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The forecasting of menstruation based on
a state-space modeling of basal body
temperature time series
Keiichi Fukaya,a*† Ai Kawamori,a Yutaka Osada,b
Masumi Kitazawac and Makio Ishiguroa

Women’s basal body temperature (BBT) shows a periodic pattern that associates with menstrual cycle. Although
this fact suggests a possibility that daily BBT time series can be useful for estimating the underlying phase state
as well as for predicting the length of current menstrual cycle, little attention has been paid to model BBT time
series. In this study, we propose a state-space model that involves the menstrual phase as a latent state variable
to explain the daily fluctuation of BBT and the menstruation cycle length. Conditional distributions of the phase
are obtained by using sequential Bayesian filtering techniques. A predictive distribution of the next menstruation
day can be derived based on this conditional distribution and the model, leading to a novel statistical framework
that provides a sequentially updated prediction for upcoming menstruation day. We applied this framework to a
real data set of women’s BBT and menstruation days and compared prediction accuracy of the proposed method
with that of previous methods, showing that the proposed method generally provides a better prediction. Because
BBT can be obtained with relatively small cost and effort, the proposed method can be useful for women’s health
management. Potential extensions of this framework as the basis of modeling and predicting events that are
associated with the menstrual cycles are discussed. © 2017 The Authors. Statistics in Medicine Published by John
Wiley & Sons Ltd.
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1. Introduction

The menstrual cycle is the periodic changes that occur in the female reproductive system that make preg-
nancy possible. Throughout the menstrual cycle, basal body temperature (BBT) also follows a periodic
pattern. The menstrual cycle consists of two phases, the follicular phase followed by the luteal phase,
with ovulation occurring at the transition between the two phases. During the follicular phase, BBT is
relatively low with the nadir occurring within 1 to 2 days of a surge in luteinizing hormone that triggers
ovulation. After the nadir, the cycle enters the luteal phase and BBT rises by 0.3°C to 0.5°C [1].

Considerable attention has been paid to the development of methods to predict the days of ovulation
and the day of onset of menstruation; currently available methods include urinary and plasma hormone
analyses, ultrasound monitoring of follicular growth, and monitoring of changes in the cervical mucus or
BBT. Monitoring the change in BBT is straightforward because it requires neither expensive instruments
nor medical expertise. However, of the currently available methods, BBT measurement is the least reliable
because it has an inherently large day-to-day variability [1]; therefore, statistical analyses are required to
improve predictions of events associated with the menstrual cycle based on BBT.
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Many statistical models of the menstrual cycle length have been proposed, with the majority explaining
the marginal distribution of menstrual cycle length, which is characterized by a long right tail. To explain
within-individual heterogeneity, which is an important source of variation in menstrual cycle length,
Harlow and Zeger [2] made the biological assumption that a single menstrual cycle is composed of a
period of ‘waiting’ followed by the ovarian cycle. They classified menstrual cycles into standard, normally
distributed cycles that contained no waiting time and into nonstandard cycles that contained waiting time.
Guo et al. [3] extended this idea and proposed a mixture model consisting of a normal distribution and
a shifted Weibull distribution to explain the right-tailed distribution. By accommodating covariates, they
also investigated the effect of an individual’s age on the moments of the cycle length distribution. Lin
et al. [4] described a linear mixed model that can explain heterogeneous variances of within-woman cycle
length. Huang et al. [5] attempted to model the changes in the mean and variance of menstrual cycle length
that occur during the approach of menopause. By using a change-point model, they found changes in the
annual rate of change of the mean and variance of menstrual cycle length, which indicate the start of early
and late menopausal transition. In contrast, Bortot et al. [6] focused on the dynamic aspect of menstrual
cycle length over time. By using a state-space modeling approach, they derived a predictive distribution
of menstrual cycle length that was conditional on past time series. By integrating a fecundability model
into their time series model, they also developed a framework that estimates the probability of conception
that is conditional on the within-cycle intercourse behavior. A related joint modeling of menstrual cycle
length and fecundability has been attained more recently [7, 8].

Although daily fluctuations in BBT are associated with the events of the menstrual cycle, and therefore
BBT time series analyses likely provide information regarding the length of the current menstrual cycle,
there have been no previous studies modeling BBT data to predict menstrual cycle length. Thus, in the
present study, we developed a statistical framework that provides a predictive distribution of menstrual
cycle length (which, by extension, is a predictive distribution of the next day of onset of menstruation)
that is sequentially updated with daily BBT data. We used a state-space model that includes a latent phase
state variable to explain daily fluctuations in BBT and to derive a predictive distribution of menstrual
cycle length that is dependent on the current phase state.

This paper is organized as follows: in Section 2, we briefly describe the data required for the proposed
method and how the test dataset was obtained. In Section 3, we provide the formulation of the proposed
state-space model for menstrual cycle and give an overview of the filtering algorithms that we use to esti-
mate the conditional distributions of the latent phase variable given the model and dataset. In the same
section, we also describe the predictive probability distribution for the next day of onset of menstrua-
tion that was derived from the proposed model and the filtering distribution for the menstrual phase. In
Section 4, we apply the proposed framework to a real dataset and compare the accuracy of the point
prediction of the next day of onset of menstruation among the proposed method and previous methods.
In Section 5, we discuss the practical utility of the proposed method with respect to the management of
women’s health and examine the potential challenges and prospects for the proposed framework.

2. Data

We assumed that for a given female subject, a dataset containing a daily BBT time series and days of
onset of menstruation was available. The BBT could be measured with any device (e.g., a conventional
thermometer or a wearable sensor), although different model parameters may be adequate for different
measurement devices. In the application of the proposed framework described in Section 4, we used real
BBT time series and menstruation onset data that was collected via a website called Ran’s story (QOL
Corporation, Ueda, Japan), which is a website that allows registered users to upload their self-reported
daily BBT and days of menstruation onset to QOL Corporation’s data servers. At the time of registration
to use the service, all users of Ran’s story agree to the use of their data for academic research. Although no
data regarding the ethnic characteristics of the users were available, it is assumed that the majority of, if
not all, the users were ethnically Japanese because Ran’s story is provided only in the Japanese language.

3. Model description and inferences

3.1. State-space model of the menstrual cycle

Here we develop a state-space model for a time series of observed BBT, yt, and an indicator of the onset
of menstruation, zt, obtained for a subject for days t = 1,… ,T . By zt = 1, we denote that menstruation
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started on day t, whereas zt = 0 indicates that day t is not the first day of menstruation. We denote the
BBT time series and menstruation data obtained until time t as Yt = (y1,… , yt) and Zt = (z1,… , zt),
respectively.

We considered the phase of the menstrual cycle, 𝜃t ∈ R (t = 0, 1,… ,T), to be a latent state vari-
able. We let 𝜖t as the daily advance of the phase and assume that it is a positive random variable that
follows a gamma distribution with shape parameter 𝛼 and rate parameter 𝛽, which leads to the following
system model:

𝜃t = 𝜃t−1 + 𝜖t (1)

𝜖t ∼ Gamma(𝛼, 𝛽). (2)

Under this assumption, the conditional distribution of 𝜃t, given 𝜃t−1, is a gamma distribution with a
probability density function:

p(𝜃t ∣ 𝜃t−1) = Gamma(𝛼, 𝛽)

= 𝛽𝛼

Γ(𝛼)
(𝜃t − 𝜃t−1)𝛼−1 exp

{
−𝛽(𝜃t − 𝜃t−1)

}
.

(3)

It is assumed that the distribution for the observed BBT yt is conditional on the phase 𝜃t. As periodic
oscillation throughout each phase is expected for BBT, a finite trigonometric series is used to model the
average BBT. Assuming a Gaussian observation error, we expressed the observation model for BBT as

yt = a +
M∑

m=1

(bm cos 2m𝜋𝜃t + cm sin 2m𝜋𝜃t) + et (4)

et ∼ Normal(0, 𝜎2), (5)

where M is the maximum order of the series. Conditional on 𝜃t, yt then follows a normal distribution with
a probability density function:

p(yt ∣ 𝜃t) = Normal
{
𝜇(𝜃t), 𝜎2

}
= 1√

2𝜋𝜎2
exp

[
−
{

yt − 𝜇(𝜃t)
}2

2𝜎2

]
,

(6)

where 𝜇(𝜃t) = a +
∑M

m=1(bm cos 2m𝜋𝜃t + cm sin 2m𝜋𝜃t). By this definition, 𝜇(𝜃t) is periodic in terms of
𝜃t with a period of 1.

For the onset of menstruation, we assume that menstruation starts when 𝜃t ‘steps over’ the smallest
following integer. This is represented as follows:

zt = 0 when ⌊𝜃t⌋ = ⌊𝜃t−1⌋ (7)

= 1 when ⌊𝜃t⌋ > ⌊𝜃t−1⌋, (8)

where ⌊x⌋ is the floor function that returns the largest previous integer for x. Writing this deterministic
allocation in a probabilistic manner, which is conditional on (𝜃t, 𝜃t−1), zt follows a Bernoulli distribution:

p(zt ∣ 𝜃t, 𝜃t−1) = (1 − zt)
{

I(⌊𝜃t⌋ = ⌊𝜃t−1⌋)} + zt

{
I(⌊𝜃t⌋ > ⌊𝜃t−1⌋)} , (9)

where I(x) is the indicator function that returns 1 when x is true or 0 otherwise.
Let 𝝃 = (𝛼, 𝛽, 𝜎, a, b1,… , bM , c1,… cM) be a vector of the parameters of this model. Given a time series

of BBT, YT = (y1,… , yT ), an indicator of menstruation, ZT = (z1,… , zT ), and a distribution specified
for initial states, p(𝜃1, 𝜃0), these parameters can be estimated by using the maximum likelihood method.
The log-likelihood of this model is expressed as

l(𝝃;YT ,ZT ) = log p(y1, z1 ∣ 𝝃) +
T∑

t=2

log p(yt, zt ∣ Yt−1,Zt−1, 𝝃), (10)
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where

log p(y1, z1 ∣ 𝝃) = log∫ ∫ p(y1 ∣ 𝜃1)p(z1 ∣ 𝜃1, 𝜃0)p(𝜃1, 𝜃0)d𝜃1d𝜃0, (11)

and for t = 2,… ,T ,

log p(yt, zt ∣ Yt−1,Zt−1, 𝝃) = log∫ ∫ p(yt ∣ 𝜃t)p(zt ∣ 𝜃t, 𝜃t−1)p(𝜃t, 𝜃t−1 ∣ Yt−1,Zt−1)d𝜃td𝜃t−1, (12)

which can be sequentially obtained by using the Bayesian filtering technique described later. Note that
although p(yt ∣ 𝜃t)(t ≥ 1) and p(𝜃t, 𝜃t−1 ∣ Yt−1,Zt−1)(t ≥ 2) depend on 𝝃, this dependence is not explicitly
described for notational simplicity.

3.2. State estimation and calculation of log-likelihood by using the sequential Bayesian filtering

Given the state-space model of menstrual cycle described earlier and its parameters and data, the condi-
tional distribution of an unobserved menstrual phase can be obtained by using recursive formulae for the
state estimation problem, which are referred to as the Bayesian filtering and smoothing equations [9]. We
describe three versions of this sequential procedure, that is, prediction, filtering, and smoothing, for the
state-space model described earlier.

Let p(𝜃t, 𝜃t−1 ∣ Yt,Zt) be the joint distribution for the phase at successive time points t and t − 1,
which is conditional on the observations obtained by time t. This conditional distribution accommodates
all the data obtained by time t and is called the filtering distribution. Similarly, the joint distribution for
the phase of successive time points t and t − 1 conditional on the observations obtained by time t − 1,
p(𝜃t, 𝜃t−1 ∣ Yt−1,Zt−1), is referred to as the one-step-ahead predictive distribution. For t = 1,… ,T , these
distributions are obtained by sequentially applying the following recursive formulae:

p(𝜃t, 𝜃t−1 ∣ Yt−1,Zt−1) = p(𝜃t ∣ 𝜃t−1)p(𝜃t−1 ∣ Yt−1,Zt−1)

= p(𝜃t ∣ 𝜃t−1)∫ p(𝜃t−1, 𝜃t−2 ∣ Yt−1,Zt−1)d𝜃t−2,
(13)

p(𝜃t, 𝜃t−1 ∣ Yt,Zt) =
p(yt, zt ∣ 𝜃t, 𝜃t−1)p(𝜃t, 𝜃t−1 ∣ Yt−1,Zt−1)

∫ ∫ p(yt, zt ∣ 𝜃t, 𝜃t−1)p(𝜃t, 𝜃t−1 ∣ Yt−1,Zt−1)d𝜃td𝜃t−1

=
p(yt ∣ 𝜃t)p(zt ∣ 𝜃t, 𝜃t−1)p(𝜃t, 𝜃t−1 ∣ Yt−1,Zt−1)

∫ ∫ p(yt ∣ 𝜃t)p(zt ∣ 𝜃t, 𝜃t−1)p(𝜃t, 𝜃t−1 ∣ Yt−1,Zt−1)d𝜃td𝜃t−1

,

(14)

where for t = 1, we set p(𝜃1, 𝜃0 ∣ Y0,Z0) as p(𝜃1, 𝜃0), which is the specified initial distribution for
the phase. Equations (13) and (14) are the prediction and filtering equations, respectively. Note that the
denominator in Equation (14) is the likelihood for data at time t (Equations (11) and (12)). Hence, the log-
likelihood of the state-space model is obtained through application of the Bayesian filtering procedure.
Missing observations can be handled in the filtering equation (14) by marginalizing likelihood over the
missing values.

The joint distribution for the phase, which is conditional on the entire set of observations, p(𝜃t, 𝜃t−1 ∣
YT ,ZT ), is referred to as the (fixed-interval type) smoothed distribution. With the filtering and the
one-step-ahead predictive distributions, the smoothed distribution is obtained by recursively using the
following smoothing formula:

p(𝜃t, 𝜃t−1 ∣ YT ,ZT ) = p(𝜃t, 𝜃t−1 ∣ Yt,Zt)∫
p(𝜃t+1, 𝜃t ∣ YT ,ZT )p(𝜃t+1 ∣ 𝜃t)

p(𝜃t+1, 𝜃t ∣ Yt,Zt)
d𝜃t+1

=
p(𝜃t, 𝜃t−1 ∣ Yt,Zt) ∫ p(𝜃t+1, 𝜃t ∣ YT ,ZT )d𝜃t+1

p(𝜃t ∣ Yt,Zt)

=
p(𝜃t, 𝜃t−1 ∣ Yt,Zt) ∫ p(𝜃t+1, 𝜃t ∣ YT ,ZT )d𝜃t+1

∫ p(𝜃t, 𝜃t−1 ∣ Yt,Zt)d𝜃t−1

.

(15)

In general, these recursive formulae are not analytically tractable for non-linear, non-Gaussian, state-
space models. However, the conditional distributions, as well as the log-likelihood of the state-space
model, can still be approximated by using filtering algorithms for general state-space models. We use
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Kitagawa’s non-Gaussian filter [10], where the continuous state space is discretized into equally spaced
grid points at which the probability density is evaluated. We describe the numerical procedure to obtain
these conditional distributions by using the non-Gaussian filter in Appendix A.

3.3. Predictive distribution for the day of onset of menstruation

A predictive distribution for the day of onset of menstruation is derived from the assumptions of the
model and the filtering distribution of the state.

We denote the distribution function and the probability density function of the gamma distribution
with shape parameter s and rate parameter r as G(⋅; s, r) and g(⋅; s, r), respectively. Let the accumulated
advance of the phase be denoted by Δk(t), which is then calculated as Δk(t) =

∑t+k
r=t+1 𝜖r, k = 1, 2,…. We

consider the conditional probability that the next menstruation has occurred before day k + t given the
phase state 𝜃t. We denote this conditional probability as F(k ∣ 𝜃t) = Pr

{
Δk(t) ≥ ⌈𝜃t⌉ − 𝜃t

}
, where ⌈x⌉ is

the ceiling function that returns the smallest following integer for x. Therefore, F(k ∣ 𝜃t) represents the
conditional distribution function for the onset of menstruation. Under the assumption of the state-space
model described earlier, F(k ∣ 𝜃t) is given as

F(k ∣ 𝜃t) = ∫
∞

⌈𝜃t⌉−𝜃t

g(x; k𝛼, 𝛽)dx

= 1 − G(⌈𝜃t⌉ − 𝜃t; k𝛼, 𝛽).
(16)

The conditional probability function for the day of onset of menstruation, denoted as f (k ∣ 𝜃t), is then
given as

f (k ∣ 𝜃t) = F(k ∣ 𝜃t) − F(k − 1 ∣ 𝜃t)
=
{

1 − G(⌈𝜃t⌉ − 𝜃t; k𝛼, 𝛽)
}
−
[
1 − G

{⌈𝜃t⌉ − 𝜃t; (k − 1)𝛼, 𝛽
}]

= G
{⌈𝜃t⌉ − 𝜃t; (k − 1)𝛼, 𝛽

}
− G(⌈𝜃t⌉ − 𝜃t; k𝛼, 𝛽),

(17)

where we set F(0 ∣ 𝜃t) = 0.
The marginal distribution for the day of onset of menstruation, denoted as h(k ∣ Yt,Zt), can also be

obtained with the marginal filtering distribution for the phase state, p(𝜃t ∣ Yt,Zt). It is given as

h(k ∣ Yt,Zt) = ∫ f (k ∣ 𝜃t)p(𝜃t ∣ Yt,Zt)d𝜃t. (18)

Note that this distribution is conditional on the data obtained by time t, and therefore, it provides a pre-
dictive distribution for the day of onset of menstruation that accommodates all the available information.
The point prediction for the day of onset of menstruation can also be obtained from h(k ∣ Yt,Zt) and a
natural choice for it would be the k that gives the highest probability, max h(k ∣ Yt,Zt).

In Appendix A, we describe the numerical procedure for the non-Gaussian filtering that we used to
obtain these predictive distributions.

4. Application

We used the BBT time series and menstruation onset data provided by 20 users of the Ran’s story web-
site (QOL Corporation). Data were collected through the course of 44 to 91 consecutive menstrual cycles
(see Table I for a summary of the data). Data of each subject’s first 29 consecutive menstrual cycles were
used to fit the state-space model described earlier and to obtain maximum likelihood estimates of the
parameters. For the order of the trigonometric series to be determined, models with M = 1, 2,… , 12
(referring to models M1, M2, …, and M12, respectively) were fitted and then compared based on the
Akaike information criterion (AIC) for each subject. The best AIC model and the remaining menstrual
cycle data (i.e., the data that were not used for the parameter estimations) were then used to evaluate the
accuracy of the prediction of the next day of onset of menstruation based on the root mean square error
(RMSE) and the mean absolute error (MAE) for each subject. We compared accuracy of the sequential
prediction, obtained by using the proposed method, with that of prediction based on two previous meth-
ods: (i) the conventional calendar calculation method, which predicts the upcoming menstruation day as
the day after a fixed number of days from the onset of preceding menstruation, and (ii) the sequential pre-
dictive method proposed by Bortot et al. [6], which utilizes the time series of past cycle length to yield a
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Table I. Summary of self-reported menstrual cycle data obtained from 20 subjects.

Subject

1 2 3 4 5 6 7 8 9 10

All data
No. of consecutive cycles 46 45 48 54 52 57 56 52 45 44
Range of cycle length [28, 59] [23, 45] [19, 61] [26, 59] [18, 47] [25, 49] [25, 36] [26, 56] [30, 51] [27, 48]
Mean of cycle length 39.4 33.2 32.8 31.2 27.2 29.7 30.1 31.7 34.1 33.4
Median of cycle length 38 33 32.5 30.5 26 29 30 31 32 33
SD of cycle length 6.7 4.1 5.6 4.7 4.9 3.9 2.6 5.2 4.7 4.6
Initial age 29.6 24.9 23.2 26.3 30.5 33.2 34.9 29.9 33.9 31.4
Final age 34.5 29.0 27.6 30.9 34.4 37.8 39.5 34.4 38.1 35.4
Length of time series 1812 1495 1576 1687 1418 1693 1687 1647 1534 1470
No. of missing observations 80 0 96 31 43 33 21 85 38 60

Data for parameter estimation
No. of consecutive cycles 29 29 29 29 29 29 29 29 29 29
Range of cycle length [31, 59] [23, 43] [19, 39] [26, 59] [22, 37] [25, 49] [27, 36] [26, 56] [30, 51] [27, 42]
Mean of cycle length 41.3 33.7 31.5 30.6 26.7 30.4 30.9 33.0 34.7 32.1
Median of cycle length 41 34 32 29 26 30 31 32 32 31
SD of cycle length 7.2 4.0 3.9 5.8 3.3 4.8 2.5 5.9 5.8 3.5
Length of time series 1199 978 914 888 776 882 897 958 1007 933
No. of missing observations 24 0 52 21 20 22 8 5 19 34

Data for predictive
accuracy estimation

No. of consecutive cycles 17 16 19 25 23 28 27 23 16 15
Range of cycle length [28, 44] [28, 45] [26, 61] [28, 39] [18, 47] [26, 36] [25, 36] [26, 39] [31, 35] [27, 48]
Mean of cycle length 36.1 32.3 34.8 32.0 27.9 29.0 29.3 30.0 32.9 35.8
Median of cycle length 35 32 33 32 27 28 30 29 33 35
SD of cycle length 4.2 4.2 7.2 2.7 6.5 2.5 2.5 3.6 1.4 5.6
Length of time series 613 517 662 799 642 811 790 689 527 537
No. of missing observations 56 0 44 10 23 11 13 80 19 26

Subject
11† 12† 13† 14† 15† 16† 17† 18† 19† 20†

All data
No. of consecutive cycles 80 91 50 49 57 55 44 46 46 55
Range of cycle length [24, 39] [23, 31] [22, 42] [22, 41] [24, 56] [21, 55] [14, 50] [23, 43] [9, 53] [22, 51]
Mean of cycle length 29.0 26.6 27.2 31.0 27.8 27.9 28.7 26.6 31.4 27.6
Median of cycle length 28 26 27 31 27 25 29 26 31 27
SD of cycle length 3.3 1.8 3.1 3.5 4.1 7.7 4.7 3.0 6.2 3.9
Initial age 32.8 32.7 23.8 26.5 23.6 34.1 34.2 27.8 28.1 24.5
Final age 39.8 39.7 27.9 31.3 28.4 38.7 38.1 32.3 32.1 28.9
Length of time series 2318 2426 1361 1521 1584 1536 1265 1224 1447 1521
No. of missing observations 25 226 334 189 319 527 189 279 50 295

Data for parameter estimation
No. of consecutive cycles 29 29 29 29 29 29 29 29 29 29
Range of cycle length [26, 39] [23, 30] [22, 31] [22, 39] [25, 56] [21, 55] [22, 31] [23, 43] [9, 53] [22, 51]
Mean of cycle length 30.4 27.4 26.5 30.9 28.4 28.6 28.5 26.7 31.0 27.8
Median of cycle length 29 28 26 31 28 26 29 26 31 27
SD of cycle length 3.2 1.7 2.6 3.1 5.5 8.8 1.9 3.7 7.3 5.0
Length of time series 883 796 769 898 825 831 828 774 899 806
No. of missing observations 4 20 201 105 117 273 135 149 32 142

Data for predictive
accuracy estimation

No. of consecutive cycles 51 62 21 20 28 26 15 17 17 26
Range of cycle length [24, 38] [24, 31] [25, 42] [26, 41] [24, 31] [21, 53] [14, 50] [24, 29] [26, 40] [24, 32]
Mean of cycle length 28.1 26.3 28.2 31.1 27.1 27.1 29.1 26.5 32.2 27.5
Median of cycle length 27 26 27 30 27 25 29 26 32 27
SD of cycle length 3.1 1.7 3.6 4.0 1.5 6.3 7.7 1.5 3.8 2.2
Length of time series 1435 1630 592 623 759 705 437 450 548 715
No. of missing observations 21 206 133 84 202 254 54 130 18 153

†Original data contain a small amount of extremely short cycles. We assumed that cycles less than or equal to 5 days have
been arisen owing to menstruation records that were wrongly reported, and have corrected them before the analyses.3366
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Table II. Continued.

Subject

11 12 13 14 15 16 17 18 19 20

c11 0.087 0.101 NA NA NA NA NA NA NA NA
[0.046, 0.128] [0.049, 0.153]

c12 −0.092 −0.111 NA NA NA NA NA NA NA NA
[−0.143,−0.040] [−0.156,−0.067]

Log- 343.440 287.380 111.443 88.146 479.948 267.320 365.655 217.357 266.617 253.890
likelihood

Parameter estimates and their 95% confidence intervals (in brackets) of the best Akaike information criterion model
are shown for each subject. Log-likelihood was approximated by using the non-Gaussian filter with the state space
discretized with 512 intervals.
†Confidence intervals were not calculated because the Hessian of log-likelihood was singular.

Figure 1. Model components for each subject. Each color represents a different subject. Lines show the best
Akaike information criterion model associated with the maximum likelihood estimates for each subject. (A) Rela-
tionship between expected temperature and menstrual phase. The x-axis represents 𝜃t mod 1. (B) Probability

density distribution for the advancement per day of the menstrual phase.

model-based prediction of the length of the current cycle. The technical details for this comparison are
described in Appendix B.

Parameter estimates in the best AIC model for the 20 subjects are shown in Table II. The selected
order of the trigonometric series ranged from 2 to 12. The estimated relationship between expected BBT
and menstrual phase, and the estimated probability density distribution for phase advancement for each
subject are shown in Figure 1. Although the estimated temperature-phase regression lines were ‘squiggly’
owing to the high order of the trigonometric series, they in general exhibited two distinct stages: the
temperature tended to be lower in the first half of the cycle and higher in the second half, which is
consistent with the well-known periodicity of BBT through the menstrual cycle [1]. Figure 2 shows
examples of the estimated conditional distributions for menstrual phase and the associated predictive
distributions for the day of onset of menstruation.

The RMSE of prediction of the next day of onset of menstruation provided by each method is shown in
Figure 3 and Table III. In the proposed method, the RMSE tended to decrease as the day approached the
next day of onset of menstruation, suggesting that accumulation of the BBT time series data contributed
to increasing the accuracy of the prediction. Except for subjects 9 and 20, the proposed method exhibited
a better predictive performance than the calendar calculation and the method of Bortot et al. [6], for at
least one of the time points of prediction we considered (i.e., the day preceding the next day of onset of
menstruation) (Figure 3). Compared with the best prediction provided by the calendar calculation method,
the range, mean, and median of the rate of the maximum reduction in the RMSE for each subject in the
sequential method were 0.066–1.481, 0.581, and 0.488, respectively.
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Figure 2. Example estimated conditional distributions for menstrual phase (top panels) and the associated predic-
tive distributions for the day of onset of menstruation (bottom panels). In the top panels, predictive and filtering
distributions are shown as dashed and solid lines, respectively, and smoothed distributions are represented by gray
shading. x-axes represent 𝜃t mod 1. In the bottom panels, the marginal probabilities of the onset of menstruation
h(k ∣ Yt,Zt) are shown. Dashed and solid vertical lines indicate the day of onset of the previous menstruation and
the current day, respectively. Filled circles indicate the actual day of onset of the next menstruation. Filled and
open triangles indicate the best conventional prediction for the subject and the model-based prediction, respec-
tively. These results were obtained by applying the best Akaike information criterion model to the first menstrual
cycle of the test data of subject 1. From left to right, panels correspond to 38, 21, 14, 7, and 3 days before the

upcoming day of onset of menstruation, respectively.

Figure 3. Root mean square error (RMSE) of the prediction of the day of onset of the next menstruation. Solid
lines indicate the RMSE of the sequential prediction (based on the best Akaike information criterion model for
each subject), and horizontal dashed lines indicate the lowest RMSE of the conventional prediction (blue) and the
RMSE of prediction based on the method of Bortot et al. [6] (red) for each subject. On the horizontal axis, ‘X’
indicates the prediction obtained at the day of onset of the previous menstruation. Each panel shows the results

for one subject.

The predictive performance tended to be even better when the accuracy was measured by using the
MAE; the MAE of the predictions of the next day of onset of menstruation provided by each method is
shown in Figure 4 and Table IV. Compared with the best prediction provided by the calendar calculation
method, the range, mean, and median of the rate of the maximum reduction in the MAE for each subject
by using the sequential method was 0.056–1.368, 0.461, and 0.361, respectively.

5. Discussion

Here we constructed a statistical framework that provides a model-based prediction of the day of onset
of menstruation based on a state-space model and an associated Bayesian filtering algorithm. The model
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Table III. Root mean square error of prediction of the next day of onset of menstruation based on the calendar
calculation method.

Subject Predicted cycle length

25 26 27 28 29 30 31 32 33 34 35 36 37

1 11.797 10.865 9.947 9.046 8.167 7.320 6.517 5.775 5.122 4.595 4.243 4.109 4.215
2 8.370 7.512 6.694 5.932 5.250 4.684 4.279 4.085 4.131 4.409 4.880 5.494 6.210
3 12.068 11.267 10.501 9.776 9.105 8.498 7.970 7.539 7.222 7.034 6.985 7.079 7.309
4 7.435 6.508 5.607 4.746 3.950 3.268 2.786 2.615 2.814 3.317 4.010 4.812 5.678
5 6.975 6.620 6.403 6.338 6.430 6.672 7.050 7.541 8.127 8.787 9.507 10.274 11.079
6 4.641 3.822 3.111 2.598 2.413 2.625 3.157 3.878 4.702 5.584 6.500 7.438 8.390
7 4.918 4.082 3.339 2.762 2.472 2.568 3.012 3.682 4.476 5.340 6.245 7.175 8.122
8 6.065 5.279 4.578 4.005 3.624 3.495 3.648 4.049 4.634 5.345 6.136 6.981 7.863
9 8.058 7.075 6.098 5.130 4.176 3.250 2.385 1.677 1.392 1.750 2.487 3.363 4.294
10 12.083 11.198 10.334 9.497 8.695 7.937 7.239 6.618 6.099 5.710 5.477 5.422 5.550
11 4.384 3.734 3.266 3.065 3.181 3.584 4.191 4.929 5.746 6.614 7.515 8.438 9.377
12 2.118 1.704 1.823 2.396 3.188 4.072 5.000 5.951 6.917 7.890 8.870 9.854 10.840
13 4.756 4.152 3.723 3.532 3.619 3.964 4.509 5.192 5.964 6.796 7.669 8.569 9.489
14 7.290 6.469 5.705 5.025 4.467 4.080 3.918 4.006 4.330 4.843 5.491 6.233 7.039
15 2.598 1.880 1.524 1.763 2.428 3.268 4.179 5.123 6.086 7.058 8.038 9.022 10.009
16 6.549 6.297 6.199 6.260 6.478 6.836 7.314 7.891 8.546 9.263 10.029 10.833 11.667
17 8.540 8.103 7.772 7.559 7.474 7.523 7.703 8.004 8.414 8.918 9.501 10.149 10.850
18 2.044 1.495 1.515 2.086 2.900 3.804 4.747 5.709 6.682 7.662 8.647 9.634 10.625
19 8.128 7.252 6.412 5.626 4.917 4.325 3.903 3.710 3.781 4.102 4.621 5.280 6.034
20 3.288 2.609 2.193 2.193 2.609 3.288 4.100 4.981 5.900 6.842 7.798 8.764 9.737

The lowest value for each subject, which is shown in Figure 3, is in italics.

Figure 4. Mean absolute error (MAE) of the prediction of the day of onset of the next menstruation. Solid lines
indicate the MAE of the sequential prediction (based on the best Akaike information criterion model for each
subject), and horizontal dashed lines indicate the lowest MAE of the conventional prediction (blue) and the MAE
of prediction based on the method of Bortot et al. [6] (red) for each subject. On the horizontal axis, ‘X’ indi-
cates the prediction obtained at the day of onset of the previous menstruation. Each panel shows the results for

one subject.

describes the daily fluctuation of BBT and the history of menstruation. The filtering algorithms yielded
a filtering distribution of menstrual phase that was conditional on all of the data available at that point in
time, which was used to derive a predictive distribution for the next day of onset of menstruation.

The predictive framework we developed has several notable characteristics that make it superior to
previous methods for predicting the day of onset of menstruation. State-space modeling and Bayesian
filtering techniques enable the proposed method to yield sequential predictions of the next day of onset of
menstruation based on daily BBT data. Even though menstrual cycle length fluctuates stochastically, the
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Table IV. Mean absolute error of prediction of the next day of onset of menstruation based on the calendar
calculation method.

Subject Predicted cycle length

24 25 26 27 28 29 30 31 32 33 34 35 36

1 12.059 11.059 10.059 9.059 8.059 7.176 6.294 5.412 4.529 3.765 3.118 2.824 3.000
2 8.312 7.312 6.312 5.312 4.312 3.688 3.188 3.062 2.938 2.938 3.312 3.938 4.812
3 10.842 9.842 8.842 7.947 7.053 6.158 5.263 4.368 4.000 3.737 3.789 4.158 4.737
4 7.960 6.960 5.960 4.960 3.960 3.040 2.440 2.080 2.040 2.400 2.840 3.520 4.280
5 4.696 4.217 3.913 3.870 4.174 4.739 5.391 6.130 6.870 7.609 8.348 9.087 9.826
6 4.964 3.964 2.964 2.179 1.750 1.893 2.250 2.821 3.464 4.321 5.179 6.107 7.036
7 5.259 4.259 3.481 2.778 2.222 1.889 1.852 2.333 3.111 3.963 4.889 5.815 6.741
8 5.957 4.957 3.957 3.130 2.826 2.783 2.826 3.130 3.522 4.087 4.826 5.565 6.391
9 8.938 7.938 6.938 5.938 4.938 3.938 2.938 1.938 1.312 1.188 1.438 2.062 3.062
10 11.800 10.800 9.800 8.800 7.933 7.200 6.600 6.000 5.400 4.800 4.200 3.733 3.800
11 4.137 3.216 2.373 2.078 2.216 2.627 3.157 3.804 4.529 5.373 6.216 7.098 7.980
12 2.290 1.484 1.290 1.484 2.129 2.871 3.774 4.710 5.710 6.710 7.710 8.710 9.710
13 4.190 3.190 2.476 2.143 2.190 2.429 2.952 3.857 4.762 5.667 6.571 7.476 8.381
14 7.150 6.150 5.150 4.250 3.650 3.250 2.950 2.950 3.150 3.550 4.150 4.950 5.750
15 3.107 2.179 1.464 1.107 1.393 2.107 2.964 3.893 4.893 5.893 6.893 7.893 8.893
16 3.731 3.269 3.423 3.808 4.346 4.885 5.500 6.192 6.962 7.731 8.500 9.346 10.192
17 7.000 6.267 5.533 5.067 4.733 4.667 4.867 5.200 5.800 6.533 7.267 8.000 8.733
18 2.471 1.706 1.176 1.235 1.647 2.529 3.529 4.529 5.529 6.529 7.529 8.529 9.529
19 8.235 7.235 6.235 5.353 4.588 3.824 3.176 3.118 3.059 3.235 3.529 3.941 4.471
20 3.500 2.654 1.962 1.808 1.885 2.192 2.731 3.577 4.500 5.500 6.500 7.500 8.500

The lowest value for each subject, which is shown in Figure 4, is in italics.

prediction of day of onset of menstruation is automatically adjusted based on the daily updated filtering
distribution, yielding a flexible yet robust prediction of the next day of onset of menstruation. This is
markedly different from the conventional calendar calculation method that yields only a fixed prediction
that is never adjusted. In a study similar to the present study, Bortot et al. [6] constructed a predictive
framework for menstrual cycle length by using the state-space modeling approach. However, in their
model, the one-step-ahead predictive distribution for menstrual cycle length is obtained based on the past
time series of cycle length, and within-cycle information is not taken into account in the prediction.

Furthermore, compared with previous methods, the proposed method generally yielded a more accurate
prediction of day of onset of menstruation. As the day approaches the next onset of menstruation and
more daily temperature data are accumulated, the proposed method produced a considerably improved
prediction (Figures 3 and 4). During earlier stages of the cycle, however, previous methods tended to
give better predictions. One of the reasons for this result is that we used the best possible prediction for
each subject for the calendar calculation method as a baseline for comparison. Another reason is that, not
being similar to the method proposed by Bortot et al. [6], the proposed method benefits little from the
information about the lengths of previous cycles: the predictive distribution for upcoming menstruation
does not vary largely (i.e., not being adjusted) at the days of onset of menstruation. Therefore, in practice,
a combination of previous methods and the proposed method (e.g., using previous methods in earlier
stages of the cycle, and then switching to the proposed method at some point in time) might result in a
further improvement of prediction.

As measuring BBT is a simple and inexpensive means of determining the current phase of the menstrual
cycle, the proposed framework can provide predictions of the next onset of menstruation that can easily
be implemented for the management of women’s health. In order to facilitate practitioners to implement
and use the proposed method, we provide an r script for non-Gaussian filtering and prediction, along
with a simulated menstrual cycle dataset as a supporting web material. Although the non-Gaussian filter-
ing technique may be computationally impractical for a state-space model with a high-dimensional state
vector [10], our proposed model only involves a two-dimensional state vector so the computational cost
required for filtering single data is negligible for a contemporary computer. We suggest that the proposed
method will not be applicable to women using oral contraceptives because oral contraceptives can artifi-
cially control BBT and the onset of the menstruation. As long as the cycle is not under-controlled by oral
contraceptives and BBT shows the biphasic pattern, however, we suppose that the proposed prediction
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tool can be useful even for women with irregular cycle length (but see later for a difficulty in parameter
estimation using data that include irregular cycle length).

The conditional probability density distribution for menstrual phase obtained with the sequential
Bayesian filter may also be used for predicting other events that are related to the menstrual cycle. For
example, the conditional probability of the menstrual phase being below or above a ‘change point’ of
expected temperature could be used as a model-based probability of the subject being in the follicular
phase (before ovulation) or the luteal phase (after ovulation). These probabilities may also be used to
estimate the timing of ovulation, for which BBT-based estimates are error prone [11]. Combined with a
fecundability model that provides the probability of conception within a menstrual cycle that is condi-
tional on daily intercourse behavior, the model might also be used to predict the probability of conception
[6–8]. As the Bayesian filtering algorithm can yield predictive and smoothed distributions (Equations (13)
and (15)), these predictions could be obtained in both a prospective manner and a retrospective manner.
Another possible extension of the model may be the addition of a new observation model for the physi-
cal condition of subjects, which may help to estimate the menstrual phase more precisely or to provide a
forecast of the physical condition of subject as their menstrual cycle progresses.

We note that the state-space model proposed in the present study may not be sufficiently flexible to
describe the full variation in menstrual cycle length. In the present study, we fitted our model only to
data from 20 subjects, and these data did not include extremely short or extremely long cycles because
a preliminary investigation suggested that inclusion of such data could result in unreasonable parameter
estimates (results not shown). Specifically, the estimates of 𝛼 and 𝛽 may become extremely small, leading
to an almost flat probability density distribution for menstrual phase advancement. Under these parameter
values, the predictive distribution for the onset of menstruation also becomes flat, preventing a useful
prediction from being obtained. These results suggest that with a single set of parameter values, the
proposed state-space model does not capture the whole observed variation in cycle length. It is known
that the statistical distribution of menstrual cycle length is characterized by a mixture distribution that
comprises standard and nonstandard cycles, where, for the latter, a skewed distribution may well represent
the observed pattern [e.g., 2,3,7,8]. Our proposed model, however, does not provide such a mixture-like
marginal distribution for the day of onset of menstruation. It is also known that the mean and variance
of the marginal distribution of cycle length can vary depending on subjects’ age [3, 5–7]. Therefore, we
assume that modeling variations in the system model parameters (i.e., 𝛼 and 𝛽), by including covariates
such as age or within-subject and among-subject random effects, or both, may be a promising extension
of the proposed framework. To this end, the model should be extended to treat longitudinal data (Yit,Zit),
where time series is available for unit (i.e., subject or cycle) i. Then, differences in parameters among
units can be modeled, for example, as log 𝛼i = 𝛾0 +

∑
j 𝛾jxij + ui, where xij and ui are covariate (e.g., age)

and random effect, respectively. To explain the skewed marginal distribution of menstrual cycle length,
Sharpe and Nordheim [12] considered a rate process in which the development rate fluctuates randomly.
Inclusion of random effects for the system model parameters would allow us to accommodate this idea.
Although the inclusion of random effects will increase the flexibility of the framework, it would also
considerably complicate the likelihood calculation and make parameter estimation more challenging.

The state-space model proposed here provides a conceptual description of the menstrual cycle. We
explain this perspective by using the analogy of a clock that makes one complete revolution in each
menstrual cycle. The system model expresses the hand of the clock (i.e., the latent phase variable) moving
forward with an almost steadily, yet slightly variable, pace. Observation models describe observable
events that are imprinted on the clock’s dial; for example, menstruation is scheduled to occur when the
hand of this clock arrives at a specific point on the dial. The fluctuation in BBT, as well as other possibly
related phenomena such as ovulation, would also be marked on the dial. Even though the position of
the hand of the clock is unobservable, we can estimate it as a conditional distribution of the latent phase
variable by using the Bayesian filtering technique, which enables us to make a sequential, model-based
prediction of menstruation. Although this is a rather phenomenological view of the menstrual cycle,
it is useful for developing a rigorous and extendable modeling framework for predicting and studying
phenomena that are associated with the menstrual cycle.

3374

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2017, 36 3361–3379



K. FUKAYA ET AL.

Appendix A: State estimation, likelihood calculation, and prediction using the
non-Gaussian filter

The statistical inferences described in Section 3 of the main text were based on an estimation of the con-
ditional distribution of the latent menstrual phase. Although the conditional distribution can be obtained
by using the recursive equations described in Section 3.2, the integrals in those formulae are generally
not analytically tractable for non-linear, non-Gaussian, state-space models. Therefore, to obtain approx-
imate conditional distributions, filtering algorithms for general state-space models are required. We use
the non-Gaussian filter proposed by Kitagawa [10], in which the continuous state space is discretized
with equally spaced fixed points at which the conditional probability density is evaluated. With these
discretized probability density functions, integrals are evaluated by using numerical integration. This fil-
tering algorithm also yields an approximate log-likelihood, making the maximum likelihood estimation
of the model parameters possible. Detailed descriptions for this numerical procedure are provided, for
example, in Kitagawa [10, 13] and de Valpine and Hastings [14].

To apply non-Gaussian filtering to the state-space model described in Section 3.1, it is computationally
more convenient to consider the state space of a circular phase variable rather than a linear phase variable
described in the main text, because the latter requires discretization of unbounded real space. Hence, in
the following, we first reformulate the statistical modeling framework in terms of a circular latent phase
variable. The reformulated model conceptually agrees with the original formulation, given the probability
that the menstrual phase advancement per day being more than 1 (i.e., Pr(𝜖t > 1)) is negligible. In practice,
this condition is naturally attained in the estimation of the model parameters as long as unusually short
menstrual cycles (e.g., 3 to 4 days) are not included in the dataset. Later, we provide a numerical procedure
to obtain the conditional distributions, log-likelihood, and the predictive distribution of the next day of
onset of menstruation based on the non-Gaussian filtering technique (note, all definitions and notations
are the same as those used in Section 3 of the main text).

A.1. Model with a circular state variable

Instead of using the real latent state variable for the menstrual phase, 𝜃t ∈ R, we reformulate the model
with a circular latent variable of period 1, denoted by 𝜔t ∈ [0, 1). We consider that the correspondence
between these two variables is characterized by the following projection: 𝜔t = f (𝜃t) = 𝜃t mod 1. The
system model for this circular variable is then expressed as

𝜔t =
(
𝜔t−1 + 𝜖t

)
mod 1 (A.1)

𝜖t ∼ Gamma(𝛼, 𝛽). (A.2)

Under this assumption, given 𝜔t−1, the conditional distribution of 𝜔t is a wrapped gamma distribution
with a probability density function:

p(𝜔t ∣ 𝜔t−1) = wGamma(𝛼, 𝛽)

= 𝛽𝛼

Γ(𝛼)
exp

{
−𝛽𝛿(𝜔t, 𝜔t−1)

}
Φ
{

exp(−𝛽), 1 − 𝛼, 𝛿(𝜔t, 𝜔t−1)
}
,

(A.3)

where 𝛿(𝜔t, 𝜔t−1) = (𝜔t −𝜔t−1)I(𝜔t>𝜔t−1)(1+𝜔t −𝜔t−1)I(𝜔t≤𝜔t−1) is the advancement of the menstrual phase

on the circular scale and Φ(z, s, a) =
∑∞

k=0
zk

(a+k)s
is Lerch’s transcendental function [15].

The observation model for BBT, which is conditional on 𝜔t, is expressed as

yt = a +
M∑

m=1

(bm cos 2m𝜋𝜔t + cm sin 2m𝜋𝜔t) + et (A.4)

et ∼ Normal(0, 𝜎2), (A.5)

leading to a normal conditional distribution of yt with a probability density function:

p(yt ∣ 𝜔t) = Normal
{
𝜇(𝜔t), 𝜎2

}
= 1√

2𝜋𝜎2
exp

[
−
{

yt − 𝜇(𝜔t)
}2

2𝜎2

]
,

(A.6)
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where 𝜇(𝜔t) = a +
∑M

m=1(bm cos 2m𝜋𝜔t + cm sin 2m𝜋𝜔t).
Assuming that Pr(𝜖t > 1) is negligible, we consider menstruation to have started when 𝜔t ‘steps over’

1. This is represented as

zt = 0 when 𝜔t > 𝜔t−1 (A.7)
= 1 when 𝜔t ≤ 𝜔t−1. (A.8)

We can write this deterministic allocation in a probabilistic manner that is conditional on (𝜔t, 𝜔t−1), where
zt follows a Bernoulli distribution:

p(zt ∣ 𝜔t, 𝜔t−1) = (1 − zt)
{

I(𝜔t > 𝜔t−1)
}
+ zt

{
I(𝜔t ≤ 𝜔t−1)

}
. (A.9)

The log-likelihood of this model can then be expressed as

l(𝝃;YT ,ZT ) = log p(y1, z1 ∣ 𝝃) +
T∑

t=2

log p(yt, zt ∣ Yt−1,Zt−1, 𝝃), (A.10)

where

log p(y1, z1 ∣ 𝝃) = log∫
1

0 ∫
1

0
p(y1 ∣ 𝜔1)p(z1 ∣ 𝜔1, 𝜔0)p(𝜔1, 𝜔0)d𝜔1d𝜔0, (A.11)

and for t = 2,… ,T ,

log p(yt, zt ∣ Yt−1,Zt−1, 𝝃) = log∫
1

0 ∫
1

0
p(yt ∣ 𝜔t)p(zt ∣ 𝜔t, 𝜔t−1)p(𝜔t, 𝜔t−1 ∣ Yt−1, Zt−1)d𝜔td𝜔t−1.

(A.12)

For t = 1,… ,T , the prediction, filtering, and smoothing equations for the aforementioned model are
expressed as follows:

p(𝜔t, 𝜔t−1 ∣ Yt−1,Zt−1) = p(𝜔t ∣ 𝜔t−1)p(𝜔t−1 ∣ Yt−1, Zt−1)

= p(𝜔t ∣ 𝜔t−1)∫
1

0
p(𝜔t−1, 𝜔t−2 ∣ Yt−1,Zt−1)d𝜔t−2

(A.13)

p(𝜔t, 𝜔t−1 ∣ Yt,Zt) =
p(yt, zt ∣ 𝜔t, 𝜔t−1)p(𝜔t, 𝜔t−1 ∣ Yt−1,Zt−1)

∫ 1
0 ∫ 1

0 p(yt, zt ∣ 𝜔t, 𝜔t−1)p(𝜔t, 𝜔t−1 ∣ Yt−1,Zt−1)d𝜔td𝜔t−1

=
p(yt ∣ 𝜔t)p(zt ∣ 𝜔t, 𝜔t−1)p(𝜔t, 𝜔t−1 ∣ Yt−1, Zt−1)

∫ 1
0 ∫ 1

0 p(yt ∣ 𝜔t)p(zt ∣ 𝜔t, 𝜔t−1)p(𝜔t, 𝜔t−1 ∣ Yt−1,Zt−1)d𝜔td𝜔t−1

(A.14)

p(𝜔t, 𝜔t−1 ∣ YT ,ZT ) = p(𝜔t, 𝜔t−1 ∣ Yt,Zt)∫
1

0

p(𝜔t+1, 𝜔t ∣ YT ,ZT )p(𝜔t+1 ∣ 𝜔t)
p(𝜔t+1, 𝜔t ∣ Yt,Zt)

d𝜔t+1

=
p(𝜔t, 𝜔t−1 ∣ Yt,Zt) ∫ 1

0 p(𝜔t+1, 𝜔t ∣ YT ,ZT )d𝜔t+1

p(𝜔t ∣ Yt,Zt)

=
p(𝜔t, 𝜔t−1 ∣ Yt,Zt) ∫ 1

0 p(𝜔t+1, 𝜔t ∣ YT ,ZT )d𝜔t+1

∫ 1
0 p(𝜔t, 𝜔t−1 ∣ Yt,Zt)d𝜔t−1

,

(A.15)

where for t = 1, we set p(𝜔1, 𝜔0 ∣ Y0,Z0) as p(𝜔1, 𝜔0), which is the specified initial distribution for the
phase.

We consider the conditional probability that the next menstruation has started by day k + t, given
the phase state 𝜔t, to be F(k ∣ 𝜔t) = Pr

{
Δk(t) ≥ 1 − 𝜔t

}
. Then, F(k ∣ 𝜔t) represents the conditional

distribution function for the onset of menstruation, and under the assumption of the state-space model
described earlier, this is given as

F(k ∣ 𝜔t) = ∫
∞

1−𝜔t

g(x; k𝛼, 𝛽)dx

= 1 − G(1 − 𝜔t; k𝛼, 𝛽).
(A.16)
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The conditional probability function for the day of onset of menstruation, f (k ∣ 𝜔t), is then given as

f (k ∣ 𝜔t) = F(k ∣ 𝜔t) − F(k − 1 ∣ 𝜔t)
=
{

1 − G(1 − 𝜔t; k𝛼, 𝛽)
}
−
[
1 − G

{
1 − 𝜔t; (k − 1)𝛼, 𝛽

}]
= G

{
1 − 𝜔t; (k − 1)𝛼, 𝛽

}
− G(1 − 𝜔t; k𝛼, 𝛽),

(A.17)

where we set F(0 ∣ 𝜔t) = 0.
The marginal distribution for the day of onset of menstruation, h(k ∣ Yt,Zt), is then obtained with the

marginal filtering distribution for the phase state, p(𝜔t ∣ Yt,Zt), which is given as

h(k ∣ Yt,Zt) = ∫
1

0
f (k ∣ 𝜔t)p(𝜔t ∣ Yt,Zt)d𝜔t, (A.18)

which is used to provide a point prediction for the day of onset of menstruation by finding the value of k
that gives the highest probability, max h(k ∣ Yt,Zt).

A.2. Numerical procedure for non-Gaussian filtering

We let 𝜔(i), i = 1,… ,N be equally spaced grid points with interval [0, 1). We denote the approximate
probability density of the predictive, filtering, and smoothed distributions evaluated at these grid points
on the state space by p̃p(i, j, t), p̃f (i, j, t), and p̃s(i, j, t), which are defined respectively as

p̃p(i, j, t) = p
{
𝜔t = 𝜔(i), 𝜔t−1 = 𝜔(j) ∣ Yt−1,Zt−1

}
(A.19)

p̃f (i, j, t) = p
{
𝜔t = 𝜔(i), 𝜔t−1 = 𝜔(j) ∣ Yt,Zt

}
(A.20)

p̃s(i, j, t) = p
{
𝜔t = 𝜔(i), 𝜔t−1 = 𝜔(j) ∣ YT ,ZT

}
, (A.21)

where for i, j = 1,… ,N and t = 1,… ,T . As the initial distribution, we also specify the probability density
p̃p(i, j, 0). We define the probability density function of the system model (Equation (A.3)) evaluated at
each grid point as p̃m(i, j) = p

{
𝜔t = 𝜔(i) ∣ 𝜔t−1 = 𝜔(j)

}
. Then, the prediction, filtering, and smoothing

equations, respectively, are expressed as

p̃p(i, j, t) = p̃m(i, j)p̃′f (j, t − 1) (A.22)

p̃f (i, j, t) =
p
{

yt ∣ 𝜔t = 𝜔(i)
}

p
{

zt ∣ 𝜔t = 𝜔(i), 𝜔t−1 = 𝜔(j)
}

p̃p(i, j, t)
1

N2

∑N
i=1

∑N
j=1 p

{
yt ∣ 𝜔t = 𝜔(i)

}
p
{

zt ∣ 𝜔t = 𝜔(i), 𝜔t−1 = 𝜔(j)
}

p̃p(i, j, t)
(A.23)

p̃s(i, j, t) = p̃f (i, j, t)p̃′s(i, t + 1)∕p̃′
f (i, t), (A.24)

where p̃′f (i, t) and p̃′s(i, t+1) are the marginalized filtering and smoothed distributions, respectively, which
are obtained as p̃′f (i, t) =

∑N
k=1 p̃f (i, k, t)∕N and p̃′s(i, t + 1) =

∑N
k=1 p̃s(k, i, t + 1)∕N, respectively. Note

in practice that the predictive and smoothed distributions should be normalized so that the value of the
integral over the whole interval becomes 1 [13].

The denominator of Equation (A.23) provides the approximate likelihood for an observation at time t.
Therefore, the log-likelihood of the model is approximated as

l(𝝃;YT ,ZT ) =
T∑

t=1

log

[
N∑

i=1

N∑
j=1

p
{

yt ∣ 𝜔t = 𝜔(i)
}

p
{

zt ∣ 𝜔t = 𝜔(i), 𝜔t−1 = 𝜔(j)
}

p̃p(i, j, t − 1)

]
− 2T log N.

(A.25)

Finally, the marginal distribution for the day of initiation of menstruation is approximated as

h(k ∣ Yt,Zt) =
1
N

N∑
i=1

f
{

k ∣ 𝜔t = 𝜔(i)
}

p̃′f (i, t). (A.26)
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Appendix B: Details for comparing accuracy of the prediction for the day of onset
of menstruation

We compared the root mean square error (RMSE) and the mean absolute error (MAE) of prediction
of the next day of onset of menstruation among the proposed method, calendar calculation method, and
the method proposed in Bortot et al. [6].

As described in the main text, the proposed method can adaptively adjust the prediction using the
within-cycle information (i.e., daily BBT records). Thus, we estimated RMSE and MAE of the proposed
method for several points in time within the cycle. Specifically, we calculated RMSE and MAE of the
prediction obtained at the day of onset of the previous menstruation, as well as those obtained at 21, 14,
7, 6, 5, 4, 3, 2, and 1 day(s) before the upcoming day of onset of menstruation.

In the calendar calculation method, RMSE and MAE depend on the fixed number of days used for
prediction. Thus, for each subject, we calculated RMSE and MAE over a range of parameter values and
used the lowest value as a baseline for comparison (Tables III and IV).

The method proposed by Bortot et al. [6] uses state-space modeling framework to predict the length
of the cycle. The predictive distribution of menstrual cycle length is obtained conditional on past time
series of cycle length. In contrast to the proposed method, the prediction does not vary within the cycle.

In order to implement the prediction method of Bortot et al. [6], we first fitted state-space models to data
for parameter estimation (Table I). Samples from the joint posterior distribution of parameters and state
variables were obtained by using the Markov chain Monte Carlo (MCMC) method run on jags software
[16]. Then, the ensemble Kalman filter was applied to obtain one-step-ahead predictive distributions of
cycle length. The MCMC outputs were used for parameters and initial distributions of state variables that
are required for the ensemble Kalman filter to work.

We tested several model variants that were simplified versions of the original state-space model
described in Bortot et al. [6]. Among model variants in which convergent MCMC samples were obtained,
we identified a model that provides, on average, the most accurate predictions and used it as a baseline
for the comparison (Figures 3 and 4).
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