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Abstract

Background: YqeH, a circularly permuted GTPase (cpGTPase), which is conserved across bacteria and eukaryotes including
humans is important for the maturation of small (30S) ribosomal subunit in Bacillus subtilis. Recently, we have shown that it
binds 30S in a GTP/GDP dependent fashion. However, the catalytic machinery employed to hydrolyze GTP is not recognized
for any of the cpGTPases, including YqeH. This is because they possess a hydrophobic substitution in place of a catalytic
glutamine (present in Ras-like GTPases). Such GTPases were categorized as HAS-GTPases and were proposed to follow a
catalytic mechanism, different from the Ras-like proteins.

Methodology/Principal Findings: MnmE, another HAS-GTPase, but not circularly permuted, utilizes a potassium ion and
water mediated interactions to drive GTP hydrolysis. Though the G-domain of MnmE and YqeH share only ,25% sequence
identity, the conservation of characteristic sequence motifs between them prompted us to probe GTP hydrolysis machinery
in YqeH, by employing homology modeling in conjunction with biochemical experiments. Here, we show that YqeH too,
uses a potassium ion to drive GTP hydrolysis and stabilize the transition state. However, unlike MnmE, it does not dimerize
in the transition state, suggesting alternative ways to stabilize switches I and II. Furthermore, we identify a potential catalytic
residue in Asp-57, whose recognition, in the absence of structural information, was non-trivial due to the circular
permutation in YqeH. Interestingly, when compared with MnmE, helix a2 that presents Asp-57 is relocated towards the N-
terminus in YqeH. An analysis of the YqeH homology model, suggests that despite such relocation, Asp-57 may facilitate
water mediated catalysis, similarly as the catalytic Glu-282 of MnmE. Indeed, an abolished catalysis by D57I mutant supports
this inference.

Conclusions/Significance: An uncommon means to achieve GTP hydrolysis utilizing a K+ ion has so far been demonstrated
only for MnmE. Here, we show that YqeH also utilizes a similar mechanism. While the catalytic machinery is similar in both,
mechanistic differences may arise based on the way they are deployed. It appears that K+ driven mechanism emerges as an
alternative theme to stabilize the transition state and hydrolyze GTP in a subset of GTPases, such as the HAS-GTPases.
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Introduction

GTP binding proteins or GTPases represent one of the most

widely distributed protein families [1]. They regulate diverse cellular

processes by cycling between an active GTP-bound and an inactive

GDP-bound forms [2]. Circularly permuted GTPases (cpGTPases)

represent a subset of these proteins and exhibit a curious

permutation of sequence motifs[3], [4]. cpGTPases have been

implicated in the process of ribosome assembly[5], [6], [7], [8], [9],

[10], [11], [12], [13], [14]. Among these, YqeH which is conserved

across bacteria and eukaryotes including humans, is shown to be

essential for the maturation of small ribosomal subunit (30S) in

Bacillus subtilis [10], [11]. An ortholog of YqeH in Arabidopsis thaliana

was mistakenly considered to be a Nitric Oxide Synthase (AtNOS1)

and was later shown to be a functional cpGTPase [15], [16], [17],

[18]. In conjunction with its participation in ribosome maturation,

recently, we showed that it binds 30S ribosomal subunit in a GTP/

GDP dependent manner and that the binding requires adjacent

RNA binding domains [19]. Further experiments to probe whether

it acts as an RNA chaperone for 30S assembly remained

inconclusive [19]. So far, investigations aimed at understanding

the ribosome interaction showed that all of the bacterial cpGTPases

such as YjeQ, YlqF and YqeH exhibit a GTP/GDP dependent

ribosome binding. However, the catalytic machinery employed to

hydrolyze GTP is not understood for any of them. Hence,

understanding this mechanism would augment elucidating the

relation between nucleotide binding/hydrolysis and ribosome

binding. Here, we have attempted to decipher the catalytic

machinery employed by YqeH.

YqeH (and cpGTPases in general) belongs to an interesting class

of GTPases termed HAS-GTPases (Hydrophobic Amino acid

Substituted for catalytic glutamine GTPases) that lack the catalytic
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glutamine conserved in a large set of GTPases, including Ras [20].

Gln-61 mutations in Ras are oncogenic [21], [22] and HAS-

GTPases, by virtue of a hydrophobic substitution in place of Gln-

61, present a paradox to the GTP hydrolysis mechanism observed

in Ras-like classical GTPases [20]. This raises questions on how

these proteins may hydrolyze GTP. In an earlier study, based on

sequence and structural analysis of these proteins, we proposed few

possibilities [20]: The potential catalytic residue may be presented

(i) from a different region of the G-domain (in cis), (ii) from

domain(s) adjacent to the G-domain (in cis), or (iii) from an

interacting protein (in trans). While our attempts to examine these

possibilities for YqeH were in progress, it was reported that

MnmE, another HAS-GTPase, that participates in tRNA

modification exhibits a potassium dependent GTP hydrolysis

mechanism and that a part of the switch-I region, termed K-loop,

coordinates K+ ion and shields it from the solvent [23]. The K-

loop also harbors a conserved motif 249GTTRD253 in switch-I

region (Thr-251 corresponds to Thr-35 in Ras that coordinates

both Mg2+ and c-phosphate) and coordinates the K+ ion through

main chain interactions via Thr-245 and Ile-247 [23]. Though

YqeH and MnmE share only ,25% sequence identity in the G-

domain, YqeH, in addition to characteristic nucleotide binding

motifs G1-G3-G4, exhibits the presence of the conserved
197GTTLD201 motif - a feature similar to the K-loop in the

switch-I of MnmE. This prompted us to investigate whether YqeH

too would utilize a K+ ion to hydrolyze GTP. Here, we show that

YqeH indeed exhibits a potassium dependent GTP hydrolysis.

Guided by a homology model based on the transition state

structure of MnmE, we attempted to probe the role of potassium

in GTP hydrolysis and identified a potential catalytic residue,

whose role was verified using site-directed mutagenesis. We

conclude that unlike Ras-family GTPases, the GTP hydrolysis

mechanism employed by YqeH is similar to that seen in MnmE,

albeit with variations in the way catalytic residues are deployed.

Results

Potassium Dependent GTPase Activity
In an earlier analysis, we identified that unlike Ras superfamily

GTPases, YqeH lacks the catalytic glutamine in switch-II and was

thus categorized as a HAS-GTPase [4]. This prompted us to ask

how YqeH hydrolyses GTP in the absence of a catalytic

glutamine. Recent structural and biochemical studies on MnmE

(earlier termed TrmE), one of the HAS-GTPase members,

revealed that it utilizes a potassium ion for GTP hydrolysis [23].

While classical GTPases such as Ras utilize an ‘Arginine finger’

from Ras-GAP to stabilize the transition state, in MnmE, a K+ ion

fulfills this role, wherein a loop termed the ‘K-loop’ stabilizes the

K+ ion. Encouraged by the presence of a K-loop like feature in

YqeH amidst low sequence identity between the CPG-domain of

YqeH and the G-domain of MnmE (,25% sequence identity), we

inquired if YqeH too invokes a potassium dependent GTPase

activity (Fig. 1). To test this, GTP hydrolysis by YqeH was

measured in the presence of different monovalent salts such as

NaCl, KCl, NH4Cl, RbCl and CsCl. As shown in Table 1,

significant GTP hydrolysis was observed only in presence of KCl,

NH4Cl and RbCl; while in presence of NaCl there was no activity

and that in presence of CsCl was low. The requirement of NH4
+

ions for GTPase activity is also noted for the YqeH ortholog from

Geobacillus sterothermophilus (GsYqeH) [24]. This suggests that like in

MnmE, potassium promotes GTP hydrolysis in YqeH too and

raises the possibility that it may act as a GTPase Activating

Element (GAE). For classical GTPases like Ras, GAPs (GTPase

Activating Proteins) are known to lower the activation energy

barrier by stabilizing the transition state [2], [25]. Since the role of

GAE is analogous to GAP, the effect of K+ ion on transition state

stabilization was examined.

Sensitive fluorescent probes like mant-nucleotides are used to

study nucleotide binding in GTPases[26]. In several GTPases,

GDP?AlFx was shown to mimic the transition state of GTP

hydrolysis[22], [26]. Hence, to examine the role of K+ ion in

transition state stabilization, the proteins were incubated with

mant-GDP (mGDP) and AlFx, in the presence of K+. It is known

that enzymes exhibit a tight binding to substrates, in the transition

state. In the nucleotide binding experiments, we anticipated that

K+ ion promoted binding of mGDP?AlFx to YqeH, would be

reflected by an increased fluorescence (of mGDP?AlFx complex).

Therefore, the fluorescence experiments were conducted in

presence of Na+, K+, NH4
+, Rb+ and Cs+ ions (Fig. 2). In all

conditions, addition of YqeH resulted in enhanced intrinsic

fluorescence of mGDP suggestive of nucleotide binding (see blue

and red curves in Fig. 2). Following this, addition of AlCl3 did not

alter this binding (see green curves in Fig. 2). However, further

addition of NaF that would promote the formation of AlFx,

resulted in enhanced fluorescence only in presence of K+, NH4
+

and Rb+ ions, but not Na+ and Cs+. This suggests the formation of

a transition state analogue GDP?AlFx in the presence of K+, NH4
+

and Rb+ (see purple curves in Fig. 2).

While it appears that K+ stabilizes the transition state, we

additionally inquired whether YqeH too, like MnmE, oligomerizes

in the presence of GDP?AlFx. Therefore, using full length YqeH,

we tested this possibility in the nucleotide-free, GDP, GTP and

GDP?AlFx states. However, YqeH elutes as a monomer in all of

these states (Fig. 3), which is in contrast to the transition state

specific dimerization of the MnmE G-domain.

Figure 1. Secondary structure based sequence alignment of the G-domains of MnmE and YqeH. The sequence alignment used to
generate the YqeH homology model is shown. Since YqeH is circularly permuted with respect to MnmE, the C-terminal region (282–376 indicated in
the figure) of MnmE is relocated to the N-terminus to facilitate alignment with YqeH. a-helices are depicted as green cylinders and b-strands as
orange arrows. Sequence motifs G1-G5 are indicated. Conserved residues are highlighted in blue. The catalytic residues in MnmE (E282) and YqeH
(D57) are boxed in pink. The hydrophobic substitutions (L274 in MnmE and I219 in YqeH) in place of Q61 of Ras are boxed in pink. Switch-I and II
regions are indicated. The conserved motifs in K-loop (GTTRD in MnmE and GTTLD in YqeH) are boxed in brown. Residues that coordinate the
potassium ion are indicated by asterisks.
doi:10.1371/journal.pone.0009944.g001

Catalytic Mechanism in YqeH
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Residues Important for Potassium Co-ordination
Encouraged by the finding that potassium stabilizes the

transition state and influences GTP hydrolysis in YqeH, we set

out to probe the residues critical for potassium co-ordination. The

transition state structure of MnmE [23] showed that the hexa-

coordinated potassium ion is held in the active site by interactions

with K-loop (a part of the switch-I region), a and b phosphates of

GDP, the side chain carbonyl oxygen of Asn-226 from P-loop and

the fluoride ion from AlFx (that mimics c-phosphate). In order to

determine, if such an arrangement is conserved in YqeH too, a

combination of homology modeling and site-directed mutagenesis

was employed.

A homology model for the CPG-domain of YqeH was

generated using the transition state structure of the MnmE G-

domain (monomer). This model suggested the likelihood that

equivalent interactions stabilize the transition state in YqeH

(Fig. 4a) and MnmE. To test this, Asn-169 (equivalent to Asn-226

in MnmE), one of the ligands coordinating the K+ ion through its

side chain amide, was mutated to Leu, Asp and Gln, using site-

directed mutagenesis. In order to assay their influence, if any, on

nucleotide binding, fluorescent experiments were conducted using

mGDP and mGTP. As shown in Figure 5, these mutants bind

both mGDP and mGTP, suggesting that the mutations do not

affect nucleotide binding (Fig. 5a–d, f–i). Based on the homology

model, we reasoned that mutating Asn-169 to a hydrophobic Leu

would disrupt its interaction with potassium and thereby would

affect potassium dependent GTP hydrolysis (Fig. 4b). Indeed, the

GTPase activity is completely abolished for the N169L mutant

and could not be measured (Table 2). In contrast, we reasoned

based on the model that mutating Asn-169 to Asp would preserve

the co-ordination with potassium (Fig. 4c). Indeed, N169D

retained GTPase activity comparable to wild type (Table 2). The

effect of an increase in the side chain length was tested using

N169Q mutation: Though Asn and Gln are chemically similar

due to the presence of an amide group, the side chain is longer by

1.54 Å in Gln due to the presence of an additional CH2 group.

Examining the model of YqeH, it appeared that this increase in

side chain length would alter potassium co-ordination significantly

(Fig. 4d). Indeed, the GTPase activity of N169Q mutant was

completely abolished and could not be measured (Table 2). This

finding concurs with a 72-fold reduction in activity seen upon

Table 1. YqeH Activity in Presence of Different Monovalent
Cations.

Monovalent Cations
(Ionic radius in picometers) Specific Activity (min21)

Na+ (102) ** (0.0001)

K+ (138) 1.184460.0227 (0.0001)

NH4
+ (147) 0.643760.0704 (0)

Rb+ (152) 0.593260.0156 (0.0001)

Cs+ (167) 0.133460.0159 (0.0001)

Specific activity is represented as the amount of Pi released for a given
concentration of enzyme for a certain time (min). Experiments were conducted
in duplicates and were reproduced at least twice. The errors represent the
standard deviation from the average. Absorbance was corrected for the
background intrinsic GTP hydrolysis and the background GTP hydrolysis
(represented as amount of Pi released to the amount of GTP added, per min) is
indicated in brackets. ** indicates that the activity could not be measured.
doi:10.1371/journal.pone.0009944.t001

Figure 2. Formation of mGDP?AlFx complex in the presence of various monovalent salts. The influence of (a) NaCl, (b) KCl, (c) NH4Cl, (d)
RbCl and (e) CsCl on nucleotide binding was examined by measuring fluorescence intensity (in arbitrary units) of mant-GDP (lex - 355 nm, lem -
440 nm). The intrinsic fluorescence by mGDP (blue curve) is enhanced after the addition of YqeH (red curve). This is followed by addition of AlCl3 in
the same reaction mixture which shows no appreciable change (green). Addition of NaF (purple), however, results in an increased fluroscence in
presence of (a) K+ (c) NH4

+ and (d) Rb+ suggesting the formation of mGDP?AlFx complex in presence of these ions.
doi:10.1371/journal.pone.0009944.g002

Catalytic Mechanism in YqeH

PLoS ONE | www.plosone.org 3 April 2010 | Volume 5 | Issue 4 | e9944



mutating the corresponding Asn-226 to a Lysine in MnmE [23].

Overall, these studies underscore the importance of Asn-169 in

coordinating the K+ ion.

Relocation of a Catalytic Residue due to the Circular
Permutation

While the mutational experiments suggest a likely equivalence

in both YqeH and MnmE to stabilize the K+ ion, how the

hydrolysis is achieved in YqeH remained unclear. The absence of

catalytic glutamine (equivalent to Gln-61 in Ras) in YqeH

indicates that it possesses an alternative means to achieve GTP

hydrolysis. While in Ras, Gln-61 directly orients a catalytic water

molecule to trigger GTP hydrolysis, in MnmE, Glu-282, (from

helix a2) via an intermediate bridging water molecule, indirectly

orients the analogous catalytic water [23]. However, a residue

equivalent to Glu-282 is not found in YqeH. Adding to this, the

region corresponding to helix a2 is relocated towards the N-

terminus owing to the circular permutation (Fig. 1 & 6a), making

the identification of the catalytic residue a non-trivial exercise

based on sequence information alone. However, a careful

examination for conserved residues in the N-terminal region of

YqeH together with the recently determined structures of YqeH

orthologs GsYqeH from Geobacillus sterothermophilus [24] and

BaYqeH from Bacillus anthracis (Brunzelle et al., unpublished;

PDB: 3h2y), led us to reason Asp-57 to be a potential catalytic

residue (Fig. 6a & 6b; see discussion). A homology model was

made considering Asp-57 to be an equivalent of Glu-282 in

MnmE (Fig. 6a). From this model, it was possible to envisage a

water mediated interaction facilitating GTP hydrolysis in YqeH,

similar to that in MnmE (Fig. 6a & 6c). To test this possibility, a

point mutant D57I was created and assayed for its ability to

hydrolyse GTP. Though D57I mutant retained mGDP and

mGTP binding (Fig. 5e & j), GTP hydrolysis was completely

abolished (Table 2), strengthening the view that Asp-57 may

indeed facilitate catalysis in YqeH.

Discussion

Structural and biochemical studies on Ras-like GTPases showed

that participation of both (i) catalytic glutamine (in cis) as well as

the so called (ii) Arg-finger (in trans) are two key aspects driving

GTP hydrolysis [2], [22], [25], [26]. An importance for these was

reinforced by mechanistic studies on several other GTPases, like

G-a subunit of heterotrimeric G-proteins, Rho, Rab33, Ran and

Figure 3. Probing oligomerisation of YqeH in the presence of nucleotides. Analytical gel filtration experiments were conducted in the apo
(red curve) and in presence of GDP (green curve), GTP (blue curve) and GDP?AlFx (pink curve) bound states of YqeH. Absorbance at 280 nm is shown
in milli absorbance unit (mAU). The elution profile of YqeH in nucleotide-free apo state (red curve) indicates that it is a monomer. This profile remains
unaltered in the different nucleotide bound states.
doi:10.1371/journal.pone.0009944.g003

Catalytic Mechanism in YqeH
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Arf [27], [28], [29], [30], [31], although variations were noted.

However, the absence of a catalytic glutamine in HAS-GTPases

like YqeH, and the absence of any known GAP(s), suggests that it

is likely to employ an alternative means to achieve catalysis. In line

with this, we find that like in MnmE, potassium activates GTPase

activity in YqeH too (Table 1). This prompted us to utilize the

information provided by the transition state structure of MnmE to

understand the structural basis for the role of potassium in GTP

hydrolysis. The homology model of YqeH when overlaid onto the

transition state structure of Ras[22] (PDB: 1wq1) showed that the

location of potassium overlaps with the position of Arg-finger in

Ras (Fig. 6c). Like in MnmE [23], this raises the possibility that in

YqeH too, potassium could play a role akin to Arg-finger of Ras to

stabilize the transition state. Indeed, fluorescent binding experi-

ments conducted in the presence of mGDP?AlFx (a transition state

mimic) and different salts (Na+, K+, NH4+, Rb+, Cs+) suggests that

K+, NH4+ and Rb+ stabilize the transition state (Fig. 2)

and thereby accelerate GTPase activity (Table 1). The order in

which these ions influence GTP hydrolysis is as follows: K+ .

NH4+ . Rb+ . Cs+ . Na+. This suggests that ionic radius of

Figure 4. Hexa-coordinated potassium ion in the homology model of YqeH. GDP?AlFx is shown in ball and stick model. The active site
residues are displayed as sticks. Potassium is shown as a violet ball and its co-ordination with residues is indicated by dotted gray lines. Asn-169, one
of the ligands coordinating potassium, is shown. Magnesium is shown as a brown ball. (a) YqeH model shows that potassium is held in place by
coordination with a, b and c phosphates of GTP, main chain interaction from the K-loop residues, S193 and F195, and side chain interaction with the
amide group of Asn-169. The interaction with Asn-169 is highlighted by the pink circle. (b) N169L mutant that lacks the side chain carbonyl oxygen
leads to loss of interaction with potassium. (c) N169D that retains the carbonyl oxygen and therefore the potassium coordination (d) N169Q, which
despite possessing the carbonyl oxygen lacks potassium coordination due to an increased side chain length. Figures were made using chimera[37].
doi:10.1371/journal.pone.0009944.g004

Catalytic Mechanism in YqeH

PLoS ONE | www.plosone.org 5 April 2010 | Volume 5 | Issue 4 | e9944



sodium (102 pm), which is smaller than that of potassium (138 pm)

cannot promote GTP hydrolysis (Table 1), depicting a clear

specificity for potassium. On the other hand, cesium with a radius

167 pm displays a 10 fold lower activity than K+. By analyzing the

transition state structure of MnmE, Scrima and Witttinghofer [23]

suggested that the active site may utilize monovalent cations with

radii between 138-152pm. That NH4+ (147 pm) and Rb+

(152 pm) also elicit similar effects as K+ on GTP hydrolysis, may

further indicate analogous K+ binding in YqeH and MnmE.

Conversely, an absence or sub-optimal GTPase activity with

sodium and cesium may be because the ionic radii of these ions do

not fall within the aforesaid limit (Table 1). While it seems that

active site dimension contributes to potassium specificity, inspec-

tion of the active site of YqeH model suggests that like in MnmE,

potassium is bound at the active site by main chain interactions

with a part of switch-I, termed the K-loop, a and b phosphates of

GDP, a fluoride ion (i.e. the c-phosphate mimic) and the side chain

of Asn-169 from P-loop (Fig. 4a). Mutational studies on Asn-169

render support to the modeling studies that indeed Asn-169 in

YqeH contributes to potassium coordination (Fig. 4 & 5; Table 2).

While a small ion like potassium participates in GTP hydrolysis,

it is not clear whether an Arg-finger like mechanism is also possible

in YqeH. Analysis of the modeled structure indicates that the

presence of K-loop would sterically occlude the entry of an Arg

side chain of a GAP (Fig. 6c). However, it is important to note that

the homology model derived for YqeH rests on the assumption

that the K-loop adopts a conformation similar to MnmE. The

aforesaid mutational studies of Asn-169, allow us to believe that

this assumption is perhaps reasonable. Therefore, it appears

unlikely that an Arg-finger mediated mechanism operates in

presence of a K-loop that adopts a conformation to shield its entry.

As a result, it seems more appropriate to have a small ion like

potassium to stimulate the otherwise weak intrinsic GTP

hydrolysis.

Furthermore, in MnmE, catalysis is facilitated by the dimeriza-

tion of its G-domain [23]. This led us to investigate whether full

length YqeH also dimerizes in a K+ dependent manner to

hydrolyze GTP. Analytical gel filtration experiments conducted in

the presence of GDP, GTP and GDP?AlFx showed no alteration in

elution profile suggesting that YqeH remains a monomer in the

presence of K+ and GDP?AlFx (Fig. 3). This presents the first

mechanistic difference between YqeH and MnmE. Although both

employ a K+ dependent catalysis, YqeH is likely to achieve it

without dimerization (see below).

Apart from potassium, another important component of GTP

hydrolysis is the catalytic residue. The lack of a catalytic Gln at a

position equivalent to Gln-61 in Ras, prompted us to identify a

likely candidate in YqeH. Thus together with sequence and

structural analysis of YqeH, homology modeling was initiated

using the monomeric transition state structure of MnmE as the

template (Fig. S1, S2, S3; Fig 6a). Superposition of the G-domains

of MnmE (transition state) and YqeH (GDP-bound) showed that

while switch-II in MnmE is continuous with helix a2, in YqeH,

owing to the circular permutation, it is relocated towards the C-

terminus and is connected to the C-terminal PNR domain (Fig. S2

& S3). For the same reason, helix a2 in YqeH is also relocated

towards the N-terminus where it is connected to a Zn finger

domain (Fig. S3). Since the conformation of switch-II differs

between YqeH and MnmE, accurate modeling of switch-II in

YqeH, based on MnmE, is not possible (Fig. S2). However, the

structural superposition revealed that, in YqeH, the residue

equivalent to the catalytic Glu-282 of MnmE, may not satisfy an

analogous role due to a steric clash with Ile-220 (Fig. S2).

Therefore, unlike in MnmE, the catalytic residue may not be

presented from the first turn of helix a2. Instead, three highly

Figure 5. Nucleotide binding by YqeH Mutants. The ability of YqeH Mutants to bind nucleotides GTP and GDP is examined by measuring
fluorescence intensity (in arbitrary units) of mant-GTP and mant-GDP (lex - 355 nm, lem - 440 nm). The intrinsic and protein induced fluorescence of
mGDP (blue and red curves, respectively) and mGTP (green and purple curves, respectively) is shown for (a & f) wild type, (b & g) N169L, (c & h)
N169D, (d & i) N169Q and (e & j) D57I. Appreciable increase in fluorescence is observed for all mutants suggesting that they bind nucleotides.
doi:10.1371/journal.pone.0009944.g005

Table 2. GTPase Activity of YqeH Mutants.

Construct Specific Activity (min21)

WT 1.184460.0227

N169L **

N169D 0.909560.028

N169Q **

D57I **

Specific activity was measured in the presence of KCl and it is represented as
the amount of Pi released for a given concentration of enzyme for a certain
time (min). Value for wild type was taken from Table 1. Experiments were
conducted in duplicates and were reproduced at least twice. The errors
represent the standard deviation from the average. Values were corrected for
the background intrinsic GTP hydrolysis. ** indicates that the activity could not
be measured.
doi:10.1371/journal.pone.0009944.t002

Catalytic Mechanism in YqeH
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conserved Asp residues, Asp-55, Asp-56 and Asp-57 were chosen

to be likely candidates. Of these, due to the periodicity of the a-

helix (residue i and residue i+4 will be located on same side of the

a-helix), the only other residue that could stabilize the bridging

water appeared to be Asp-57 from helix a2 (which corresponds to

Gly-285 in MnmE). Apart from this, we note a possibility that Asp-

55 and Asp-56 may interact with Asn-221, Asn-222 and His-223

of Switch-II, whose chemical nature is strongly conserved. Like the

interaction between Arg-275 and Glu-282 in MnmE, this

interaction in YqeH may help to orient helix a2 suitably and

thus position Asp-57 competent to coordinate the bridge water

(Fig. S1 & S3). Although speculative, this perhaps explains the

conservation of Asp-55 and Asp-56 along with Asp-57 (Fig. 6b).

However, a detailed structural investigation in the transition state

would be required to understand the underlying mechanism.

Nevertheless, the role of Asp-57 in catalysis is substantiated by the

finding that D57I mutation allows nucleotide binding, but

abolishes all catalytic activity (Fig. 5e & j; Table 2). In summary,

it appears that Asp-57 in YqeH facilitates water mediated catalysis

similarly to the Glu-282 in MnmE, except that owing to the

circular permutation, it is presented from the N-terminal region

(Fig. 6a) and therefore its interactions with switch-II are expected

to be different. Despite this variation in topologies between MnmE

and YqeH, the catalytic residues Glu/Asp are presented from

similar regions (helix a2), reflecting a structural plasticity necessary

to preserve GTP hydrolysis.

Scrima and Wittinghofer[23] observe Era and EngA to possess

a K-loop like feature including the conserved ‘‘GTTRD’’ motif

and a conserved Asn in the P-loop (corresponding to Asn-169 in

YqeH): We observe these features to be present in the ribosome

binding cpGTPases YlqF and YawG too. In MnmE, this motif

provides important interactions to mediate catalysis. Gly-249 is

highly conserved and possesses torsion angles that are disallowed

for non-glycyl residues[23]. It coordinates the c-phosphate and

also orients the catalytic water. Thr-250 binds c-phosphate

through main chain interactions and Thr-251 (corresponding to

Thr-35 in Ras) coordinates the c-phosphate and also the Mg2+.

Given this importance for the ‘‘GTTRD’’ motif [32], its

conservation in cpGTPases YlqF and YawG that also participate

in ribosome assembly, tempts us to speculate that they too would

utilize a water mediated interaction coupled with a small

monovalent cation like K+ to drive GTP hydrolysis.

This work allows us to conclude that GTP hydrolysis in HAS-

GTPases like YqeH and MnmE is driven by water mediated

interactions facilitated by Asp/Glu (in cis) as well as the

participation of a small monovalent potassium ion (in cis). This is

in contrast to the participation of Gln (in cis) and Arg-finger (in

trans) in Ras-like GTPases. These variations indicate that there is

more than one way to achieve GTP hydrolysis and reveal a new

class of GTPases that utilize an alternative catalytic mechanism

than that seen for well studied GTPases like Ras.

Materials and Methods

Site Directed Mutagenesis
Site-directed mutagenesis was performed using a megaprimer

approach[33]. The mutant PCR product was generated by using

the appropriate mutant primers along with the full length (residues

Figure 6. Relocation of the catalytic residue in YqeH. (a) YqeH homology model (pink) and MnmE (gold; PDB: 2gj8) are compared by substrate-
based superposition. GDP?AlFx is shown in ball and stick model. The active site residues are shown as sticks. The nucleophilic water (Wc) and bridging
water (Wb) are indicated by red balls. Potassium (K+) is shown as a violet ball. Magnesium (Mg2+) is shown as a pink ball. Glu-282 in MnmE and Asp-57
in YqeH are indicated. The N and C-termini are shown for YqeH to appreciate the circular permutation. When compared to MnmE, Asp-57 from helix
a2 is relocated to the N-terminus in YqeH due to the permutation. (b) The conservation of residues around Asp-57 at the N-terminal region of YqeH is
displayed as a sequence logo [38] and the residue numbers are marked. The alignment of sequences from 26 orthologs that encompasses both
bacteria and eukaryotes was made using MUSCLE [35] (c) The active site in YqeH homology model (pink) and Ras (blue; PDB: 1wq1) are compared by
substrate-based superposition. Switch-I and K-loop (in green) are indicated. Arg-finger (Arg-789) from Ras-GAP is represented as stick model in
brown. Magnesium (Mg2+) is shown as a pink ball. GDP?AlFx is shown in ball and stick model. The active site residues are shown as sticks. The water
mediated interaction from Asp-57 to catalytic water (Wc) is shown by a dotted gray line. The relative position of bridge water (Wb) coincides with that
of the amide oxygen in Gln-61 of Ras. In contrast to Gln-61 in Ras, the corresponding position in YqeH is occupied by hydrophobic I219, which is
retracted away from the catalytic site. The location of potassium overlaps with the position of Arg-finger (R789) in Ras-GAP and it is highlighted by a
red circle. It may be seen that the presence of K-loop sterically occludes the approach of an Arg-finger like residue in YqeH.
doi:10.1371/journal.pone.0009944.g006
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1–366) primers (Table S1) using Pfu DNA polymerase (fermentas).

Cloning into the modified pGEX4T1 vector (GE Healthcare) was

performed using restriction sites Nhe1 and Xho1 (NEB). Mutations

were confirmed by DNA sequencing and using restriction

digestion specific for a particular mutation if such a recognition

site is available. Expression and purification of the GST fusion

constructs were performed as described previously[19]. As

reported previously[19], since GST does not affect nucleotide

and ribosome binding, all assays for the mutants were also

conducted using GST fusion constructs.

Nucleotide Binding and GTPase Assays
The nucleotide binding assay was performed using fluorescent

mant nucleotides as described[19]. The reaction mixture (150 ml)

consisted of 20 mM Tris pH 8, 5 mM MgCl2, 100 mM salt

(NaCl/KCl/NH4Cl/RbCl/CsCl), 500 nM mGDP/mGTP and

1 mM YqeH. For transition state studies, 5 mM NaF and 500 nM

AlCl3 were also included in the reaction mixture.

GTPase assays were performed using the malachite green

method as described[19]. The reaction mixture (50 ml) consisted of

400 nM protein and 400 mM GTP in 20 mM Tris pH 8, 100 mM

Salt (NaCl, KCl, NH4Cl, RbCl and CsCl), 5 mM MgCl2 and

5 mM 2-mercaptoethanol.

Analytical Gel Filtration
To test the oligomerisation using analytical gel filtration, YqeH

was cloned into pQE2 vector (Qiagen) using NdeI and HindIII

restriction sites to generate a His-tagged fusion protein. The

protein was over-expressed in E.coli DH5a cells and purification

was done using Ni-sepharose column (Amersham Biosciences) by

essentially following the protocol as described previously[19] for

GST fusion constructs, except that the protein was eluted using a

linear gradient of imidazole (20 mM–500 mM) in 50 mM Tris-Cl

pH 8, 150 mM NaCl, 5 mM 2-mercaptoethanol. The protein was

further purified using Superdex 200 Highload 26/60 column

(Amersham Biosciences). The column was pre-equilibrated with

50 mM Tris-Cl pH 8, 150 mM KCl, 5 mM 2-mercaptoethanol

and protein was eluted in the same buffer and was concentrated

using Amicon ultrafiltration columns (Millipore). During this

process, the buffer was slowly exchanged with 50 mM Tris-Cl

pH 8, 150 mM NaCl, 5 mM 2-mercaptoethanol, aliquoted and

stored at 280uC until required. Protein concentration was

estimated using BCA assay (Sigma).

Analytical gel filtration experiments were performed using

7 mM YqeH in 20 mM Tris pH 8, 10 mM MgCl2 and 150 mM

KCl for the nucleotide-free state. For the nucleotide bound states,

1 mM GDP/GTP and for the transition state analysis 1 mM GDP

with 1 mM AlCl3 and 10 mM NaF were included, in the above

mixture. The reaction mixture (100 ml) was incubated at room

temperature for 10 min and loaded onto a Superdex 200 5/150

GL column (Amersham Biosciences).

Homology Modeling
Homology modeling was performed using modeller9v2 [34].

The monomeric form of MnmE G-domain (PDB: 2gj8),

determined in the transition state, was used as a template. Each

chain (residues 217–376) corresponding to the G-domain was used

as a separate template. Since MnmE is not circularly permuted

like YqeH, the G-domain of MnmE was artificially permuted for

aligning the sequence with the corresponding CPG-domain of

YqeH (residues 57–222). Consequently, switch-II region in YqeH

is not accurately modeled. The alignment was made using

MUSCLE [35] and was manually adjusted later. Distance

restraints between active site residues and GDP?AlFx were derived

from MnmE structure and were applied to the equivalent residues

in YqeH. Based on the evaluation of stereo chemical violations

using MolProbity [36] as well as using Modeller’s discrete

optimized protein energy (DOPE) potential, the best model was

chosen for further analysis. Approximately 94% of the residues in

the chosen models fall under the favoured region in Ramachan-

dran plot. RMSD for the YqeH homology model and the MnmE

transition state structure based on 88 equivalent atom pairs is

0.88 Å.

Supporting Information

Figure S1 Comparison of helix a 2 in the nucleotide-free and transition

state structures of the MnmE G-domain. MnmE in apo (PDB: 1xzp) and

GDP.AlFx (PDB: 2gj8) bound transition state are shown in pink

and blue ribbons, respectively. Amino acid side chains are shown

as sticks. Mg2+ (pink ball), K+ (purple ball), AlFx (green ball and

stick), GDP (ball and stick with P in orange, O in red and C in

gray), catalytic water (red ball, indicated by cw) and bridge water

(red ball, indicated by bw) are shown. The position of helix a 2 is

indicated for both apo and transition state structures. This

superposition reveals a rearrangement at the N-terminal region

of helix a 2 to position the catalytic residue, E282, in a manner

competent to stabilize the bridge water (see the position of E282 in

apo and GDP.AlFx bound states). The orientation of E282 is

further stabilized by interaction with R275 of Switch-II, which also

depicts a large change in its position between the two states.

Found at: doi:10.1371/journal.pone.0009944.s001 (3.34 MB TIF)

Figure S2 Conformation of switch-II in MnmE (transition state) and

GDP bound YqeH. MnmE in GDPNAlFx bound state (PDB: 2gj8)

and Bacillus anthracis YqeH (BaYqeH) in dGDP bound state (PDB:

3h2y) are shown in blue and brown ribbons, respectively.

Representation of amino acids and other elements follows Figure

S1. The positions of helix a 2 and switch-II (sw-II) are indicated

for MnmE, while only the Switch-II is shown for YqeH due to a

relocation of helix a 2 owing to the circular permutation (see Fig.

S3). The location of C-terminal PNR domain in YqeH is depicted

by a purple square. Bacillus subtilis YqeH residue numbering is used

throughout. The steric clash between E282 in MnmE and I220 in

YqeH is depicted by a pink sphere. In MnmE, the switch-II is

continuous with helix a 2. However, owing to circular permuta-

tion in YqeH, switch-II is relocated towards the C-terminus and it

is now connected to PNR domain. Therefore, the conformation of

switch-II is different in MnmE and YqeH. As a consequence, E282

like residue cannot be presented from the first turn of helix a 2 to

bridge the intermediate water due to a steric clash with I220. The

alternative location to present the potential catalytic residue from

helix a 2 would be residue 286 (since i and i+4th residues are on

the same side of the a-helix). However, position corresponding to

286 in MnmE (Ile) and YqeH (Phe) is hydrophobic in nature.

Hence, the likely residue corresponds to position 285, located in

second turn of the helix in MnmE, which is a glycine. This

requires a reorientation of helix a 2, as suggested by Figure S3.

This position in YqeH corresponds to Asp57, the proposed

catalytic residue.

Found at: doi:10.1371/journal.pone.0009944.s002 (2.39 MB TIF)

Figure S3 A hypothesis concerning the re-orientation and stabilization of

helix a 2 in YqeH. MnmE in GDPNAlFx bound state (PDB: 2gj8) and

Bacillus anthracis YqeH (BaYqeH) in dGDP bound state (PDB:

3h2y) are shown in blue and light pink ribbons, respectively.

Representation of amino acids and other elements follow Figure 1.

The positions of helix a 2 and switch-II (sw-II) are indicated. The

location of C-terminal PNR domain in YqeH is depicted by a
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purple square and that of N-terminal Zn finger domain by a

brown square. Bacillus subtilis YqeH residue numbering is used

throughout. Comparison of helix a 2 in MnmE and YqeH suggests

that D55 of YqeH corresponds to R283 of MnmE, D56 of YqeH

corresponds to I284 of MnmE and D57 of YqeH corresponds to

G285 of MnmE. Inspection of electron densities for D55, D56 and

D57 using the deposited structure factors (PDB: 3h2y) shows that

the electron density for the side chains of these residues is not well

resolved. This indicates that these residues are mobile. However,

based on the periodicity of a-helix (ith residue and i+4th residue

occupies the same face of the helix) and maping the location of

D55, D56 and D57 onto helix a 2 of MnmE, it is possible to

suggest that D55 and D56 are unlikely to bridge the intermediate

water as they would be oriented away from the catalytic pocket. In

that case, it is intriguing how helix a 2 and D57 could be

reoriented. Inspection of switch-II in YqeH shows that N221,

H222 and H223 could interact with D55, which might help

orienting helix a 2 suitably. This possibility gains strength from the

fact that, like D55, D56 and D57, the chemical nature of positions

221–223 is also conserved across YqeH orthologs. Since helix a 2

is connected to Zn-finger domain in YqeH, a possible domain

movement associated with it could also help reorienting helix a 2

and thereby position D57 in a catalytically competent position.

Found at: doi:10.1371/journal.pone.0009944.s003 (2.43 MB TIF)

Table S1 List of primers used in generating YqeH point

mutants.

Found at: doi:10.1371/journal.pone.0009944.s004 (0.03 MB

DOC)
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