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Introduction: Alzheimer’s disease (AD) is a severe dementia with clinical and

pathological heterogeneity. Our study was aim to explore the roles of

endoplasmic reticulum (ER) stress-related genes in AD patients based on

interpretable machine learning.

Methods: Microarray datasets were obtained from the Gene Expression

Omnibus (GEO) database. We performed nine machine learning algorithms

including AdaBoost, Logistic Regression, Light Gradient Boosting (LightGBM),

Decision Tree (DT), eXtreme Gradient Boosting (XGBoost), Random Forest,

K-nearest neighbors (KNN), Naïve Bayes, and support vector machines (SVM) to

screen ER stress-related feature genes and estimate their efficiency of these

genes for early diagnosis of AD. ROC curves were performed to evaluate model

performance. Shapley additive explanation (SHAP) was applied for interpreting

the results of these models. AD patients were classified using a consensus

clustering algorithm. Immune infiltration and functional enrichment analysis

were performed via CIBERSORT and GSVA, respectively. CMap analysis was

utilized to identify subtype-specific small-molecule compounds.

Results: Higher levels of immune infiltration were found in AD individuals and

were markedly linked to deregulated ER stress-related genes. The SVM model

exhibited the highest AUC (0.879), accuracy (0.808), recall (0.773), and precision

(0.809). Six characteristic genes (RNF5, UBAC2, DNAJC10, RNF103, DDX3X, and

NGLY1) were determined, which enable to precisely predict AD progression.

The SHAP plots illustrated how a feature gene influence the output of the SVM

prediction model. Patients with AD could obtain clinical benefits from the

feature gene-based nomogram. Two ER stress-related subtypes were

defined in AD, subtype2 exhibited elevated immune infiltration levels and
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immune score, as well as higher expression of immune checkpoint. We finally

identified several subtype-specific small-molecule compounds.

Conclusion: Our study provides new insights into the role of ER stress in AD

heterogeneity and the development of novel targets for individualized

treatment in patients with AD.

KEYWORDS

Alzheimer’s disease, ER stress, machine learning, molecular subtypes, prediction
model

Introduction

Alzheimer’s disease (AD) is a severe progressive

neurodegenerative brain disorder evidenced by amyloid-beta

(Abeta) plaques aggregation, tauopathy, and cognitive

impairment (Masters and Beyreuther, 1998). It has been reported

that approximately 2–8% people suffer from dementia over the past

decades, affecting more than 50 million people worldwide (Skolnik

and Heung, 2018). Alternations in memory are usually the early

clinical manifestation of AD, and as the disease progresses it can

progressively impair other cognitive domains, manifesting as the

dysfunction of speech andmotor, and diminished spatial andmotor

skills (McKhann et al., 2011). Due to the insidious onset of AD,most

patients have missed the optimal treatment stage at the time of first

diagnosis. In addition, the inconsistency of clinical symptoms and

the distinct pathogenesis make the current targeted drugs for AD

unsatisfactory (Nandigam, 2008; Rahimi and Kovacs, 2014).

Therefore, thoroughly understanding of the potential

mechanisms underlying the AD heterogeneity and identifying

novel biomarkers to guide therapeutic strategies against clinical

progression of AD is imperative.

Endoplasmic reticulum (ER) is a critical organelle in maintaining

the homeostasis of intracellular environment. The disruption of ER

homeostasis can lead to ER stress under persistent stress insult, which

evidenced by the alternations in cellular Ca+ concentration and the

over-accumulation of unfolded or misfolded proteins (Adamopoulos

et al., 2014; Leprivier et al., 2015), eventually resulting in various

protein-folding diseases, including AD (Salminen et al., 2009; Li et al.,

2015). Relevant researches demonstrated that AD patients andmouse

exhibited persistent changes in ER stress pathways including the

enhanced phosphorylation of PERK and its downstream molecular

eIF2alpha, as well as the increased activity of ATF4 andCHOP, which

are positively correlation with the severity of AD (Braak scores)

(Marwarha et al., 2017). In addition, other studies proved that ER

stress-inducedCHOPactivationmay participate in triggeringAD-like

pathology via promoting oxidative damage and reinforcing Abeta

production (McCullough et al., 2001; Ghribi et al., 2006). These

studies suggested that ER stress might be a promising target for the

treatment of AD. However, the specific biological mechanisms of ER

in regulatingADprogression has not been fully elucidated and require

further exploration.

In the present study, we comprehensively explored the

expression profiles of ER stress-related genes between normal

and AD subjects and the correlation between differentially

expressed genes (DEGs) associated with ER stress immune

characteristics. Subsequently, we compared the performance of

nine machine learning algorithms including AdaBoost, Logistic

Regression, Light Gradient Boosting (LightGBM), Decision Tree

(DT), eXtreme Gradient Boosting (XGBoost), Random Forest,

K-nearest neighbors (KNN), Naïve Bayes, and support vector

machines (SVM) and determine six characteristic genes among

17 differentially expressed ER stress-related genes, which enable

to precisely predict AD progression. Moreover, we proposed

novel molecular subtypes in AD patients associated with ER and

predicted distinct subtype-specific small-molecule compounds,

which may provide a theoretical basis for developing effective

therapeutic strategies for AD prevention and treatment.

Materials

Data acquisition and pre-processing

Raw gene expression profiles of AD patients were obtained

from GSE33000, GSE5281, GSE122063, and

GSE97760 microarray datasets of the Gene Expression

Omnibus (GEO) website database using the R package of

“GEOquery”. In the GSE33000 dataset, there are 157 healthy

individuals and 310 AD brain tissue samples, detected by

Rosetta/Merck Human 44k 1.1 microarray. The

GSE5281 datasets contains 74 normal subjects and 87 AD

brain tissue samples, analyzed by Affymetrix Human Genome

U133 Plus 2.0 Array. The GSE122063 dataset comprises

44 normal and 56 AD brain tissue samples, detected by

Agilent-039494 SurePrint G3 Human GE v2 8 × 60K

Microarray 039381. The GSE97760 includes 10 control and

nine AD peripheral blood specimens, analyzed by Agilent-

039494 SurePrint G3 Human GE v2 8 × 60K Microarray

039381. Subsequently, to obtain a sufficient number of

samples for further analysis, we combined the gene expression

profiles of three datasets (GSE33000, GSE5281, and GSE122063)

including 275 normal and 453 AD samples based on the Combat
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algorithm of “sva” R package (Leek et al., 2012). The

GSE97760 was selected as external validation set.

Identification of ER stress-associated
DEGs

The ER stress-related genes were accessed from two gene sets

(GOBP response to endoplasmic reticulum stress and GOBP

regulation of response to endoplasmic reticulum stress) of

Molecular Signature Database v7.0 (MSigDB). The “limma” R

package (Ritchie et al., 2015) was utilized to perform gene

analysis of inter-sample differences, and ER stress-related

DEGs were determined in consistent with the criteria of | log2

(fold change) |>0.5 and adjusted p value <0.001.

Functional enrichment analysis

Gene Ontology (GO) analysis including biological

processes (BP), molecular functions (MF), and cellular

components (CC) was conducted to evaluate the biological

functions of ER stress-related genes using the R package of

“ClusterProfiler” (Yu et al., 2012). The remarkable enriched

functions were determined based on the adjusted p value less

than <0.05. The differences of enriched functions and

pathways between distinct ER stress-related subtypes were

assessed using GSVA enrichment analysis based on the

“GSVA” R package (Hänzelmann et al., 2013). Briefly, Two

gene sets (“c2. cp.kegg.v7.4. symbols” and “c5. go.bp.v7.5.1.

symbols”) downloaded from MSigDB database were utilized

as the input files for the subsequent GSVA analysis.

Differential enrichment functions and pathways were

identified by calculating the GSVA scores between distinct

ER stress-related subtypes using the R package of “limma”.

The |t value of GSVA score| greater than two were determined

as remarkably enriched functions and pathways.

Analysis of immune cell infiltrations

The CIBERSORT algorithm with an LM22 gene feature

matrix was utilized to evaluate immune cell subtypes in each

sample on the basis of the gene expression profiles. The p-value

for the inverse fold product of each sample were calculated based

on the Monte Carlo sampling. The differences in immune cell

abundances between distinct groups were estimated using

Wilcoxon rank sum testing and a value of p less than

0.05 was considered statistically different. The correlation

between differential immune cells with ER stress-related genes

was analyzed using Spearson correlation analysis.

Construction and explanation of machine
learning

On the basis of expression profiles of differentially expressed

ER stress-related genes, we applied the Python package

“PyCaret” for establishing nine distinct machine learning

models including AdaBoost, Logistic Regression, Light

Gradient Boosting (LightGBM), Decision Tree (DT), eXtreme

Gradient Boosting (XGBoost), Random Forest, K-nearest

neighbors (KNN), Naïve Bayes, and support vector machines

(SVM). The classification of diseases was regarded as response

variable, and the ER stress-related DEGs were considered as

explanatory variables. A total of 728 samples (275 normal and

453 AD) were randomly divided into training (70%) and

validation (30%) set. The LR model is a popular classification

model enable to accurately predict the expectation of the binary

dependent variable based on the regression coefficients

(Fitzmaurice and Laird, 2001). The Decision Tree model is a

tree-like model including a hierarchy of decision nodes/signature

thresholds, and the structures of trees are vulnerable to data

distribution and complexity (Speybroeck, 2012). AdaBoost,

LightGBM, and XGBoost models are the optimized distributed

gradient boosting libraries possess excellent predictive

performance via transforming a set of weak variables to

strong variables (Freund et al., 1999; Chen and Guestrin,

2016; Ke et al., 2017). The Random Forest model is a multiple

classification trees that combines various decision trees through

majority voting, eventually exhibiting high tolerance for outliers

and noise (Ishwaran, 2015). The KNNmodel is a non-parametric

algorithm based on computing the distance between all samples,

classifying observations by assigning them to the class of their

nearest k neighboring samples. The Naïve Bayes model is a

classifier on the basis of the Bayes theorem for predicting

conditional probabilities. The SVM model, an algorithm

constructing a linear-decision surface over the features, thus

being able to distinctly classify data points (Meyer and Wien,

2001). Each algorithm performs a grid search of hyper-

parameters based on 10-fold cross-validated in the training

dataset to explore the best set of hyper-parameters.

To estimate the performance of multiple machine learning

models, we calculated and compared the areas under the

precision-recall (PR) curve and ROC curve (AUC). In

addition, to comprehensively compare their performance, we

also reported true positive (TP) true negative (TN), false positive

(FP), false negative (FN), accuracy, F1 score, Kappa, MCC.

Moreover, we conducted the Shapley Additive exPlanation

(SHAP) values to provide global and local interpretation of

each feature within machine learning models based on the

Python package of “SHAP” (Lundberg and Lee, 2017). SHAP

values could exhibit how feature variable contributes positively or

negatively to the prediction of the outcome.
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Construction of a nomogram

A total of six characteristic ER stress-related genes were

incorporated to construct a nomogram based on the R package

of “rms”. The calibration curve was applied for estimating the

accuracy of the nomogram and the clinical significance of the

nomogram was evaluated using the decision curve analysis.

External validation analysis

The GSE97760 dataset was applied for external validating the

ability of six characteristic ER stress-related genes

(Supplementary Table S2) to distinguish AD from non-AD

normal, and the AUC curves were plotted using the R

package of “pROC”.

Unsupervised clustering of AD patients

Initially, a total of six characteristic ER stress-related genes

were obtained according to previously reported (Tsvetkov et al.,

2022). We applied the unsupervised clustering analysis

(“ConsensusClusterPlus” R package) (Wilkerson and Hayes,

2010) for classifying the 453 AD samples into different

clusters by using the k-means algorithm with 1,000 iterations.

We chose a maximum subtype number k (k = 6) and the optimal

subtype number was comprehensively evaluated base on the

cumulative distribution function (CDF) curve, consensus

matrix, and consistent cluster score (>0.9). t-Distributed

Stochastic Neighbor Embedding (tSNE) analysis was

performed to demonstrate the distribution difference between

ER stress subtypes and was visualized via the package of

“ggplot2”.

Connectivity map and mechanism of
action analysis

The Connectivity Map database (CMap, https://clue.io/) was

utilized to explore candidate small-molecule compounds

targeting the subtype1-specific and subtype2-specific DEGs.

Briefly, the top 150 most upregulated and downregulated

subtype-specific genes were considered as the input genes to

inquire the CMap database. The top 60 potential compounds

were selected for MoA analysis on the basis of the compounds

enrichment scores.

Statistical analysis

All statistical testings were performed using R software

(version 4.1.0) Wilcoxon sum-rank testing or Student’s

t-testing was applied for analyzing the difference between the

two groups. The correlation analysis among various variables was

conducted using Spearman’s correlation testing. All statistical

p-values calculated were two-sided, and a value of p < 0.05 was

considered as statistical significance.

Results

Dysregulation of ER stress regulators and
alterations in the immunity in AD patients

To investigate the biological functions of ER stress-related

genes in the progression of AD, we first combined the expression

landscapes of 275 normal and 453 AD brain tissue specimens

from the GSE33000, GSE5281, and GSE122063 datasets. A

detailed flow chart of our study procedure was presented in

Figure 1. Brain tissues from distinct platforms showed

remarkably different clustering patterns before batch effect

removal (Figure 2A). While grouped into together after batch

correlation (Figure 2B). A total of 1066 AD-related DEGs

(441 up-regulation and 625 down-regulation) were identified

using the DEG method. We next intersected the 256 ER stress-

related genes with 1066 AD-related DEGs, and seventeen of

which were finally determined as the ER stress-related DEGs in

AD patients (Figure 2C, Supplementary Table S1). Among them,

the gene expression levels of UBAC2, FBXO17, UBE4B,

TMEM67, CREB3L3, RNF103, TMEM117, DNAJC10, and

SEL1L2 were markedly greater, RNF186, NGLY1, AGR2,

RNF5, SERP2, DDX3X, FBXO27, and FGF21 expression levels

were significantly lower in AD patients than that in non-AD

normal individuals (Figures 2D,E). Subsequently, these 17 ER

stress-related DEGs were correlated to estimate whether ER

stress played a critical role in the progression of AD. We

found some ER stress regulators such as DD3X and FGF21,

exhibited a high degree of synergistic effect (coefficient = 0.63).

Meanwhile, RNF5 and UBAC2 demonstrated a significant

antagonistic action (coefficient = -0.51). Moreover, the

correlation patterns of other ER stress-related genes such as

NGLY1 and RNF2, RNF186 AND TMEM67, DD3X and

TMEM117, SERP2, and FBXO27 was also meaningful

(Figure 2F). The network diagram of gene relationship further

clarified the closeness of association among these ER stress-

related DEGs (Figure 2G). In addition, the results of functional

analysis indicated that these ER stress-related DEGs were

primary enriched in classical pathways, such as metabolic

process, response to ER stress and unfolded protein, and

ubiquitin-related functions (Figure 2H).

To illustrate whether patients with AD existed the altered

immune system activity, we conducted immune infiltration

analysis and found significant differences in the abundances

of 22 immune cell subtypes (Figure 3A). Among them, the

infiltration levels of CD8+ T cells, regulatory T cells (Tregs),
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gamma delta T cells, Monocytes, M1 macrophages, resting

dendritic cells, activated dendritic cells, activated mast cells,

eosinophils and neutrophils were markedly higher in AD

patients (Figure 3B), indicating the altered activity of immune

system might be involved in the onset and progression of AD.

Additionally, correlation analysis results suggested that ER

stress-related DEGs were extraordinarily correlated with naïve

B cells, memory B cells, plasma cells, activated memory CD4+

T cells, M1 macrophages, resting dendritic cells, and eosinophils

(Figure 3C), revealing that ER stress-mediated immune cells

activation might be the major pathological mechanism causing

AD progression.

Construction and evaluation of machine
learning models

To identify the optimal machine learning model for

diagnosing AD, we acquired the expression profiles of these

17 ER stress-related DEGs and fit them into nine machine

learning algorithms. A total of 728 samples (275 normal and

453 AD) were randomly into training sets (N = 509) and

testinging sets (N = 219). Subsequently, we estimated the

ability of these machine learning models to discriminate

between AD and normal subjects in the testinging sets

(Table 1). The SVM model exhibited the highest AUC (0.879)

and relative high P-R curve area (0.88), demonstrating the high

performance in differentiating between AD samples and normal

controls (TP = 115, TN = 61). In addition, the SVM model also

showed the best accuracy (0.808), recall (0.773), and precision

(0.809). However, The LRmodel had the lowest AUC (0.733) and

accuracy (0.662) (Figure 4; Table 1).

Global and local explanation of feature
genes

To further interpret the results of machine learning model,

we applied SHAP for computing the influence of each feature to

the prediction model. The importance matrix plot for the SVM

model indicated that the genes with mean (|SHAP value|) value

more than 0.04 were RNF5, SEL1L2, UBAC2, DNAJC10,

RNF103, CREB3L3, SERP2, DDX3X, and NGLY1,

demonstrating that the top nine features contributed more to

the SVM model than other features. In addition, the top nine

features in the LightGBM model were as follows: RNF5,

DNAJC10, UBE4B, RNF103, NGLY1, UBAC2, RNF186,

DDX3X, GBXO17. However, the importance matrix plots

could not tell us whether, for example, different expression

levels of RNF5 contributed positively or negatively to the

FIGURE 1
The study flow chart.
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probability of AD. Therefore, we depicted the SHAP summary

plots for the SVM and LightGBM models, which presented the

relationship between the expression levels of features and the

degree of high and low SHAP values in the testing dataset. On the

SHAP summary plot, feature variables with lower SHAP values

were closely associated with an increased risk of developing AD.

For example, In the SVM model, enhanced expression of

RNF5 corresponded to negative SHAP values and was

negatively associated with the prediction of AD occurrence.

Contrast that with low expression level of RNF5 was linked to

positive SHAP values and exerted a higher marginal influence to

the prediction probability of AD. Conversely, the feature

SEL1L2 showed the opposite impact. Higher expression level

of SEL1L2 had a positive marginal effect on prediction the

occurrence of AD, whereas lower expression level was

correlated with a negative marginal effect on the prediction of

AD occurrence. Other feature variables follow the similar

patterns (Figure 5).

Applying the prediction model

SHAP force plots could illustrate profiles of patient and

normal subjects. The bold-faced number corresponded to the

probability prediction (f(x)), and the base value represented the

value predicted without any model input. The blue bar to the

FIGURE 2
Identification of dysregulated CRGs in AD. (A,B) Principal component analysis (PCA) of three datasets before (A) and after (B) batch effect
removal. (C) Representative venn diagram shows 17 ER stress-related DEGs. (D) Representative volcano plot shows the upregulated and
downregulated DEGs associated with ER stress. (E) Representative violin diagram showed the expression of 17 ER stress-related DEGs between AD
and non-AD controls. ****p < 0.0001. (F) Correlation analysis among 17 ER stress-related DEGs. Blue and red color represents positive and
negative correlation, respectively. The area of the rectangular box represents the different correlation coefficients. (G) Gene relationship network
diagram of 17 ER stress-related DEGs. (H) Go enrichment analysis of 17 ER stress-related DEGs.
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right represented a prediction of normal, while the pink bar to the

left represented a prediction of increased probability of AD. The

length of the colored bars would be facilitated to visualize the

extent of the impact on the prediction. The longer the bar, the

greater the impact. Figure 6A showed the force plot for a patient

individual, which is predicted by the expression of ER stress

DEGs. The expression of RNF188, FGF21, TMEM67, FBXO27,

NGLY1, CREB3L3 were regarded as the major influential factors

FIGURE 3
Identification of immune characteristics between AD and non-AD controls. (A) The relative proportions of 22 immune cells types between AD
and normal individuals. (B) Representative boxplots show the differences of infiltrated immune cells between AD and normal individuals. *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001, ns, no significance. (C)Correlation analysis between 17 ER stress-related DEGs and infiltrated immune cells.

TABLE 1 Comparison of the diagnostic efficacy of nine distinct machine learning models.

Model TP TN FP FN Accuracy AUC Recall Precision F1 Kappa MCC

AdaBoost 100 55 38 26 0.708 0.807 0.794 0.725 0.758 0.392 0.394

Logistic Regression 101 44 49 25 0.662 0.733 0.802 0.673 0.732 0.284 0.292

LightGBM 106 56 37 20 0.740 0.845 0.841 0.741 0.788 0.454 0.460

Decision Tree 105 60 33 21 0.749 0.770 0.833 0.755 0.792 0.477 0.480

XGBoost 108 53 40 18 0.735 0.820 0.857 0.730 0.788 0.441 0.451

Random Forest 114 49 44 12 0.744 0.841 0.905 0.817 0.803 0.452 0.476

KNN 111 53 40 15 0.749 0.808 0.881 0.735 0.801 0.467 0.482

SVM 115 61 32 11 0.808 0.879 0.873 0.809 0.840 0.602 0.605

Naive Bayes 109 43 50 17 0.694 0.768 0.865 0.686 0.764 0.343 0.363

Frontiers in Pharmacology frontiersin.org07

Lai et al. 10.3389/fphar.2022.975774

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.975774


concerning AD progression. Figure 6B exhibited the profile of a

normal subject. The model considered the expression of DDX3X,

SEL1L2, UBAC2, UBEB4 as the apparent influential factors

reducing this risk of AD occurrence. Figure 6C depicted the

global interpretation for all the samples (including normal and

patient subjects) in the testinging set.

Selection and validation of characteristic
genes

According to the average SHAP values, we intersected the top

nine ER stress-related DEGs from the SVM and LightGBM

machine learning models to determine the final characteristic

genes. Following intersection, six characteristic genes shared by

SVM and LightGBM algorithms were eventually determined

(RNF5, UBAC2, DNAJC10, RNF103, DDX3X, and NGLY1).

SHAP dependence plots presented how a characteristic gene

influenced the occurrence of AD and exhibited how the

attributed importance of a feature gene changed with its

value. In total, low expression of RNF5, DD3X, and

NGLY1 had an increased risk of developing AD. In addition,

high expression of UBAC2, DNAJC10, and RNF103 were the risk

factors for AD progression (Figure 7).

Subsequently, ROC curves analysis was utilized to estimate

the diagnostic ability of each feature gene in predicting AD

progression in the testing set. The AUC values of ROC curves

were 0.763 of RNF5, 0.752 of UBAC2, 0.737 of DNAJC10,

0.730 of RNF103, 0.735 of DDX3X, and 0.780 of NGLY1

(Figure 8A). In addition, a nomogram was established as a

predictive tool for AD progression by incorporating these

six ER stress-related feature genes. In the nomogram, the

expression of each feature variable corresponded to a score

point, and the total score corresponded to different AD risks,

which was obtained by adding up the scores of all feature

variables (Figure 8B). The calibration curve confirmed that the

nomogram had the ability to accurately evaluate the progression

of AD (Figure 8C). The decision curve analysis indicated that the

patients with AD could derive clinically benefit from the

nomogram (Figure 8D). Moreover, external validation dataset

GSE97760 was further applied for verifying the diagnostic value

of these characteristic genes. Consistently, The AUC values of

ROC curves were 0.778 of RNF5, 0.811 of UBAC2, one of

DNAJC10, 0.989 of RNF103, one of DDX3X, and 0.989 of

NGLY1 (Figure 8E). Combined these results, we can infer that

these ER stress-related feature genes enabled to accurately

distinguish AD from non-AD normal.

Identification of ER stress subtypes in AD

To illustrate the ER stress-related patterns in AD, we

classified the 453 AD samples based on the expression

landscapes of seven ER stress-related feature genes using a

consensus clustering approach. The number of subtypes were

more stable when k = 2 (Figure 9A), and the CDF plot exhibited

the minimum fluctuation when the consistency index ranged

from 0.2 to 0.6 (Figure 9B). Moreover, relative alterations in the

area under the CDF curve presented the significant difference (k

and k-1) when k = 2 to k = 6 (Figure 9C). Additionally, the

FIGURE 4
Evaluation of the nine machine learning algorithms based on the area under the ROC curve (AUC) and PR curve. (A) AdaBoost machine learning
algorithm. (B) Logistic Regression machine learning algorithm. (C) LightGBM machine learning algorithm. (D) Decision Tree machine learning
algorithm. (E) XGBoost machine learning algorithm. (F) Random Forest machine learning algorithm. (G) KNN machine learning algorithm. (H) Naïve
Bayes machine learning algorithm. (I) SVM machine learning algorithm.
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consistency score of each subtype was highest (both more than

0.9) when k = 2 (Figure 9D). We thus classified 453 AD samples

into two distinct subtypes, including Subtype1 (n = 318) and

Subtype2 (n = 135). tSNE analysis demonstrated the obvious

difference between these subtypes (Figure 9E).

Differentiation of ER stress features and
immune characteristics between ER stress
subtypes

To clarify the molecular characteristics between these

subtypes, we first extensively evaluated the expression

differences of six ER stress-related feature genes in the groups

with different ER stress molecular patterns. The distinct

expression profiles of ER stress-related feature gene were

found between these ER stress molecular patterns

(Figure 10A). Subtype1 presented enhanced expression of

UBAC2, DNAJC10, and RNF103, whereas subtype2 was

characterized by higher expression of RNF5, DDX3X, and

NGLY1 (Figure 10B). Additionally, alternations in immune

infiltrating were observed between subtype1 and subtype2.

Subtype2 showed greater abundances of follicular helper

T cells, regulatory T cells (Tregs), resting NK cells, and

M1 macrophages (Figure 10C). Consistently, subtype2 also

displayed a higher immune score (Figure 10D). Next, we

FIGURE 5
Importance matrix and SHAP summary plot of SVM (A) and LightGBM (B) machine learning algorithms. Importance matrix exhibit the
importance of each variable for predicting AD progression. The SHAP value of each variable is positively correlated with the probability of developing
AD. Each dot corresponds to the SHAP value of each sample, and red color corresponds to higher feature values, blue color corresponds to lower
feature values.
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further estimated the difference of classic immune and immune

checkpoint-related genes between these subtypes. The results

revealed that most immunosuppression, immune activation, and

MHC-related genes were conspicuous boosted in subtype2 when

compared with subtype1 (Supplementary Figures S1A–C),

indicating that ER stress subtype2 had a stronger immune

response than ER stress subtype1. Furthermore, the expression

of immune checkpoint-related genes, such as HAVCR2, TIGIT,

CTLA4, CD86, CD70, CD40, CD27, and PDCD1, were

remarkably upregulated in the ER stress subtype2. Combined

these results, we considered ER stress subtype2 as an immune

subtype andmight be benefit from immune therapy (Figure 10E).

FIGURE 6
SHAP force plot for a patient (A) and normal (B) individual; (C) SHAP values (global interpretation) for the testing set. The abscissa corresponds to
each sample (normal or patient), and the ordinate corresponds to the SHAP value. More red reveals a greater overall risk for developing AD.

FIGURE 7
SHAP dependence plot of the SVMmodel, exhibiting the effect of RNF5 (A), UBAC2 (B), DNAJC10 (C), RNF103 (D), DDX3X (E), and NGLY1 (F) on
the prediction. SHAP values that exceed zero indicate an increased risk of AD.
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Identification of functional annotation
based on ER stress subtypes

The GSVA analysis was conduct to evaluate the

differences of enriched functions and pathways in the

groups with different ER stress expression patterns. The

results revealed that apoptosis and cytokine associated

pathways were upregulated in suptype2. Otherwise, the

obvious pathways were also enriched in the regulation of

immune responses such as autoimmune thyroid disease, the

production of IGA, B cells and T cells receptor signaling

pathways, toll like and nod like receptor signaling

pathways, and antigen processing and presentation

(Figure 11A; Supplementary Table S3). In addition,

functional enrichment results suggested that dendritic cells

differentiation, the development of nervous system, the

regulation of immune-related biological functions such as

monocyte differentiation, T cells proliferation and

migration, the activation of natural killer cells, lymphocyte

migration, T cells and leukocyte mediated apoptotic process

were prominently upregulated in subtype2 (Figure 11B;

Supplementary Table S4).

Prediction of subtype-specific small
molecular compounds and mechanism of
action

To explore the potential drug targets againts distinct

subtypes, the prediction of subtype1 and subtype2-sepcific

small molecular compounds was performed using CMap

analysis. Among the subtype1-specific small molecular

compounds, cyclopiazonic-acid, digitoxin, and thapsigargin

shared ATPase inhibitors, while gossypol and obatoclax

shared BCL inhibitor (Figure 11C). Among the subtype2-

specific small molecular compounds, camptothecin,

daunorubicin, doxorubicin, idarubicin, mitoxantrone,

pidorubicine, pirarubicin, topotecan shared Topoisomerase

inhibitor (Figure 11D).

Discussion

AD, the most prevalent neurodegenerative disease

worldwide, can lead to progressive decline of cognitive

function, eventually result in death (Kumar et al., 2015).

FIGURE 8
Validation of the diagnostic efficacy based on characteristic genes. (A) ROC curves evaluating the diagnostic performance of feature genes in
the testing set. (B) Establishment of a nomogram for predicting the risk of AD on the basis of feature genes in the testing set. (C) Calibration curve
evaluates the prediction efficacy of the nomogram. (D)DCA estimates the clinical benefit of the nomogram. (E) ROC analysis of the six characteristic
genes in GSE97760 dataset.
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However, due to the poor of the existing neural markers and

the heterogeneity of pathogenesis in patients with AD, a great

number of patients have not achieved satisfactory results

(Mann et al., 1988; Maciejczyk et al., 2020; Cano et al.,

2021; Duara and Barker, 2022). Therefore, it is urgent to

identify more powerful diagnostic markers and more

suitable molecular subtypes and to establish a diagnostic

model for AD.

As one of the most critical organelles, Endoplasmic

reticulum (ER) mainly participates in the protein synthesis,

lipid metabolism, and the storage of intracellular calcium, as

well as the regulation of various cellular signaling pathways

(Schwarz and Blower, 2016; Kepp and Galluzzi, 2020). The

accumulation of misfolded proteins in the ER results in ER

stress, eventually activates the protective unfolded protein

response (UPR) to maintain the homeostasis of ER (Ron

and Walter, 2007). The activation of ER stress-related

sensors, such as PERK-ATF4-CHOP, IRE1-XBP1, and

pathways exert a vital role in regulating cellular

physiological responses induced by ER stress. (Lee, 2005;

Yang et al., 2013; Yatchenko et al., 2019). However,

excessive and persistent ER stress could lead to

inappropriate activation of UPR, eventually resulting in

apoptosis or autophagy-dependent cell death (Szegezdi

et al., 2006; Fernández et al., 2015). Previous study

demonstrated that ER stress is closely related with the

occurrence and progression of various diseases including

neurodegenerative diseases, and tumors (Hetz and Saxena,

2017; Chen and Cubillos-Ruiz, 2021; Ren et al., 2021).

Therefore, the comprehensive exploration of ER stress will

provide critical insights into the clinical treatment of these

diseases.

Excessive accumulation of misfolded proteins caused by

alternations in the expression of ER chaperones and folding

protein enzymes is closely related to AD. ER stress

characterized by the dysfunction of unfolded protein

response could eventually result in neurodegeneration and

neuronal death (Gerakis and Hetz, 2018; Uddin et al., 2021).

ER stress is usually accompanied by the activation of PERK-

dependent phosphorylation signal pathway, which is

evidenced by the enhanced downstream expression of

ATF4 and CHOP proteins. Subsequently, the pro-apoptotic

branch of UPR is activated, eventually triggers neuronal loss

and AD progression (Rozpędek et al., 2019). In addition, ER

FIGURE 9
Identification of ER stress-relatedmolecular patterns in AD. (A)Consensus clusteringmatrix when k = 2. (B–E) Representative CDF curves when
k= 2 to 6. (C) Relative alterations in CDF delta area curves. (D)Consensus score in each subtypewhen k= 2 to 6. (E) t-SNE diagram demonstrates that
the AD patients are classified into two distinct subtypes.
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stress plays a critical role in activating immunosuppressive

network in AD patients. For example, the myeloid-derived

suppressor cells (MDSC) and regulatory T cells (Treg) have

been implicated in the progression of AD by exhibiting their

repressive phenotypes (Salminen et al., 2020). Besides,

relevant studies also demonstrated that the suppression of

IRE-1-XBP1 signaling pathway in the nervous system can

exert prominent neuroprotective effect by constraining the

accumulation of amyloid and amyloid β oligomers, and

inhibiting the activation of astrocyte (Duran-Aniotz et al.,

2017; Zarini-Gakiye et al., 2021). Although increasing number

of studies have confirmed the pathological mechanisms of ER

stress in AD, the specific biological functions of ER stress in

AD have not been fully elucidated, especially ER stress-related

molecular patterns and the roles of ER stress in regulation AD

immunity.

In this study, we fully evaluated the expression of ER stress

regulators in brain tissues between normal and AD individuals. A

total of 17 dysregulated ER stress-related DEGs were determined

in AD brain tissues, suggesting a crucial role of ER stress in

exacerbating the progression of AD. Correlation analysis

revealed the significant synergistic or antagonistic effects

among these ER stress regulators, as evidenced by the

interactions of ER stress-related DEGs in AD patients.

Meanwhile, a significant alternation in the proportion of

immune cells was found between normal and AD subjects.

AD patients presented greater infiltration levels of CD8+

T cells, regulatory T cells (Tregs), gamma delta T cells,

Monocytes, M1 macrophages, resting dendritic cells, activated

dendritic cells, activated mast cells, eosinophils and neutrophils,

which were consensus with the previous studies (Ciaramella

et al., 2010; Kwak et al., 2014; Lehrer and Rheinstein, 2016;

Stock et al., 2018; Kapellos et al., 2019; Salminen et al., 2020).

Furthermore, we also found an extraordinary correlation

between these upregulated immune cells and ER stress-related

DEGs. Subsequently, we compared the performance of nine

machine learning algorithms and the SVM model exhibited

the highest AUC value and relative high P-R curve area.

Subsequently, we performed the global and local explanation

of these ER stress-related genes and selected six characteristic

genes (RNF5, UBAC2, DNAJC10, RNF103, DDX3X, and

NGLY1), all of them enable to precisely predict AD

FIGURE 10
Identification of the differentiation of feature genes and immune characteristics between ER stress subtypes. (A) Representative heatmap
reveals the differential expression of six characteristic genes between ER stress subtypes. (B) Representative boxplots show the expression of six
characteristic genes between ER stress subtypes. ****p < 0.0001. (C) Representative boxplots show the differences of infiltrated immune cells
between ER stress subtypes. **p < 0.01, ****p < 0.0001, ns, no significance. (D) Representative boxplot reveals the immune score between ER
stress subtypes. (E) Representative boxplots present the expression of immune checkpoints-related genes. *p < 0.05. **p < 0.01.****p < 0.0001.
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progression. Further, we performed unsupervised cluster

approach to estimate the molecular patterns in AD brain

tissues based on the expression six characteristic ER stress

regulators, and we eventually identified two distinct molecular

subtypes. Immune infiltration analysis indicated that

subtype2 displayed a enhanced immune score and relatively

greater immune infiltration levels. Functional enrichment

analysis revealed that subtype2 was closely related to

differentiation, migration, and activation of multiple immune

cells. Moreover, immune checkpoint-related genes were

remarkably increased in the subtype2. Therefore, it would be

reasonable to infer that subtype2 may be able to prevent AD

deterioration by generating multiple immune cells such as T cells

and B cells, and eventually exhibit a better prognosis for AD.

In recent years, machine learning has been widely used to

predict novel biomarkers and provide novel insights into the

mechanism of disease pathogenesis due to the excellent

performance in clinical diagnosis (Rajkomar et al., 2019; Do

and Le, 2020; Le et al., 2021). This study identified potential ER

stress-related DEGs for predicting the progression of AD and

constructed a predictive model in AD patients on the basis of

machine learning models. The predictive performance generated

by nine machine learning classifiers were compared based on the

expression landscapes of differentially expressed ER stress-

related genes, and the results indicated that SVM model had

the highest AUC (0.879), accuracy (0.808), true positive

predictive (TP = 115), true negative predictive values (TN =

61), recall (0.873), and precision (0.809). It has been reported that

SVM model is a high-performance linear-decision surface

algorithm that has been applied for the early prediction of AD

(Liu et al., 2021; Zhang et al., 2021). To the best of our knowledge,

this is the first published study to identify potential biomarkers

associated with ER stress through comparing multiple machine

learning algorithms and apply the SVM algorithm to predict the

risk of AD.

Previous studies have described machine learning algorithms

as black boxes because they provide little information about how

predictions have been made, which greatly limits the clinical

application of machine learning, as clinicians are reluctant to

apply opaque decision-making methods for medical diagnosis. In

our current study, we utilized SHAP methodology to further

explain the decision process of the SVM and LightGBM

algorithms, respectively. Subsequently, we identified the final

six feature variables (RNF5, UBAC2, DNAJC10, RNF103,

FIGURE 11
Identification of cluster-specific biological characteristic and small-molecule compounds. (A) Differences in the enriched hallmark pathways
between ER stress subtypes ranked by t value of GSVA score. (B)Differences in enriched biological functions between ER stress subtypes ranked by t
value of GSVA score. (C,D) CMap analysis shows the MoA based on subtype1-specific (C) and subtype2-specific (D) small-molecule compounds.
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DDX3X, and NGLY1) via intersecting the results of SVM and

LightGBM machine learning models, all of which could

accurately predict the progression of AD. RNF5, a member of

E3 ubiquitin protein ligase, exerts the neuroprotection effect as a

downstream molecular of the DJ-1/Akt signaling pathway

(Zhang et al., 2012). UBAC2, which serves as a regulator of

ER-associated protein degradation, plays a critical role in

promoting the occurrence and development of malignant

tumors (Gu et al., 2020). It has been reported that the

mutation of DNAJC protein family may contribute to

Parkinson’s disease pathogenesis, suggesting that they may be

considered as effective therapeutic targets in neurodegenerative

diseases (Roosen et al., 2019). As a vital ERAD (ER-associated

degradation)-related E3 ligase, RNF103 is mainly participated in

the cytosolic protein homeostasis (Kadowaki et al., 2018).

DDX3X is a gene essentially for cortical development by

regulating neuron outgrowth. DDX3X mutations can impair

RNA helicase activity and disturb RNA metabolism, thus

leading to the pathogenesis of autism, brain malformations,

and epilepsy (Lennox et al., 2020). Recent study has

demonstrated that depletion of NGLY1 is implicated in the

presentation of neurodegenerative phenotypes and the

development of pathological abnormalities, which might be

associated with the accumulation of cytoplasmic ubiquitinated

proteins (Asahina et al., 2020).

Some limitations needed to be pointed out in the current

study. Firstly, more detailed clinical information needed to be

taken into account to validate the predictive efficacy of the SVM

machine learning. In addition, subsequent experiments are

essentially to confirm the expression levels of ER stress-related

DEGs as well as the therapeutic effects of subtype-specific small-

molecule compounds in alleviating AD. Moreover, larger

number of external validation cohorts are required to

construct stability in the performance of our diagnostic model.

Conclusion

Overall, our study revealed a correlation between ER stress

and infiltrated immune cells and determined six feature genes

associated ER stress (RNF5, UBAC2, DNAJC10, RNF103,

DDX3X, and NGLY1) that could accurately predict AD

progression based on interpretable machine learning.

Moreover, we illustrated the prominent heterogeneity of

immunity between AD patients with distinct ER stress

subtypes. Our study provides new insights into the role of ER

stress in AD heterogeneity and the development of novel targets

for immunotherapy in patients with AD.
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