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Current deep learning-based cerebral aneurysm detection demonstrates high sensitivity,

but produces numerous false-positives (FPs), which hampers clinical application

of automated detection systems for time-of-flight magnetic resonance angiography.

To reduce FPs while maintaining high sensitivity, we developed a multidimensional

convolutional neural network (MD-CNN) designed to unite planar and stereoscopic

information about aneurysms. This retrospective study enrolled time-of-flight magnetic

resonance angiography images of cerebral aneurysms from three institutions from June

2006 to April 2019. In the internal test, 80% of the entire data set was used for model

training and 20% for the test, while for the external tests, data from different pairs of

the three institutions were used for training and the remaining one for testing. Images

containing aneurysms > 15mm and images without aneurysms were excluded. Three

deep learning models [planar information-only (2D-CNN), stereoscopic information-only

(3D-CNN), and multidimensional information (MD-CNN)] were trained to classify whether

the voxels contained aneurysms, and they were evaluated on each test. The performance

of each model was assessed using free-response operating characteristic curves. In

total, 732 aneurysms (5.9 ± 2.5mm) of 559 cases (327, 120, and 112 from institutes A,

B, and C; 469 and 263 for 1.5T and 3.0T MRI) were included in this study. In the internal

test, the highest sensitivities were 80.4, 87.4, and 82.5%, and the FPs were 6.1, 7.1,

and 5.0 FPs/case at a fixed sensitivity of 80% for the 2D-CNN, 3D-CNN, and MD-CNN,

respectively. In the external test, the highest sensitivities were 82.1, 86.5, and 89.1%,

and 5.9, 7.4, and 4.2 FPs/cases for them, respectively. MD-CNN was a new approach

to maintain sensitivity and reduce the FPs simultaneously.
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INTRODUCTION

Cerebral aneurysms are found in 2–3% of the population
and are a major cause of subarachnoid hemorrhage (SAH),
with high mortality and morbidity (1–3). Early detection of
unruptured cerebral aneurysms can prevent SAH. Time-of-flight
magnetic resonance angiography (TOF-MRA) is often used as a
screening tool for the detection of unruptured aneurysms and
is frequently used in patients with other cerebral issues. The
sensitivity of TOF-MRA was found to be 95% in a meta-analysis
(4). Conventional screening for cerebral aneurysms requires
considerable time and effort, even for experienced radiologists,
and several studies have reported differences in the sensitivity of
aneurysm detection depending on various conditions (e.g., the
location and size of the aneurysm, and the radiologist’s years of
experience and proficiency) (5–7).

Various studies have been conducted on how to assist
radiologists in their routine interpretation of images by
automatically detecting aneurysms using machine learning (8–
10). Recently, convolutional neural networks (CNNs) using TOF-
MRA images as input have been implemented widely (7, 11–16).
Several studies have demonstrated that CNN-based aneurysm
detection techniques based on planar information achieved
higher sensitivity and versatility in external datasets than
conventional machine learning approaches (11, 12). A CNN-
based computer-aided diagnostic (CAD) system for aneurysm
detection achieved high sensitivity (91–93%); however, the
system yielded too many false-positives (FPs; 5–9 per case), with
few true positives (12). Systems yielding high FPs can make
CAD unreliable and can increase the radiologist’s interpretation
burden. However, approaches for improving CNN to reduce the
FPs have not been fully explored.

We hypothesized that the numerous FPs in CNN-based
systems could be produced because previous studies did not fully
exploit the stereoscopic structure of arteries in TOF-MRA and
did not provide their systems with sufficient clues to distinguish
between positive and negative cases. In fact, the bifurcation or
curvature of the artery was misidentified as an aneurysm in some
previous studies (11, 14).

Therefore, we developed a new technique for effective
utilization of the planar and stereoscopic structure of TOF-MRA
in a CAD system with a CNN, to reduce the FPs. Our model is
a simple extension of the popular CNN using only planar input,
and it can be easily applied to various architectures to reduce FPs.
We evaluated our model on TOF-MRA images acquired from
various medical institutions and with different imaging device
conditions, to validate its versatility and reproducibility.

MATERIALS AND METHODS

Our institutional review board approved this retrospective study
and waived the requirement to obtain written informed consent.
The information for this study was displayed on our institutional
home page and in the waiting room of our department.
All participants were given the opportunity to opt-out of
this study.

Data Sets
TOF-MRA images of newly diagnosed aneurysms, acquired
between June 2006 and April 2019 at three hospitals, were
included. Aneurysm diagnosis was initially performed by each
institution’s board-certified radiologists and was confirmed
by another board-certified radiologist (∗∗ with 15 year’s
experience in neuroradiology) for this study. Three board-
certified radiologists (∗∗, ∗∗, and ∗∗ with 4-, 4- and 15-year’s
experience in neuroradiology) delineated the volumes-of-interest
of aneurysms on TOF-MRA images, in consensus. Images
containing aneurysms > 15mm, which were unlikely to be
overlooked by radiologists during interpretation, were excluded.
Images were divided into datasets for internal and external
tests (Figure 1). The location of the aneurysm was classified.
Aneurysm at the junction of the internal carotid and posterior
communicating arteries was included in the internal carotid
artery category. The category of the posterior communicating
artery was the aneurysm far from the internal carotid artery.

Image Processing Methods
Artery Extraction
Data were normalized to reduce bias. TOF-MRA images were
resampled to produce isotropic slices (0.3906mm), and the signal
values were normalized by the Nyúl and Udupa normalization
method (17). Threshold processing was applied to remove non-
arterial tissues from the images. The three-sigma signal level was
empirically used as the threshold value.

Candidate Voxel Extraction
Curvature and bifurcation, candidate features for aneurysm
detection, were extracted using the selective enhancement filter
(18), which is composed of blob-like, line-like, and plane-like
shape-enhancement filters. The blob-like shape-enhancement
filter was leveraged to enhance the blob-like shape from the
artery image, and the enhanced points were considered as
candidates of aneurysm. Finally, the voxels were cropped around
the points that were extracted in the previous step and were
labeled as positive if the voxel contained an entire aneurysm.
Voxels containing a part of the aneurysm were discarded during
model training. Then, some voxels that did not include any
aneurysms were labeled as negative and excluded using the
gradient-boosting decision-tree classifier (19). The classifier was
trained on some image features, such as curvature or sphericity
computed manually from the TOF-MRA image. With the above
method, many small voxels of lesion candidate are extracted from
a patient. Thus, the number of training data becomes larger and
the model can train with a limited number of patients.

Maximum Projection Method (MIP) Image
Generation
To develop a model with a planar input, the MIP was applied to
voxels along 15 axes, and the 15 MIP images were then simply
concatenated vertically for planar input models. Each image was
obtained by applying MIP, and after rotating the voxels by 30
and 45◦ on the X, Y, and Z axes. Supplementary Figure 1 in the
supplementarymaterials shows the procedures for acquiringMIP
images from a single voxel.
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FIGURE 1 | Flowcharts of subject selection and test patterns.

Model Development
To input multiple spatial features of arteries and aneurysms
into the model, a two-input network, multidimensional CNN
(MD-CNN), which processes two-dimensional plane and three-
dimensional stereoscopic features, was developed (Figure 2),
and consisted of a combination of planar (2D-CNN) and
stereoscopic CNN (3D-CNN). The 2D-CNN handled an MIP
image generated from TOF-MRA, and 3D-CNN handled raw
voxels extracted from the TOF-MRA image. The outputs of
both the 2D-CNN and 3D-CNN were compressed and coupled
by a global average pooling layer, to utilize features from both
networks, and were finally connected to a fully connected layer,
to output the probability of an aneurysm being present. Each
CNN was based on SE-ResNet (20, 21) and trained from scratch,
simultaneously. Four-fold cross-validation was used to determine
network hyperparameters, such as layer depth and learning
rate, of each CNN with a training dataset. Model development
hyperparameters are described in the Supplementary Materials.
When detecting aneurysms, the candidate voxel extracted in the
previous phase was fed into the model, and the probability of
being positive inside the voxel was obtained. If the probability
was >0.5, the region surrounded by the voxel was considered as
the positive candidate region. The part of the artery determined

as a positive candidate region by more than five candidate
voxels was then considered positive; otherwise, it was considered
negative. The number of voxels considered as positive was
determined empirically.

Model Evaluation
In the internal test, 20% of all patients were randomly selected for
test data, and the remaining 80% were used as training data. Of
the latter, 20% were used as validation data to track the learning
progress (Figure 1). In the external test, we examined models
based on external data that were not included in the training or
validation data, to investigate general model versatility, in two
experiments, using different data. In external test 1, data from
hospitals A and C were used as training data, and data from
hospital B were used as testing data. In external test 2, data from
hospitals A and B were used as training data, and data from
hospital C as testing data. Validation data in both external tests
were randomly selected from the training data, similar to the
internal test.

Data Set Characteristics
The data set characteristics are summarized in Table 1,
Supplementary Table 1. In the internal test, 448 cases were
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FIGURE 2 | The architecture of the multidimensional convolutional neural network, including 2D and 3D-CNN. A concatenated maximum intensity projection image as

input into the 2D-CNN was generated from a candidate voxel.

used for training and 111 for testing. In external test 1, 439
cases were used for training and 120 for testing. In external
experiment 2, 447 cases were used for training and 112 cases
for testing.

Statistical Analysis
Models were evaluated based on free-response operating
characteristic (FROC) curve analysis of the number of FPs per
case (No. of FPs/case) and detection sensitivity in the internal
and external test data sets. The number of aneurysms detected
by a model was computed separately in terms of location,
size, magnetic field strength, and TOF-MRA imaging platform.
The number of missing aneurysms was similarly computed.
Sensitivity represents the number of true positives over the total
number of aneurysms, and the No. of FPs/case represents the
ratio of the number of FPs case tested to the total number of cases.
The area determined to be positive was counted as true positive
if it contained a part of the aneurysm, and as FP if it did not. If
lesion candidates determined to be positive by the model were
16 voxels (about 6.25mm) from each other, they were counted as
different points. To evaluate the performance of the MD-CNN in
terms of reducing FPs, CNNs with only two-dimensional input
and only three-dimensional input were also trained and tested
as the performance baseline of conventional CNNs. Models
were compared in terms of the No. of FPs/case at the highest
sensitivity, the No. of FPs/case at a fixed sensitivity (80%), and the
sensitivity at a fixed No. of FPs/case of 3 FPs/case. In the internal
test, all models were evaluated using randomly sampled test data.
In the external test, all models were evaluated in two experiments,
based on two unique institutions. All statistical analyses were
performed using Python (version 3.6.7, https://www.python.org)
and its open-source library, scikit-learn (version 0.19.1, https://
scikit-learn.org).

RESULTS

Characteristics of Patients and Aneurysms
Overall, 360 of 7,232 examinations in hospital A, 128 of 3,567
examinations in hospital B, and 121 of 1996 examinations
in hospital C were initially diagnosed as including aneurysms
(Figure 1). After excluding examinations involving aneurysms
larger than 15mm, 559 examinations containing at least one
cerebral aneurysm were included.

Model Performances
The FROC curves for the internal test of each model are shown
in Figure 3A. In the internal test, the highest sensitivities of the
2D-CNN, 3D-CNN, and MD-CNN were 80.4% (115 of 143)
at 6.1 FPs/case, 87.4% (125 of 143) at 8.5 FPs/case, and 82.5%
(118 of 143) at 5.4 FPs/case, respectively. Although the 3D-CNN
achieved the highest sensitivity, the MD-CNN achieved the least
FPs at a sensitivity of 80%, with 5.0 FPs/case, compared to the
2D-CNN and 3D-CNN with 6.1 and 7.1 FPs/case, respectively.

In external test 1, the highest sensitivities of 2D-CNN, 3D-
CNN, and MD-CNN were 82.1% (128 of 156) at 6.6 FPs/case,
86.5% (135 of 156) at 8.8 FPs/case, and 89.1% (139 of 156) at 6.1
FPs/case, respectively. All models yielded higher sensitivities than
obtained in the internal test; in particular, the sensitivity of the
MD-CNN increased significantly by 6% over that in the internal
test, with only a 0.7 FPs/case increase. The FPs at 80% sensitivity
was 5.9 FPs/case for the 2D-CNN, 7.4 FPs/case for the 3D-CNN,
and 4.2 FPs/case for the MD-CNN. In external test 1, the MD-
CNN yielded the highest sensitivity and also showed the least FPs
at 80% sensitivity (Figure 3B).

In external test 2, the highest sensitivities of the 2D-CNN, 3D-
CNN, and MD-CNN were 67.3% (109 of 162) at 5.0 FPs/case,
70.4% (114 of 162) at 7.1 FPs/case, and 74.7% (121 of 162) at
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TABLE 1 | Data set characteristics of the internal test and two external tests.

Characteristic Internal Test External Test 1 External Test 2

Training set Test set Training set Test set Training set Test set

Examinations 448 111 439 120 447 112

Male 163 (36.4) 42 (37.8) 165 (37.6) 40 (33.3) 172 (38.5) 33 (29.5)

Female 285 (63.6) 69 (62.2) 274 (62.4) 80 (66.7) 275 (61.5) 79 (70.5)

Age (y)* 71 ± 12 71 ± 12 71 ± 12 72 ± 11 70 ± 11 76 ± 12

Male 70 ± 10 72 ± 8 70 ± 10 71 ± 11 70 ± 9 73 ± 12

Female 72 ± 12 70 ± 14 71 ± 13 72 ± 10 70 ± 13 77 ± 12

Aneurysms 589 143 576 156 570 162

Mean size of aneurysms (mm)* 5.9 ± 2.3 6.2 ± 2.9 5.9 ± 2.5 5.9 ± 2.3 5.8 ± 2.4 6.2 ± 2.6

Locations

Internal carotid artery 285 (48.4) 66 (46.2) 264 (45.8) 87 (55.8) 305 (53.5) 46 (28.4)

Middle cerebral artery 161 (27.3) 40 (28.0) 167 (29.0) 34 (21.8) 117 (20.5) 84 (51.9)

Anterior cerebral artery 42 (7.1) 11 (7.7) 50 (8.7) 3 (1.3) 43 (7.5) 10 (6.2)

Anterior communicating artery 47 (8.0) 13 (9.1) 44 (7.6) 16 (10.3) 45 (7.9) 15 (9.3)

Basilar artery 35 (5.9) 8 (5.6) 32 (5.6) 11 (7.1) 38 (6.7) 5 (3.1)

Vertebral artery 7 (1.2) 2 (1.4) 7 (1.2) 2 (1.3) 8 (1.4) 1 (0.6)

Posterior cerebral artery 8 (1.4) 2 (1.4) 8 (1.4) 2 (1.9) 9 (1.6) 1 (0.6)

Superior cerebellar artery 4 (0.7) 1 (0.7) 4 (0.7) 1 (0.6) 5 (0.9) 0

Magnetic field strength

1.5-T 382 (64.9) 87 (60.8) 449 (78.0) 20 (12.8) 307 (53.9) 162 (100)

3.0-T 207 (35.1) 56 (39.2) 127 (22.0) 136 (87.2) 263 (46.1) 0

Data in parentheses are percentages. *Data are mean ± standard deviation.

FIGURE 3 | Free-response receiver operating characteristic curve of all models on the internal test (A) and the external test 1 (B) and 2 (C). The gray dashed line in

the graph indicates a sensitivity of 80%. CNN, convolutional neural network, MD, multidimensional.

5.3 FPs/case, respectively. None of the models had a sensitivity
of <80%; however, the MD-CNN had a higher sensitivity, with a
fewer FPs than the other two models (Figure 3C).

Figure 4, Supplementary Table 2 show the detection results
of the internal and external tests. All models showed similar
trends in terms of the size of the aneurysms, with the highest
sensitivity for 6.0–8.9-mm aneurysms throughout all tests, while
relatively small aneurysms (3.0–5.9-mm) tended to be missed,
particularly in external test 2 with a sensitivity of 55–66%. In
terms of aneurysm location, all models detected aneurysms in
the anterior communicating artery and basilar artery with high
sensitivity (>80%), except for 2D-CNN in external test 2, and
with a comparatively low sensitivity for those in the anterior
cerebral artery.

Figure 5 shows examples of the aneurysm detection results
in each model. All models detected the right middle cerebral
artery as a positive candidate. However, theMD-model had fewer
FPs than the 2D-model and 3D-model. Some examples of FPs
detected by each model are shown in Figure 6. FPs are often seen
at the bifurcation or refraction of the blood vessels.

DISCUSSION

Summary of Findings
We developed a deep learning-based model for reducing the FPs
in automated cerebral aneurysm detection, and tested it under
various conditions to verify the sensitivity and FPs. Our MD-
CNN, which handles planar and stereoscopic information, had
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FIGURE 4 | Detection results with each deep learning model. CNN, convolutional neural network, MD, multidimensional, ICA, Internal carotid artery, MCA, Middle

cerebral artery, ACA, Anterior cerebral artery, ACOM, Anterior communicating artery, BA, Basilar artery, VA, Vertebral artery, PC, Posterior cerebral artery,

SCA = Superior cerebellar artery.
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a fewer FPs and higher sensitivity than the simple 2D-CNN and
3D-CNN. In the internal test, at 80% sensitivity, the MD-CNN
reduced the FPs by 1.1 and 2.1 FPs/case when compared with
the 2D-CNN and 3D-CNN, respectively. In external test 1, the

FIGURE 5 | Examples of detection results of each model overlaid on the

magnetic resonance angiography images. The images are from the coronal

view. The tip of the light green arrow represents the aneurysm, and the red area

represents where each model recognized positive candidates. The red area

includes both false positives and true positives. The red area indicated by the

light green arrow is a true positive, and the others red areas are false positives.

The 2D-model and 3D-model represented 5 and 9 FPs, respectively, while

MD-model output represented only 3 FPs. CNN, convolutional neural network.

MD-CNN also produced 1.7 and 3.2 fewer FPs/case than the
2D-CNN and 3D-CNN, respectively, at 80% sensitivity. Although
all models decreased sensitivity in external test 2, the MD-CNN
yielded the highest sensitivity, with a fewer FPs than the other
models. Thus, our simple extension of the deep learning model
can easily reduce the FP detection of cerebral aneurysms.

The sensitivity of the MD-CNN for 6.0–8.9-mm aneurysms
in both internal and external test 1 exceeded 90%; however,
its sensitivity was about 10% lower in external test 2, and its
sensitivity for 3.0–5.9-mm aneurysms was 10–20% lower, which
may be due to image quality. In external test 2, TOF-MRA images
acquired with only the 1.5-T imaging platforms were used, which
may have caused poor model performance when compared with
the 3-T image data. The sensitivity of external test 1, mostly
involving 3-T data, was higher than that of the internal test,
suggesting that the magnetic field strength affected the sensitivity
and FPs.

Each model had a different tendency in terms of the
shape of arteries that were incorrectly identified (Figure 6).
All models tended to recognize voxels that include many
narrow arteries as positive, and in some cases, the 2D-
CNN recognized voxels with only large arteries, such as the
internal carotid artery (ICA) flexure, as positive. This may
be because the 2D-CNN used MIP images acquired from
various viewpoints, and the angle may have caused features
to appear as an aneurysm. The MD-CNN suppressed such
FPs; however, it often mistakenly detected areas diverging
from the ICA, such as the posterior communicating artery
bifurcation. Thus, providing the model with three-dimensional
information may enhance its sensitivity to features that could be
misinterpreted.

Generally, it is difficult to optimize 3D-CNNs without
overfitting, due to the large number of parameters, and require
validation under various data conditions. In the internal
test, our 3D-CNN detected 87.4% of aneurysms, with 8.5
FPs; however, sensitivity was significantly reduced (by 17%)
in external test 2. This suggests that training the model
with only three-dimensional information remains challenging
in medical applications. Consequently, we employed features
derived from 3D-CNN as auxiliary features, using them
for training simultaneously with 2D-CNN features. In this
way, our MD-CNN could be trained without overfitting,
and could correctly identify areas falsely appearing to be

FIGURE 6 | Examples of false-positive areas cut out from magnetic resonance angiography images. The red area represents the area detected as positive. These

false-positives were randomly sampled from each detection result and there is no correspondence among columns. MD, multidimensional.
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aneurysms (slight protrusions or curvatures of the arteries) as
non-aneurysms.

Comparison With Existing Knowledge
The automatic detection of cerebral aneurysms has been
attempted by various modalities, including computed
tomography (CT) angiography, digital subtraction angiography,
and MRA. However, CT angiography and digital subtraction
angiography are often performed in patients with suspected
or confirmed cerebral aneurysms. On the other hand, MRA
is a sequence that is often included in routine brain MRI
examinations, and cerebral aneurysms are frequently detected
incidentally. Therefore, the risk of oversight is high. Nakao et
al. (11) developed a 2D-CNN-based model that takes multiple
images from various directions created by the maximum
intensity projection. Ueda et al. (12) developed a 3D-CNN-based
model that takes three-dimensional patches from aneurysm
candidates. Their approaches respectively resemble 2D-CNN
and 3D-CNN in this study.

Nakao et al. developed a 2D-CNN-based model with a
sensitivity of 94.2% and FPs of 2.9 FPs/case, which is better
than our method (11). However, because of the different
data sets and evaluation criteria, a simple comparison is
impossible. Moreover, in the Nakao’s method, training and
testing were conducted using only the data of a single hospital,
and external testing was not conducted. Our method has an
important advantage over their work in the actual applications
and usefulness using data from multiple institutions and with
external testing.

Three-dimensional structural information has increasingly
been used in CAD for aneurysm detection. Joo et al. (22)
developed a 3D-CNN-based model to detect aneurysms using
TOF-MRA images, with high sensitivity and specificity in 106
external datasets, including examinations without aneurysms.
Faron et al. (23) reported that the combination of radiologists
and 3D-CNN-based model improved the detection rate
of aneurysms.

To prevent oversight, a certain number of FPs are acceptable
as long as high sensitivity is achieved, but FPs directly
lead to prolonged reading time. Reliable lesion prediction
with few FPs is essential for creating a CAD system that
supports routine interpretation in daily practice. FP reduction
techniques have been widely reported in lung nodule-detection
tasks (24–32). For cerebral aneurysm detection, some studies
have shown that the gradient-boosting algorithm or rule-
based schemes can remove FPs with heuristic shape-based
features (33, 34); however, no efforts to extend the CNN
structure for FP reduction by improving the structure of
the deep learning model have been reported in this field
to date.

Strengths and Limitations
The strength of this study is that our strategy using MD-CNN
was a novel approach to detect cerebral aneurysm and to reduce
FPs. Moreover, the collected data included four 3.0 T and ten

1.5 T MRIs of three vendors from three institutes. Confounders
related to MRI, such as magnitude strength and manufacturer,
can degrade the generalization performance of the deep learning
model. When using deep learning models in clinical practice,
there is a need for a deep learning model that can withstand
various environments. Our model is one of them. Still, our
study had some limitations. First, all data used for training
and testing contained at least one aneurysm; we also need to
verify the FPs for images lacking aneurysms. This theme is
likely to be the next topic of automated detection of cerebral
aneurysm. Second, the datasets used for training and external
testing lacked diversity, particularly in terms of aneurysm size.
Since we did not have a sufficient number of small aneurysms
for model training, more such cases could further improve the
sensitivity and FPs for small aneurysms. Third, the exclusion of
aneurysms >15mm may have decreased the generalizability of
our method. Fourth, to improve model parameter optimization,
various methods of three-dimensional convolution have been
reported in the field of three-dimensional object recognition to
date, and could be used to optimize our model parameters more
efficiently. Finally, further studies are needed to evaluate the
clinical utility of this system in comparison to, or combination
with, humans.

In conclusion, our MD-CNN, which combines a 2D-CNN
and 3D-CNN, reduced the FPs in aneurysm detection in TOF-
MRA images in internal and external tests than the conventional
two- and three-dimensional models, while maintaining a high
sensitivity. Eliminating FPs while maintaining high sensitivity
will reduce the number of candidate positives to be confirmed
in routine diagnosis in daily practice, improve the reliability
of CAD, and further reduce the burden of interpretation
for radiologists.
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