erence using a test based on our covariate-adjusted

estimator versus a traditional Chi-squared test. Results are shown in Tables 2-4. When

considering the same population and estimand, the only di↵erence between tables that use

BCa nonparametric bootstrap-based inference versus tables that use Wald-style inference is

in the P(Reject H0) column.

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

C.3 Additional simulation studies for ordinal outcomes

We first present simulation results when using Wald-style inference for the population of

hospitalized patients, in Tables 5-7 for the three ordinal estimands. Results were largely

similar to those that used BCa nonparametric bootstrap-based inference as presented in the

main text.

[Table 5 about here.]

[Table 6 about here.]

[Table 7 about here.]

We also noted considerable numerical instabilities in implementations of the proportional

odds model included in the MASS package (function polr), which led to our using the more

stable implementation in the ordinal package (function clm) throughout. The latter function

is the default in the drord package.
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Tables 8-13 present simulation results for ordinal outcomes for the non-hospitalized pop-

ulation described in Section C.1 of the Supplementary Materials.

[Table 8 about here.]

[Table 9 about here.]

[Table 10 about here.]

[Table 11 about here.]

[Table 12 about here.]

[Table 13 about here.]

C.4 Additional simulation studies for time-to-event outcomes

We present results for the di↵erence in restricted mean survival times (RMST) at 14 days

estimand in the hospitalized population, when the adjusted estimator uses only age and sex

(Table 14). Results are also presented for the di↵erence of survival probabilities (RD) at

7 days estimand in the hospitalized population (when the adjusted estimator uses all six

baseline variables from Section 4.2.3) in Table 15.

[Table 14 about here.]

[Table 15 about here.]

D. Code availability

D.1 Simulation code

All code needed to reproduce the simulations for ordinal and binary data is available on

GitHub (https://github.com/mrosenblum/COVID-19-RCT-STAT-TOOLS). The code for the

survival simulations is also included in that repository. However, because the simulation is

based on private data from Weill Cornell Medicine, the results of the simulation reported
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in the manuscript are not reproducible based on the available code. We provide a simulated

dataset (not based on real data) with the same structure of the real dataset. This dataset

can be used to run the simulation code.

D.2 R packages

The drord package (available at https://github.com/benkeser/drord) implements the

proposed estimators for ordinal outcomes and can also be used for analyzing binary outcomes.

The package vignette (https://benkeser.github.io/drord/articles/using_drord.html)

describes implementation of the estimators and all available options in the package. In

particular, the package includes: bootstrap-based and closed-form inference for all estimands

described here-in, as well as for the treatment-specific PMFs and CDFs; a fully nonparametric

covariate-adjusted estimator that uses stratification to estimate the covariate-conditional

PMF and estimators; and a plotting method for visualizing covariate-adjusted estimates

of the treatment-specific PMFs and CDFs that includes pointwise confidence intervals and

simultaneous confidence bands.

The survtmlerct package, available at https://github.com/idiazst/survtmlerct, im-

plements the targeted minimum loss based estimator for the RMST of Dı́az et al. (2019).

The package also implements an analogous estimator for the risk di↵erence RD, as well as

unadjusted counterparts for both the RMST and the RD. Standard errors are computed using

the influence function of the estimators, and Wald-type confidence intervals are implemented.

The functions in the package can incorporate any user-provided, preliminary estimates of

the outcome and hazard functions, including parametric and data-adaptive estimates that

use model selection. The help command applied to the specific functions of the package gives

examples of the estimators.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 11, 2020. .https://doi.org/10.1101/2020.04.19.20069922doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.19.20069922
http://creativecommons.org/licenses/by-nc-nd/4.0/


Web Supplement for: Improving Power for COVID-19 Treatment Trials 9

References

CDC COVID-19 Response Team (2020). Severe Outcomes Among Patients with Coro-

navirus Disease 2019 (COVID-19) — United States, February 12–March 16, 2020.

https://www.cdc.gov/mmwr/volumes/69/wr/mm6912e2.htm . MMWR Morb Mortal

Wkly Rep 69 (12), 343–346.

Dı́az, I., E. Colantuoni, D. F. Hanley, and M. Rosenblum (2019). Improved precision in

the analysis of randomized trials with survival outcomes, without assuming proportional

hazards. Lifetime Data Analysis 25 (3), 439–468.

Robins, J. M., A. Rotnitzky, and L. P. Zhao (1994). Estimation of regression coe�cients

when some regressors are not always observed. Journal of the American statistical

Association 89 (427), 846–866.

Scharfstein, D. O., A. Rotnitzky, and J. M. Robins (1999). Adjusting for nonignorable

drop-out using semiparametric nonresponse models. Journal of the American Statistical

Association 94 (448), 1096–1120.

van der Laan, M. J., M. Laan, and J. M. Robins (2003). Unified methods for censored

longitudinal data and causality. Springer Science & Business Media.

van der Laan, M. J. and S. Rose (2011). Targeted learning: causal inference for observational

and experimental data. Springer Science & Business Media.

van der Laan, M. J. and D. Rubin (2006). Targeted maximum likelihood learning. The

International Journal of Biostatistics 2 (1).

Williamson, E. J., A. Forbes, and I. R. White (2014). Variance reduction in randomised trials

by inverse probability weighting using the propensity score. Statistics in Medicine 33 (5),

721–737.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 11, 2020. .https://doi.org/10.1101/2020.04.19.20069922doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.19.20069922
http://creativecommons.org/licenses/by-nc-nd/4.0/


10

Table 1
Non-hospitalized, COVID-19 positive population: Age and conditional outcome distributions based on data from

(CDC COVID-19 Response Team, 2020) that we use for defining the control arm distribution in the ordinal
outcome simulation studies for the non-hospitalized population. “Hosp.” abbreviates “hospitalized”; “surv.”

abbreviates “survived”.
Age P(age) P(death | age) P(hosp. & surv. | age) P(not hosp. & surv. | age)
0–19 0.05 0.00 0.02 0.98
20–44 0.29 0.00 0.18 0.82
45–54 0.18 0.01 0.25 0.74
55–64 0.18 0.02 0.25 0.73
65–74 0.17 0.04 0.36 0.60
75–84 0.09 0.07 0.45 0.48
> 85 0.06 0.19 0.51 0.30
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Table 2
Results for the binary outcome and risk di↵erence (RD) estimand in the hospitalized population.

Wald-style inference is used for confidence intervals and hypothesis testing. “E↵ect” denotes the true estimand
value; “MSE” denotes mean squared error; “Rel. E↵.” denotes relative e�ciency which we approximate as the ratio
of the MSE of the estimator under consideration to the MSE of the unadjusted estimator. In each block of four rows,

the first two rows involve no treatment e↵ect and the last two rows involve a benefit from treatment.

n Estimator Type E↵ect P(reject H0) MSE Bias Variance Rel. E↵.

100 Unadjusted 0 0.043 0.010 0.003 0.010 1.000
100 Adjusted 0 0.056 0.009 0.004 0.009 0.844
100 Unadjusted -0.269 0.719 0.009 0.003 0.009 1.000
100 Adjusted -0.269 0.847 0.008 0.004 0.008 0.859

200 Unadjusted 0 0.031 0.005 0.003 0.005 1.000
200 Adjusted 0 0.041 0.004 0.004 0.004 0.885
200 Unadjusted -0.199 0.768 0.005 0.003 0.005 1.000
200 Adjusted -0.199 0.846 0.004 0.004 0.004 0.880

500 Unadjusted 0 0.047 0.002 0.001 0.002 1.000
500 Adjusted 0 0.051 0.002 0.000 0.002 0.878
500 Unadjusted -0.124 0.770 0.002 0.000 0.002 1.000
500 Adjusted -0.124 0.837 0.002 0.000 0.002 0.899

1000 Unadjusted 0 0.041 0.001 0.000 0.001 1.000
1000 Adjusted 0 0.042 0.001 0.000 0.001 0.860
1000 Unadjusted -0.090 0.796 0.001 0.000 0.001 1.000
1000 Adjusted -0.090 0.861 0.001 0.000 0.001 0.890
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Table 3
Results for the binary outcome and risk di↵erence (RD) estimand in the non-hospitalized population.

BCa bootstrap is used for confidence intervals and hypothesis testing. “E↵ect” denotes the true estimand value;
“MSE” denotes mean squared error; “Rel. E↵.” denotes relative e�ciency which we approximate as the ratio of the
MSE of the estimator under consideration to the MSE of the unadjusted estimator. In each block of four rows, the

first two rows involve no treatment e↵ect and the last two rows involve a benefit from treatment.

n Estimator Type E↵ect P(reject H0) MSE Bias Variance Rel. E↵.

100 Unadjusted 0 0.029 0.008 0.003 0.008 1.000
100 Adjusted 0 0.060 0.008 0.001 0.008 0.918
100 Unadjusted -0.209 0.652 0.005 0.007 0.005 1.000
100 Adjusted -0.209 0.811 0.005 0.005 0.005 0.941

200 Unadjusted 0 0.043 0.004 0.000 0.004 1.000
200 Adjusted 0 0.059 0.004 0.001 0.004 0.885
200 Unadjusted -0.161 0.747 0.003 -0.002 0.003 1.000
200 Adjusted -0.161 0.840 0.003 -0.001 0.003 0.883

500 Unadjusted 0 0.042 0.002 0.000 0.002 1.000
500 Adjusted 0 0.057 0.002 0.000 0.002 0.887
500 Unadjusted -0.112 0.811 0.001 0.000 0.001 1.000
500 Adjusted -0.112 0.887 0.001 0.000 0.001 0.879

1000 Unadjusted 0 0.047 0.001 0.000 0.001 1.000
1000 Adjusted 0 0.056 0.001 0.000 0.001 0.920
1000 Unadjusted -0.073 0.712 0.001 0.001 0.001 1.000
1000 Adjusted -0.073 0.791 0.001 0.001 0.001 0.930
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Table 4
Results for the binary outcome and risk di↵erence (RD) estimand in the non-hospitalized population.

Wald-style inference is used for confidence intervals and hypothesis testing. “E↵ect” denotes the true estimand
value; “MSE” denotes mean squared error; “Rel. E↵.” denotes relative e�ciency which we approximate as the ratio
of the MSE of the estimator under consideration to the MSE of the unadjusted estimator. In each block of four rows,

the first two rows involve no treatment e↵ect and the last two rows involve a benefit from treatment.

n Estimator Type E↵ect P(reject H0) MSE Bias Variance Rel. E↵.

100 Unadjusted 0 0.029 0.008 0.003 0.008 1.000
100 Adjusted 0 0.063 0.008 0.001 0.008 0.918
100 Unadjusted -0.209 0.652 0.005 0.007 0.005 1.000
100 Adjusted -0.209 0.805 0.005 0.005 0.005 0.941

200 Unadjusted 0 0.043 0.004 0.000 0.004 1.000
200 Adjusted 0 0.058 0.004 0.001 0.004 0.885
200 Unadjusted -0.161 0.747 0.003 -0.002 0.003 1.000
200 Adjusted -0.161 0.842 0.003 -0.001 0.003 0.883

500 Unadjusted 0 0.042 0.002 0.000 0.002 1.000
500 Adjusted 0 0.058 0.002 0.000 0.002 0.887
500 Unadjusted -0.112 0.811 0.001 0.000 0.001 1.000
500 Adjusted -0.112 0.888 0.001 0.000 0.001 0.879

1000 Unadjusted 0 0.047 0.001 0.000 0.001 1.000
1000 Adjusted 0 0.055 0.001 0.000 0.001 0.920
1000 Unadjusted -0.073 0.712 0.001 0.001 0.001 1.000
1000 Adjusted -0.073 0.793 0.001 0.001 0.001 0.930
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Table 5
Results for the ordinal outcome and di↵erence in means (DIM) estimand in the hospitalized

population. Wald-style inference is used for confidence intervals and hypothesis testing. “E↵ect” denotes the true
estimand value; “MSE” denotes mean squared error; “Rel. E↵.” denotes relative e�ciency which we approximate as
the ratio of the MSE of the estimator under consideration to the MSE of the unadjusted estimator. In each block of

four rows, the first two rows involve no treatment e↵ect and the last two rows involve a benefit from treatment.

n Estimator Type E↵ect P(reject H0) MSE Bias Variance Rel. E↵.

100 Unadjusted 0 0.067 0.023 -0.005 0.023 1.000
100 Adjusted 0 0.065 0.019 -0.007 0.019 0.822
100 Unadjusted 0.303 0.503 0.022 -0.007 0.022 1.000
100 Adjusted 0.303 0.592 0.019 -0.004 0.019 0.845

200 Unadjusted 0 0.042 0.010 -0.002 0.010 1.000
200 Adjusted 0 0.047 0.009 -0.003 0.009 0.862
200 Unadjusted 0.303 0.792 0.012 -0.003 0.012 1.000
200 Adjusted 0.303 0.858 0.010 0.000 0.010 0.872

500 Unadjusted 0 0.060 0.005 -0.001 0.005 1.000
500 Adjusted 0 0.057 0.004 0.000 0.004 0.837
500 Unadjusted 0.195 0.816 0.005 0.000 0.005 1.000
500 Adjusted 0.195 0.869 0.004 0.001 0.004 0.891

1000 Unadjusted 0 0.045 0.002 0.000 0.002 1.000
1000 Adjusted 0 0.044 0.002 0.000 0.002 0.849
1000 Unadjusted 0.136 0.826 0.002 0.000 0.002 1.000
1000 Adjusted 0.136 0.885 0.002 0.000 0.002 0.889

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 11, 2020. .https://doi.org/10.1101/2020.04.19.20069922doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.19.20069922
http://creativecommons.org/licenses/by-nc-nd/4.0/


Web Supplement for: Improving Power for COVID-19 Treatment Trials 15

Table 6
Results for ordinal outcome and Mann Whitney (MW) estimand in the hospitalized population.

Wald-style inference is used for confidence intervals and hypothesis testing. “E↵ect” denotes the true estimand
value; “MSE” denotes mean squared error; “Rel. E↵.” denotes relative e�ciency which we approximate as the ratio
of the MSE of the estimator under consideration to the MSE of the unadjusted estimator. In each block of four rows,

the first two rows involve no treatment e↵ect and the last two rows involve a benefit from treatment.

n Estimator Type E↵ect P(reject H0) MSE Bias Variance Rel. E↵.

100 Unadjusted 0.500 0.071 0.003 -0.002 0.003 1.000
100 Adjusted 0.500 0.062 0.002 -0.003 0.002 0.822
100 Unadjusted 0.627 0.607 0.002 -0.002 0.002 1.000
100 Adjusted 0.627 0.696 0.002 -0.002 0.002 0.852

200 Unadjusted 0.500 0.048 0.001 -0.001 0.001 1.000
200 Adjusted 0.500 0.047 0.001 -0.001 0.001 0.864
200 Unadjusted 0.627 0.917 0.001 -0.001 0.001 1.000
200 Adjusted 0.627 0.959 0.001 0.000 0.001 0.878

500 Unadjusted 0.500 0.060 0.001 0.000 0.001 1.000
500 Adjusted 0.500 0.054 0.000 0.000 0.000 0.843
500 Unadjusted 0.582 0.926 0.001 0.000 0.001 1.000
500 Adjusted 0.582 0.950 0.000 0.000 0.000 0.905

1000 Unadjusted 0.500 0.044 0.000 0.000 0.000 1.000
1000 Adjusted 0.500 0.047 0.000 0.000 0.000 0.844
1000 Unadjusted 0.557 0.915 0.000 0.000 0.000 1.000
1000 Adjusted 0.557 0.940 0.000 0.000 0.000 0.890
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Table 7
Results for the ordinal outcome and log-odds ratio (LOR) estimand in the hospitalized population.

Wald-style inference is used for confidence intervals and hypothesis testing. “E↵ect” denotes the true estimand
value; “MSE” denotes mean squared error; “Rel. E↵.” denotes relative e�ciency which we approximate as the ratio
of the MSE of the estimator under consideration to the MSE of the unadjusted estimator. In each block of four rows,

the first two rows involve no treatment e↵ect and the last two rows involve a benefit from treatment.

n Estimator Type E↵ect P(reject H0) MSE Bias Variance Rel. E↵.

100 Unadjusted 0 0.053 0.185 0.018 0.185 1.000
100 Adjusted 0 0.057 0.153 0.021 0.152 0.824
100 Unadjusted -0.686 0.306 0.231 0.006 0.231 1.000
100 Adjusted -0.686 0.372 0.196 0.001 0.196 0.848

200 Unadjusted 0 0.042 0.080 0.004 0.081 1.000
200 Adjusted 0 0.044 0.069 0.007 0.069 0.854
200 Unadjusted -0.686 0.562 0.111 0.000 0.111 1.000
200 Adjusted -0.686 0.633 0.096 -0.003 0.096 0.863

500 Unadjusted 0 0.060 0.035 0.002 0.035 1.000
500 Adjusted 0 0.065 0.029 0.000 0.029 0.826
500 Unadjusted -0.408 0.574 0.038 -0.001 0.038 1.000
500 Adjusted -0.408 0.640 0.033 -0.002 0.033 0.869

1000 Unadjusted 0 0.041 0.015 0.000 0.015 1.000
1000 Adjusted 0 0.047 0.013 0.000 0.013 0.851
1000 Unadjusted -0.278 0.577 0.016 0.000 0.016 1.000
1000 Adjusted -0.278 0.641 0.014 0.002 0.014 0.878
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Table 8
Results for the ordinal outcome and di↵erence in means (DIM) estimand in the non-hospitalized

population. BCa bootstrap is used for confidence intervals and hypothesis testing. “E↵ect” denotes the true
estimand value; “MSE” denotes mean squared error; “Rel. E↵.” denotes relative e�ciency which we approximate as
the ratio of the MSE of the estimator under consideration to the MSE of the unadjusted estimator. In each block of

four rows, the first two rows involve no treatment e↵ect and the last two rows involve a benefit from treatment.

n Estimator Type E↵ect P(reject H0) MSE Bias Variance Rel. E↵.

100 Unadjusted 0 0.057 0.011 -0.002 0.011 1.000
100 Adjusted 0 0.061 0.010 -0.001 0.010 0.947
100 Unadjusted 0.193 0.504 0.009 -0.006 0.009 1.000
100 Adjusted 0.193 0.535 0.008 -0.004 0.008 0.950

200 Unadjusted 0 0.062 0.006 0.000 0.006 1.000
200 Adjusted 0 0.063 0.005 -0.001 0.005 0.892
200 Unadjusted 0.193 0.816 0.005 0.003 0.005 1.000
200 Adjusted 0.193 0.844 0.004 0.003 0.004 0.915

500 Unadjusted 0 0.055 0.002 0.000 0.002 1.000
500 Adjusted 0 0.048 0.002 0.000 0.002 0.896
500 Unadjusted 0.125 0.791 0.002 0.000 0.002 1.000
500 Adjusted 0.125 0.838 0.002 0.000 0.002 0.894

1000 Unadjusted 0 0.054 0.001 0.000 0.001 1.000
1000 Adjusted 0 0.060 0.001 0.000 0.001 0.924
1000 Unadjusted 0.092 0.806 0.001 -0.001 0.001 1.000
1000 Adjusted 0.092 0.832 0.001 0.000 0.001 0.948
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Table 9
Results for the ordinal outcome and di↵erence in means (DIM) estimand in the non-hospitalized

population. Wald-style inference is used for confidence intervals and hypothesis testing. “E↵ect” denotes the true
estimand value; “MSE” denotes mean squared error; “Rel. E↵.” denotes relative e�ciency which we approximate as
the ratio of the MSE of the estimator under consideration to the MSE of the unadjusted estimator. In each block of

four rows, the first two rows involve no treatment e↵ect and the last two rows involve a benefit from treatment.

n Estimator Type E↵ect P(reject H0) MSE Bias Variance Rel. E↵.

100 Unadjusted 0 0.053 0.011 -0.002 0.011 1.000
100 Adjusted 0 0.058 0.010 -0.001 0.010 0.947
100 Unadjusted 0.193 0.495 0.009 -0.006 0.009 1.000
100 Adjusted 0.193 0.562 0.008 -0.004 0.008 0.950

200 Unadjusted 0 0.062 0.006 0.000 0.006 1.000
200 Adjusted 0 0.065 0.005 -0.001 0.005 0.892
200 Unadjusted 0.193 0.831 0.005 0.003 0.005 1.000
200 Adjusted 0.193 0.863 0.004 0.003 0.004 0.915

500 Unadjusted 0 0.050 0.002 0.000 0.002 1.000
500 Adjusted 0 0.054 0.002 0.000 0.002 0.896
500 Unadjusted 0.125 0.790 0.002 0.000 0.002 1.000
500 Adjusted 0.125 0.846 0.002 0.000 0.002 0.894

1000 Unadjusted 0 0.052 0.001 0.000 0.001 1.000
1000 Adjusted 0 0.061 0.001 0.000 0.001 0.924
1000 Unadjusted 0.092 0.808 0.001 -0.001 0.001 1.000
1000 Adjusted 0.092 0.845 0.001 0.000 0.001 0.948
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Table 10
Results for ordinal outcome and Mann Whitney (MW) estimand in the non-hospitalized population.

BCa bootstrap is used for confidence intervals and hypothesis testing. “E↵ect” denotes the true estimand value;
“MSE” denotes mean squared error; “Rel. E↵.” denotes relative e�ciency which we approximate as the ratio of the
MSE of the estimator under consideration to the MSE of the unadjusted estimator. In each block of four rows, the

first two rows involve no treatment e↵ect and the last two rows involve a benefit from treatment.

n Estimator Type E↵ect P(reject H0) MSE Bias Variance Rel. E↵.

100 Unadjusted 0.500 0.051 0.002 -0.001 0.002 1.000
100 Adjusted 0.500 0.050 0.002 -0.001 0.002 0.939
100 Unadjusted 0.594 0.642 0.001 -0.003 0.001 1.000
100 Adjusted 0.594 0.682 0.001 -0.002 0.001 0.945

200 Unadjusted 0.500 0.062 0.001 0.000 0.001 1.000
200 Adjusted 0.500 0.058 0.001 -0.001 0.001 0.893
200 Unadjusted 0.594 0.930 0.001 0.001 0.001 1.000
200 Adjusted 0.594 0.943 0.001 0.001 0.001 0.915

500 Unadjusted 0.500 0.052 0.000 0.000 0.000 1.000
500 Adjusted 0.500 0.051 0.000 0.000 0.000 0.898
500 Unadjusted 0.561 0.883 0.000 0.000 0.000 1.000
500 Adjusted 0.561 0.922 0.000 0.000 0.000 0.893

1000 Unadjusted 0.500 0.055 0.000 0.000 0.000 1.000
1000 Adjusted 0.500 0.062 0.000 0.000 0.000 0.929
1000 Unadjusted 0.544 0.898 0.000 0.000 0.000 1.000
1000 Adjusted 0.544 0.919 0.000 0.000 0.000 0.954
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Table 11
Results for ordinal outcome and Mann Whitney (MW) estimand in the non-hospitalized population.

Wald-style inference is used for confidence intervals and hypothesis testing. “E↵ect” denotes the true estimand
value; “MSE” denotes mean squared error; “Rel. E↵.” denotes relative e�ciency which we approximate as the ratio
of the MSE of the estimator under consideration to the MSE of the unadjusted estimator. In each block of four rows,

the first two rows involve no treatment e↵ect and the last two rows involve a benefit from treatment.

n Estimator Type E↵ect P(reject H0) MSE Bias Variance Rel. E↵.

100 Unadjusted 0.500 0.057 0.002 -0.001 0.002 1.000
100 Adjusted 0.500 0.069 0.002 -0.001 0.002 0.939
100 Unadjusted 0.594 0.538 0.001 -0.003 0.001 1.000
100 Adjusted 0.594 0.612 0.001 -0.002 0.001 0.945

200 Unadjusted 0.500 0.068 0.001 0.000 0.001 1.000
200 Adjusted 0.500 0.069 0.001 -0.001 0.001 0.893
200 Unadjusted 0.594 0.901 0.001 0.001 0.001 1.000
200 Adjusted 0.594 0.924 0.001 0.001 0.001 0.915

500 Unadjusted 0.500 0.050 0.000 0.000 0.000 1.000
500 Adjusted 0.500 0.057 0.000 0.000 0.000 0.898
500 Unadjusted 0.561 0.861 0.000 0.000 0.000 1.000
500 Adjusted 0.561 0.910 0.000 0.000 0.000 0.893

1000 Unadjusted 0.500 0.054 0.000 0.000 0.000 1.000
1000 Adjusted 0.500 0.060 0.000 0.000 0.000 0.929
1000 Unadjusted 0.544 0.885 0.000 0.000 0.000 1.000
1000 Adjusted 0.544 0.911 0.000 0.000 0.000 0.954
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Table 12
Results for the ordinal outcome and log-odds ratio (LOR) estimand in the non-hospitalized population.

BCa bootstrap is used for confidence intervals and hypothesis testing. “E↵ect” denotes the true estimand value;
“MSE” denotes mean squared error; “Rel. E↵.” denotes relative e�ciency which we approximate as the ratio of the
MSE of the estimator under consideration to the MSE of the unadjusted estimator. In each block of four rows, the

first two rows involve no treatment e↵ect and the last two rows involve a benefit from treatment.

n Estimator Type E↵ect P(reject H0) MSE Bias Variance Rel. E↵.

500 Unadjusted 0 0.029 0.108 0.006 0.108 1.000
500 Adjusted 0 0.035 0.101 0.007 0.101 0.938
500 Unadjusted -0.354 0.139 0.115 0.003 0.115 1.000
500 Adjusted -0.354 0.141 0.108 0.006 0.108 0.934

1000 Unadjusted 0 0.036 0.052 0.001 0.052 1.000
1000 Adjusted 0 0.040 0.049 0.001 0.049 0.939
1000 Unadjusted -0.246 0.172 0.055 0.002 0.055 1.000
1000 Adjusted -0.246 0.174 0.052 0.003 0.052 0.945
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Table 13
Results for the ordinal outcome and log-odds ratio (LOR) estimand in the non-hospitalized population.

Wald-style inference is used for confidence intervals and hypothesis testing. “E↵ect” denotes the true estimand
value; “MSE” denotes mean squared error; “Rel. E↵.” denotes relative e�ciency which we approximate as the ratio
of the MSE of the estimator under consideration to the MSE of the unadjusted estimator. In each block of four rows,

the first two rows involve no treatment e↵ect and the last two rows involve a benefit from treatment.

n Estimator Type E↵ect P(reject H0) MSE Bias Variance Rel. E↵.

500 Unadjusted 0 0.031 0.108 0.006 0.108 1.000
500 Adjusted 0 0.040 0.101 0.007 0.101 0.938
500 Unadjusted -0.354 0.184 0.115 0.003 0.115 1.000
500 Adjusted -0.354 0.208 0.108 0.006 0.108 0.934

1000 Unadjusted 0 0.045 0.052 0.001 0.052 1.000
1000 Adjusted 0 0.063 0.049 0.001 0.049 0.939
1000 Unadjusted -0.246 0.180 0.055 0.002 0.055 1.000
1000 Adjusted -0.246 0.210 0.052 0.003 0.052 0.945
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Table 14
Results for di↵erence in restricted mean survival times (RMST) at 14 days estimand in hospitalized

population, when the adjusted estimator uses only age and sex. Confidence intervals and hypothesis tests are
Wald-style. “E↵ect” denotes the true estimand value; “MSE” denotes mean squared error; “Rel. E↵.” denotes

relative e�ciency which we approximate as the ratio of the MSE of the estimator under consideration to the MSE of
the unadjusted estimator. In each block of four rows, the first two rows involve no treatment e↵ect and the last two

rows involve a benefit from treatment.

n Estimator Type E↵ect P(reject H0) MSE Bias Variance Rel. E↵.

100 Unadjusted 0 0.011 0.781 0.018 0.780 1.000
100 Adjusted 0 0.015 0.771 0.014 0.771 0.987
100 Unadjusted 1.06 0.085 0.570 -0.265 0.500 1.000
100 Adjusted 1.06 0.098 0.570 -0.263 0.501 1.000

200 Unadjusted 0 0.048 0.481 -0.013 0.481 1.000
200 Adjusted 0 0.050 0.476 -0.014 0.476 0.989
200 Unadjusted 1.06 0.326 0.328 -0.145 0.307 1.000
200 Adjusted 1.06 0.337 0.326 -0.141 0.306 0.995

500 Unadjusted 0 0.050 0.201 -0.003 0.201 1.000
500 Adjusted 0 0.049 0.196 -0.003 0.196 0.975
500 Unadjusted 1.06 0.729 0.151 -0.070 0.146 1.000
500 Adjusted 1.06 0.742 0.147 -0.069 0.143 0.978

1000 Unadjusted 0 0.048 0.100 0.001 0.100 1.000
1000 Adjusted 0 0.047 0.096 0.001 0.096 0.963
1000 Unadjusted 1.06 0.959 0.079 -0.060 0.076 1.000
1000 Adjusted 1.06 0.963 0.077 -0.060 0.073 0.972
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Table 15
Results for di↵erence of survival probabilities (RD) at 7 days estimand in hospitalized population when

the adjusted estimator uses all six baseline variables from Section 4.2.3. Confidence intervals and
hypothesis tests are Wald-style. “E↵ect” denotes the true estimand value; “MSE” denotes mean squared error; “Rel.
E↵.” denotes relative e�ciency which we approximate as the ratio of the MSE of the estimator under consideration
to the MSE of the unadjusted estimator. In each block of four rows, the first two rows involve no treatment e↵ect

and the last two rows involve a benefit from treatment.

Sample Size Estimator Type E↵ect P(reject H0) MSE Bias Variance Rel. E↵.

100 Unadjusted 0 0.052 0.007 0.001 0.008 1.000
100 Adjusted 0 0.065 0.007 0.001 0.007 0.935
100 Unadjusted 0.087 0.185 0.007 -0.002 0.007 1.000
100 Adjusted 0.087 0.209 0.006 -0.001 0.006 0.973

200 Unadjusted 0 0.050 0.004 -0.001 0.004 1.000
200 Adjusted 0 0.058 0.003 -0.001 0.003 0.869
200 Unadjusted 0.087 0.316 0.003 -0.003 0.003 1.000
200 Adjusted 0.087 0.357 0.003 -0.003 0.003 0.904

500 Unadjusted 0 0.053 0.002 0.001 0.002 1.000
500 Adjusted 0 0.052 0.001 0.001 0.001 0.838
500 Unadjusted 0.087 0.648 0.001 -0.002 0.001 1.000
500 Adjusted 0.087 0.717 0.001 -0.002 0.001 0.858

1000 Unadjusted 0 0.052 0.001 0.001 0.001 1.000
1000 Adjusted 0 0.051 0.001 0.001 0.001 0.833
1000 Unadjusted 0.087 0.918 0.001 -0.002 0.001 1.000
1000 Adjusted 0.087 0.947 0.001 -0.002 0.001 0.851
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