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A B S T R A C T   

Patients with prolonged disorders of consciousness (PDOC) are often unable to communicate their state of 
consciousness. Determining the latter is essential for the patient’s care and prospects of recovery. Auditory 
stimulation in combination with neural recordings is a promising technique towards an objective assessment of 
conscious awareness. Here, we investigated the potential of complex, acoustic stimuli to elicit EEG responses 
suitable for classifying multiple subject groups, from unconscious to responding. 

We presented naturalistic auditory textures with unexpectedly changing statistics to human listeners. Awake, 
active listeners were asked to indicate the change by button press, while all other groups (awake passive, asleep, 
minimally conscious state (MCS), and unresponsive wakefulness syndrome (UWS)) listened passively. We 
quantified the evoked potential at stimulus onset and change in stimulus statistics, as well as the complexity of 
neural response during the change of stimulus statistics. 

On the group level, onset and change potentials classified patients and healthy controls successfully but failed 
to differentiate between the UWS and MCS groups. Conversely, the Lempel-Ziv complexity of the scalp-level 
potential allowed reliable differentiation between UWS and MCS even for individual subjects, when compared 
with the clinical assessment aligned to the EEG measurements. The accuracy appears to improve further when 
taking the latest available clinical diagnosis into account. 

In summary, EEG signal complexity during onset and changes in complex acoustic stimuli provides an 
objective criterion for distinguishing states of consciousness in clinical patients. These results suggest EEG- 
recordings as a cost-effective tool to choose appropriate treatments for non-responsive PDOC patients.   

1. Introduction 

One of the most challenging clinical issues in patients with prolonged 
disorders of consciousness (PDOC) is to reliably estimate their residual, 
conscious perception of the environment. Vegetative state (VS; recently 
termed unresponsive wakefulness syndrome, UWS; (Laureys et al., 
2010)) patients are believed to retain basic reflexes or sleep-wake cycles 
while remaining entirely unaware of self and environment (Monti et al., 
2010). On the contrary, minimally conscious state (MCS) patients seem 
to preserve residual cortical functioning and display clear but incon-
sistent signs of awareness (Giacino and Schiff, 2009). Upon emergence 
from a minimally conscious state (EMCS) patients recover functional 
communication, although they often remain cognitively impaired (Di 

Perri et al., 2016). Several active (e.g. Cruse et al., 2011) and passive (e. 
g. King et al., 2013b) neuroimaging paradigms have suggested that some 
patients clinically classified as UWS can reveal signs of awareness and 
volitional control which argue that these patients should actually be 
classified as MCS, EMCS or locked-in syndrome (LIS). Considering that 
selection and administration of the appropriate rehabilitation programs 
necessarily require determination of the consciousness state, objective 
quantitative classification methods will facilitate PDOC treatment. 

Following severe brain lesions that lead to PDOC states, it was sug-
gested that the auditory system is less likely to be damaged in com-
parison with other parts of the brain (Kotchoubey et al., 2015). 
Moreover, audition was recently suggested to be particularly sensitive to 
fluctuations in the state of consciousness (Boly et al., 2004; Demertzi 
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et al., 2014; Schiff et al., 2005). The results of a number of auditory 
studies that attempted to assess conscious processing with specific 
neural signatures in PDOC patients, using simple sounds (e.g. Binder 
et al., 2017), complex sound sequences (with P3b, e.g. Faugeras et al., 
2012); but criticized by Tzovara et al., 2015), familiar sounds (Heine 
et al., 2015; Perrin et al., 2015), or speech (with N400, e.g. Steppacher 
et al., 2013) although (Rohaut and Naccache, 2017) presented it as a 
marker of early stage unconscious processing (Steppacher et al., 2013) 
remain partially inconsistent, specifically it remains unclear to what 
extent certain event-related responses co-exist with presence vs. absence 
of consciousness. 

In the present study, we build on previous studies by (1) investi-
gating a wide range of subject groups, from healthy responding subjects 
to unconscious patients, and (2) presenting common naturalistic audi-
tory textures, i.e. complex sounds whose stimulus statistics change at a 
random time during stimulus presentation. Detecting these changes is a 
challenging, real-world task: in natural sounds, changes may occur un-
expectedly, signalling potential dangers; consider for example listening 
to a busy street and discerning a car that turns towards you. Detecting 
these changes requires listeners to be aware of the recent acoustic sta-
tistics. In normal hearing subjects, we recently demonstrated (Boubenec 
et al., 2017) that the change in statistics leads to a characteristic cen-
troparietal positivity (CPP, O’Connell et al., 2012). The CPP slope and 
size scales with the amount of evidence, suggesting that it reflects an 
underlying process of evidence integration (Boubenec et al., 2017; Kelly 
and O’Connell, 2013). Further, we found the CPP to depend on the level 
of processing, comparing between active, passive-aware (for subjects 
which had completed the active part before), and passive-naive (i.e. 
listeners for which the sounds were new, Górska et al., 2018). The fact 
that the CPP was still detectable even in passive-naive subjects 
encouraged us to use natural textures in order to assess the state of 
consciousness in a group of PDOC patients. 

We find that the parietal signal, while prominent during waking, 
vanished during deep NREM sleep (first cycles during the night) and was 
not significantly present in the UWS and MCS patient groups. As an 
alternative analysis, we assessed the dynamical complexity of the neural 
response at the transitions of stimulus statistics using the Perturbational 
Complexity Index (PCI) measure, based on Lempel-Ziv complexity. We 
here refer to it as PCIa (audition) to indicate that the perturbation was an 
auditory stimulation. PCIa can simultaneously quantify integration and 
differentiation in the nervous system (Bodart et al., 2017; Casali et al., 
2013; Casarotto et al., 2016) and thus has been proposed to estimate the 
state of consciousness irrespective of other related processes (Tononi 
et al., 2016). The results showed that PCIa can distinguish purportedly 
conscious (Responding, Non-Responding, MCS patients) from purport-
edly unconscious (NREM sleep, UWS patients), even on a single subject 
basis. We therefore propose that auditory textures in combination with 
complexity analysis provide a promising avenue for an objective 
assessment of the global state of consciousness even in passive PDOC 
patients. 

2. Materials and methods 

2.1. Subject groups and PDOC assessment 

Multiple groups of PDOC patients and healthy volunteers partici-
pated in this study. All experiments were performed in accordance with 
the directives of the Helsinki Declaration (1975, revised 2000) and were 
approved by the Local Review Board of the Institute of Psychology, 
Jagiellonian University. Before participants were included in the study, 
healthy participants signed a written consent form, and informed con-
sent was obtained from the legal surrogates of the PDOC patients. 

The initial PDOC group consisted of 31 patients, however, some were 
excluded according to the three criteria of data quality. Specifically, (1) 
if the EEG amplitude exceeded +/- 200 μV in more than half of the trials, 
or (2) we observed specific movements artifacts e.g. teeth grinding, 

repeated jaw clamping, or (3) it was evident from the behavioural notes 
that a patient was sleeping for more than a half of the recording, subjects 
were excluded from further analysis. The latter was evaluated on the 
basis of the observable body reactions during the experiment. Based on 
these criteria seven subjects had to be excluded, leading to a final sample 
of 24 PDOC patients included in the subsequent analysis (mean age 
40.43, sd: 14.38, 8 females). 

These patients were behaviorally diagnosed on the basis of the Polish 
adaptation of the Coma Recovery Scale - Revised (CRS-R, Binder et al., 
2018; Kalmar and Giacino, 2005)) as either UWS/VS (12 patients) or 
MCS and EMCS (5 and 7 i.e. 12 patients examined together), see Table 1 
for detailed information about the patients i.e. sex, age, etiology, time 
after the injury, CRS-R, the time between CRS-R and EEG. The CRS-R is a 
behavioural scoring tool consisting of six subscales that address audi-
tory, visual, motor, oromotor, communication and arousal functions. It 
includes 23 items, hierarchically arranged in each subscale; starting 
from the lowest rate that represents reflexive responses, up to the 
highest rate representing cognitively mediated behaviours. CRS-R 
explicitly incorporates diagnostic criteria for UWS/VS (MSTF, 1994) 
and MCS (Giacino et al., 2002) and thus it received the strongest 
recommendation for differential diagnosis compared with other scales 
(Gerrard et al., 2014). Additionally, before the experiments, (transiently 
evoked) otoacoustic emissions were assessed for each DOC patient using 
an OtoRead™ device (Interacoustics, Middelfart, DK). This measure-
ment employs a TEOAE protocol and only patients with SNR > 4 dB at 3/ 
6 frequencies were included in the experiment. 

The control groups included 28 normal hearing healthy volunteers, 
who all declared no substance abuse, were medication-free and did not 
report any neurological disorders. The first group (referred to as Awake 
Reporting below) consisted of 12 subjects (mean age 24.6 SD: 3.8, 8 
females), the second group (Awake Passive) included 16 subjects, but 
only 12 of them (mean age 26.6 SD: 6.03, 6 females) were considered for 
further analysis due to the extensive noise recorded in at least one of the 
EEG sessions together with the prominent low-frequency activity e.g. 
extensive alpha evaluated from the occipital electrodes. The third group 
(Asleep NREM) was formed from subsets of the above groups, totalling 
17 subjects, while 15 of them were analysed (mean age 25.2 SD: 4.2, 10 
females; 12 subjects from the first and 4 from the second group). One 
subject was excluded because of the insufficient number of trials during 
NREM sleep and another due to extensive noise, which resulted in the 
rejection of more than 2/3 of trials based on the noise criterion, i.e. the 
amplitude larger than +/- 200 μV. 

2.2. Stimulus design 

A set of complex sounds, so-called naturalistic auditory textures 
(McDermott and Simoncelli, 2011), was presented to each subject. The 
set was drawn from a stimulus set used previously in healthy subjects 
(Górska et al., 2018), reduced here to account for the more limited, 
recording time available when working with (PDOC) patients. We pro-
vide here a brief description of the stimulus design, for a complete 
description see (Górska et al., 2018). 

Each sound was composed of a sequence of two auditory textures 
(see Fig. 1 for illustration). The first auditory texture followed the sta-
tistics of a single natural sound (sound of rain or bubbling in water), 
while the second texture was a linear mixture between the statistics of 
two natural sounds, one of which was the same as the first texture. This 
design allowed us to adjust the difficulty of the task. For the present set 
of subjects, the new texture contributed 60% to the second texture, 
while the first, baseline texture contributed only 40%. All textures were 
created using an openly available toolbox (McDermott and Simoncelli, 
2011). 

The transition between the sounds occurred at a pseudorandom time 
(either at 0.75 s, 1.6 s or 3 s), consisted of a linear mixing between the 
sounds over a duration of 10 ms with a sigmoidal profile over time (see 
Górska et al., 2018 for details). After the transition, each sound 
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Table.1 
Clinical and demographic characteristics of PDOC patients. Total CRS-R score was marked in bold.  

Patient Age Sex Etiology Time since 
injury 
(months) 

Time between EEG 
and CRS-R acquisition 
(days) 

CRS-R subscales Total 
CRS-R 
score 

diagnosis The latest 
CRS-R total 
score 

The latest 
diagnosis 

Time since 
original CRS-R 
(days) 

auditory visual motor oromotor communication arousal 

UWS1 38 M anoxia 27 7 2 1 2 0 0 2 7 UWS 7 UWS – 
UWS2 48 M anoxia 97 6 1 1 0 0 0 1 3 UWS 3 UWS 1078 
UWS3 40 M anoxia 49 6 1 0 2 0 0 1 4 UWS 5 UWS 1077 
UWS4 59 M anoxia +

additional 
14 15 1 0 1 0 0 1 3 UWS 3 UWS – 

UWS5 28 M anoxia +
diabetes 

6 6 1 0 1 0 0 1 3 UWS 2 UWS 59 

UWS6 52 M anoxia 25 0 1 1 1 1 0 2 6 UWS 6 UWS – 
UWS7 28 M anoxia +

diabetes 
11 0 1 0 1 0 0 0 2 UWS 2 UWS – 

UWS8 25 F trauma +
diabetes 

23 0 1 0 1 1 0 1 4 UWS 4 UWS 413 

UWS9 63 F anoxia 11 0 1 0 2 1 0 1 5 UWS 5 UWS 40 
UWS10 28 F trauma 23 0 1 0 1 0 0 1 3 UWS 9 MCS 460 
UWS11 30 F trauma 9 1 1 0 1 0 0 1 3 UWS 3 UWS – 
UWS12 60 M anoxia 5 0 2 0 0 1 0 1 4 UWS 3 UWS 20 
MCS1 28 F anoxia 69 7 4 5 4 1 2 3 20 EMCS 22 EMCS 595 
MCS2 37 F stroke 5 6 4 5 4 1 1 2 18 EMCS 17 EMCS 238 
MCS3 30 F trauma 12 0 3 5 2 1 1 2 14 MCS 9 MCS 98 
MCS4 38 F stroke 4 1 4 5 4 1 2 3 16 EMCS 21 EMCS 118 
MCS5 30 M anoxia 15 1 2 3 3 1 0 3 12 MCS 18 MCS 340 
MCS6 38 F stroke 18 1 4 5 5 1 2 3 20 EMCS 20 EMCS – 
MCS7 49 F stroke 17 0 1 3 2 1 1 1 9 MCS 6 UWS 497 
MCS8 22 M trauma 3 0 3 5 2 1 2 3 16 MCS 5 UWS 321 
MCS9 55 M trauma 14 1 4 5 4 1 2 3 19 EMCS 5 UWS 575 
MCS10 30 M trauma 24 0 3 5 2 1 1 1 13 MCS 13 MCS – 
MCS11 34 M trauma 8 0 4 5 2 1 2 3 17 EMCS 13 MCS 451 
MCS12 22 M trauma 11 0 4 5 6 1 1 3 20 EMCS 20 EMCS –  
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continued for 2 s. Every sound repetition was followed by an inter-
stimulus interval (silence) of random length drawn from 1 to 2 s. Sham 
trials of matched lengths were included (50%), in which the first texture 
simply continued for the entire trial duration. To reduce the overall time 
of auditory stimulation in PDOC patients’ group, only one length of the 
sham type of trials (CT = 3 s) was used. 

The natural textures used in the present experiment were based on 
two textures: the sound of rain and bubbles in water (see Fig. 1 for 
illustration). This choice was motivated by their level of similarity, i.e. 
the distinction between the two was neither trivial nor too difficult, as 
well as the fact that they both fulfilled the criteria of being spectrally and 
temporally broad and dense. We used multiple (i.e. 10) samples of each 
sound, which were matched in statistics, but differed in spectrotemporal 
details. In this way, a given statistic is not recognizable by a particular 
and static realization of the fine structure. The level of the stimulus was 
set to 70 dB SPL, which remained unchanged at and throughout the 
transition. Onsets and offsets were gated with a 10 ms sinusoidal func-
tion to reduce spectral broadening at the beginning and end of the 
sound. 

3. Experimental procedure 

The auditory textures were presented to awake and asleep subjects in 
separate experimental sessions. The complete dataset - EEG recording 
and CRS-R assessment - from each individual PDOC patient was regis-
tered during one of the five visits to the care centre in Torun, Poland. 

3.1. Awake sessions 

During awake sessions, control subjects were seated in an air- 
conditioned, soundproof chamber facing a monitor. After the proced-
ure was briefly explained electrodes were attached to the scalp. The AEP 
recording was preceded by 2 min of resting-state registration. Subjects 
were instructed to maintain visual fixation on a white cross displayed in 
the middle of the screen. It was visible throughout the entire experiment 
for the Passive condition, while in the Responding condition it was 
temporarily removed after each stimulus to allow subjects to respond 
and blink if necessary. 

The Awake Reporting group performed an active task in which they 
were asked to press a button after the offset of the sound if they detected 

the change in statistics (single response task). In each trial, the sequence 
was as follows: presentation of the sound texture, display of the question 
“Have you noticed a change?” on the screen, a 2-s response window to 
press the button, and then a silent period of randomized duration (to 
reduce the influence of expectation for the following stimulus onset). 
The response window was delayed to the moment after the sound to 
avoid motor response contamination of the EEG signal. No feedback was 
provided to the listeners regarding their correct/incorrect choice during 
the experiment. The procedure was composed of one session with 480 
stimuli (i.e. 80 × 6 stimuli, 3 with and 3 without a change) and lasted ~ 
65 min. The sequence of trials was randomized independently for each 
subject. The contamination due to blink artifacts was reduced by visu-
ally instructing (text message on the screen) to blink only during the 
between-trial silence. 

The Awake Passive group was instructed to passively listen to the 
changing sounds while keeping eyes fixated on the cross displayed on 
the middle of the screen and trying not to think about anything in 
particular. The procedure consisted of 4 blocks with 60 trials each, for a 
total of 240 trials. Subjects were also asked to try not to blink during the 
sound presentation. After each block subjects were presented with a 
short questionnaire that consisted of three following questions: (1) ‘Did 
you succeed in not focusing on anything in particular?’, (2) ‘How much 
have you focused on changing sounds?’, (3) ‘To what extent your 
attention was directed to other external/ internal inputs?’ and they were 
requested to provide an answer in the Likert scale, i.e. from 1 (‘not at 
all’), to 5 (‘very much’). Results are not presented here, since this in-
formation was not available for all groups. 

3.2. Asleep session 

The asleep session was conducted in the same soundproof chamber, 
however, control subjects laid horizontally on a camp bed with elec-
trodes attached and their head placed on a pillow. In order to maintain 
the regular sleep-wake cycle of the subjects, the experimental session 
started at about 23 h and lasted for 2–3 h (depending on the time it took 
subjects to fall asleep). The presentation of auditory stimulation 
commenced as soon as the experimenter recognized in the EEG signal 
the components specific for slow-wave sleep (i.e. N2 or N3 sleep phases). 
In these periods most of the stimuli are thought to be only processed 
automatically at lower levels and do not seem to be perceived 

Fig. 1. Using change detection in complex, statistical sounds for individual diagnosis of the state of consciousness. A We investigated EEG responses to acoustic 
stimulation in five subject groups with (presumably) differing levels of involvement. B The sounds were naturalistic textures - i.e. statistically defined sounds - which 
changed their statistics at unexpected times (depicted: 3 s). The changed statistics were a 60/40% mixture between the first sound and a second sound with different 
statistics. In the Responding group, listeners reported detecting a change in the sound via button press after the stimulus (see: response period). In the other groups 
(Passive, Minimally Conscious State (MCS), Unresponsive Wakefulness Syndrome (UWS), NREM Sleep), subjects passively listened to the same stimuli. Sounds were 
provided via headphones while simultaneously recording whole-head EEG signals from 64 channels. C We analysed the neural responses after stimulus onset and 
after the change in sound statistics via the evoked ERPs. Further we assessed the dynamical complexity using the Perturbational Complexity Index - auditory (PCIa). D 
The outcomes of both ERP and PCIa measures are finally compared on a single subject level with the behavioral diagnosis (CRS-S scale) to evaluate the potential 
for diagnosis. 
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consciously (Massimini et al., 2009; Strauss et al., 2015) as subjects do 
not usually recollect dreaming upon awakening (Gerrard et al., 2014; 
Massimini et al., 2005; Tononi and Massimini, 2008). The actual sleep 
phase was evaluated post-hoc during data-analysis by visual inspection 
of characteristic components i.e. sleep spindles or K-complexes (Berry 
et al., 2012). Otherwise, stimulus parameters were identical to those 
used in awake subjects and 240 trials (40 of each change and no-change 
stimuli) were presented. 

3.3. PDOC patients session 

The DOC patients’ sessions were conducted in separate rooms in the 
Care Center in Toruń, Poland. Patients were either seated on a wheel-
chair or at their bed in sitting upright position. During the experimental 
procedure, there were up to two experimenters in the room. Each patient 
completed one session of 320 stimuli (80 × 4 stimuli; 3 with the change 
and only one sham trial). This lasted for ~ 44 min. In some cases, the 
procedure was paused in the middle, in order to check the subject’s 
condition, improve electrode contacts, and continued subsequently. All 
other details of the procedure were the same as for the awake session of 
control subjects. 

3.4. Experimental setup 

3.4.1. Presentation of acoustic stimuli 
For all experimental conditions, stimuli were prepared using Matlab, 

then converted to analog signals and presented directly via Sennheiser 
MX 475 intra-aural earphones. The experimental procedures were 
implemented using Presentation software (NeuroBehavioral Systems, 
USA). 

3.4.2. Registration of EEG signals 
EEG signals were acquired with a 64-channel ActiveTwo amplifier 

system, with active electrodes arranged on the scalp according to the 
10–20 system (BioSemi, Amsterdam, NL). Four additional electrodes 
were located in the external canthi of both eyes and above and below the 
right eye, and another two were placed on mastoids and recorded in 
parallel. In order to ensure compatibility with the 10–20 system, we 
used standardized Electro-Caps in three different sizes (Electro-Cap In-
ternational Inc., Eaton, USA). EEG signals were sampled at 1024 Hz, 
without highpass filter but a low-pass anti-aliasing filter (5th order, 
cascaded integrator comb digital filter), which limits the effectively 
available frequency range to 0–200 Hz (see www.biosemi.com for more 
details). 

3.5. Data analysis 

The analysis of the EEG data was separated into two steps. First, pre- 
analysis was performed using Brain Vision Analyser 2 (BVA, Brain 
Products, Germany) and then all further steps were done with custom- 
written scripts in Matlab (The Mathworks, Natick), based on tools pro-
vided in the EEGLAB toolbox (Delorme and Makeig, 2004). 

For preprocessing, excessively noisy electrode channels were deter-
mined by visual inspection and replaced using spherical spline inter-
polation of the voltage from surrounding electrodes (Perrin et al., 1989); 
order: 4, degree: 10, lambda: 1E-05, BVA). In cases of excessive line 
noise, notch filtering at 50 Hz was applied (Responding: 1; Passive: 8; 
Asleep NREM: 3; UWS: 6, MCS: 6). The Ocular Correction ICA module 
implemented in BVA was applied to a subset of subjects from each group 
if substantial ocular artifacts were present (Responding: 3; Passive: 5; 
UWS: 5; MCS: 6). 

In Matlab, the data were downsampled for further analysis to 128 Hz 
and re-referenced to the common average. Then, signals were high-pass 
filtered (15th order Chebyshev filter, using the Matlab function cheby2) 
at a conservative level of 0.3 Hz and low-pass filtered (4th order But-
terworth filter, using the Matlab function butter) at 30 Hz. Epochs were 

extracted for each stimulus condition, which spanned the interval from 
500 ms before stimulus onset to 1500 ms after stimulus offset. Next, 
epochs that contained artifacts exceeding +/- 200 μV were rejected. The 
remaining ERP data were baseline-corrected to the median voltage in 
each epoch at [150–400]ms window preceding the stimulus onset or 
change, respectively. 

Data acquired during NREM sleep required additional preprocessing 
steps for offline selection of N2 and N3 phases epochs. This was per-
formed in BVA by visual inspection of the data divided into 30 s epochs 
according to the American Academy of Sleep Medicine (AASM) criteria 
(Berry et al., 2012). Specifically, data classified as ‘N2′ or ‘N3′ were 
maintained, while ‘N1′ and ‘wakefulness’ were rejected from subsequent 
analysis. For the purpose of this checkup only, data were temporarily re- 
referenced, baseline corrected and filtered in the same way as for further 
analysis in Matlab. 

3.6. EEG channel selection for analysis 

We performed nonparametric permutation-based statistical analysis 
to identify electrodes that were significantly activated by the stimulus 
onset for each subject. The analysis was based on (Maris and Oostenveld, 
2007), using the implementation in the FieldTrip package (ft_time-
lockstatistics, using 1000 randomizations). Specifically, we compared 
the silent prestimulus period with the peri-stimulus period of equal 
length (0.3 s), which provided joint sets of electrodes and time-periods 
of significant activation following the stimulus onset. The advantage 
of this method is that it identifies clusters evolving over time and 
channels, thus allowing to compare significant onset activations without 
predefining when and where they might occur, which is particularly 
important in the case of PDOC patients. This analysis was performed 
individually for all subjects of all groups. We limited the set of admis-
sible electrodes to a broad set of central electrodes (comprising 15 
electrodes: ’FC1′, ’FCz’, ‘FC2′, ’FC3′, ’FC4′, ’C4′, ’C2′, ’Cz’, ’C1′, ’C3′, 
’CP3′, ’CP1′, ’CPz’, ’CP4′, ’CP2′). For the P2 analysis the maximum of 
the evoked potential was taken within a widened time-range [0.1–0.3 s 
after stimulus onset]. 

For non-patient groups, the significantly and positively activated 
electrodes intersected across practically all subjects in the ‘FCz’, ‘FC1′, 
‘FC2′ set. This set exhibited stronger significance and on average larger 
potentials than the classically used central set (‘Cz’, ‘C1′, ‘C2′), which 
was also significantly activated in all awake subjects (12/12). For non- 
patients, we therefore used this consistent set of significant electrodes 
(‘FCz’,’FC1′,’FC2′) for the P2 comparison. 

For the two patient groups the choice was more complicated, since 
several subjects showed no significant P2 responses when using the same 
set of electrodes (UWS patients: 7/12, MCS patients: 3/12) in the first 
300 ms after sound onset. In order to have a consistent criterion for 
choosing electrodes across subjects, we chose a set of electrodes of equal 
number as for the non-patients (3) which had the lowest p-values, in-
dependent of whether they fell below a significance threshold. 

The selected electrodes for individual subjects including their p- 
values are reported in Supplementary Table 1 for all subjects and 
patients. 

3.7. Complexity analysis 

Disorders of consciousness may affect the diversity of brain responses 
and recent research has suggested the use of complexity measures to 
determine the state of consciousness (e.g. Casali et al., 2013; King et al., 
2013a, 2013c). Accordingly we estimated the dynamical complexity of 
the EEG responses using the Lempel-Ziv compression algorithm (Wu 
et al., 2011). In a nutshell, it estimates the number of distinct sequences 
required to represent the neural activity reflected in the EEG. Following 
the implementation of (Schartner et al., 2015), we first transformed the 
data by downsampling to 64 Hz, and binarized it around a channel- and 
trial-specific threshold, computed as the average amplitude of the 
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signal’s Hilbert-transform. The resulting binary signal S was passed to an 
existing implementation of the Lempel-Ziv complexity estimate (Thai, 
2020), which returned the size of the dictionary, i.e. the number of 
unique binary words used to represent the overall data in a compressed 
form. The word count was then converted to LZ complexity by multi-
plying it with the expected number of words for a random string, 
log2(L(S))/(L(S)*H(S)), where L(S) is the length of S and H(S) the en-
tropy of the source, defined as 

H(S) = − P(S(i) = 1)log2(P(S(i) = 1) − (1 − P(S(i) = 1))log2(1 − P(S(i)

= 1))

This estimate was verified against random strings with different 
probabilities of 0′s and 1′s, where it gave the value of the perturbational 
complexity index - audition (PCIa, Casali et al., 2013) of 1. 

Thus, less stereotypic responses received higher complexity values, 
which have been proposed to be indicative of conscious activity. 

The complexity analysis was applied to the data from a [-0.5–1.5 s] 
window around the onset / change time and for the latter, only one 
stimulus condition with the longest change time (3 s) was selected. The 
clusters of 14 channels around onset and change were selected, 
respectively. 

3.8. Linear discriminant classification of state of consciousness 

The EEG measures (ERPs and PCIa estimates) were linked to the 
diagnosed state of consciousness using linear discriminant analysis 
(LDA) using the standard tools available in Matlab (fitcdiscr) and using 
cross-validation (cvshrink) to estimate robust performance. The input 
variables were the ERP measures (see Fig. 2) and the PCIa values (see 

Fig. 3) for both the medial/onset and the parietal/change potentials for 
each subject (for an overview see Fig. 4). The underlying model com-
bines the input variables independently. The score (Fig. 4E) is computed 
by the predict function of the model returned by fitcdiscr in Matlab and 
indicates class membership between 0/1 with a threshold at 0.5 (since 
we here perform a binary classification). 

3.9. General statistical analysis 

If not specified otherwise, nonparametric tests were used. When data 
were normally distributed, we employed parametric alternatives to 
check that statistical conclusions were the same. One-way analysis of 
variance was computed using the Kruskal-Wallis test (Matlab function: 
kruskalwallis), followed by post-hoc testing using Wilcoxon Ranksum 
tests (Matlab function: multcompare) using Tukey’s Honest Significant 
Difference correlation for multiple testing. Correlations were analysed 
using Spearman’s rank-based method. Error bars represent ± 1 SEM 
(standard error of the mean). All statistical analyses were performed 
using the statistics toolbox in Matlab. 

4. Results 

We investigated the use of complex acoustic stimulation to distin-
guish between subject groups with varying levels of (task) involvement 
or consciousness state using a set of naturalistic auditory textures. 
Specifically, we compared five groups: Responding, Passive and Asleep 
NREM healthy controls, and two groups of patients with prolonged 
disorders of consciousness (PDOC), divided behaviourally (based on the 
CRS-R scale, see methods and Table 1) into the categories of Minimally 
Conscious State (MCS) and Unresponsive Wakefulness Syndrome (UWS, 

Fig. 2. Onset and parietal ERPs distinguish several groups, but not conscious vs. unconscious. A1 An onset of an auditory stimulus creates an N1/P2 complex in a 
central location on the scalp (averaged electrodes: Cz, C1 and C2). Most saliently, healthy controls exhibited a clear P2 response. N1 responses were also discernible 
but only at a fraction of the P2′s size. In MCS and UWS patients the P2 response was strongly reduced and only remained discernibly>0 (see text for statistics) for MCS 
patients (see legend for color associations). A2 The P2 peak size was determined as the largest local peak inside a temporal window centered on the typical P2 latency 
(~225 ms), i.e. 100–350 ms. The median of the P2 height differed significantly across groups, and in particular, differentiated between healthy controls in all states of 
consciousness and the two patient groups (see figure and text for details). The p-value indicates a 1-way Kruskal-Wallis ANOVA across groups. Boxplots show the 
median with 25–75 percentiles, and the error bars indicate the mean +/- SEM. B1 The change-elicited response in the parietal region (averaged electrodes Pz, POz, 
P1, P2) reveal a slow, positive response peak, building up over a period of ~ 1 s (best visible for the Responding group). We computed the area under the curve (AUC) 
over the interval (0.2–1 s, black bar) to account for the variability of the response. B2 The AUC of the potential decreased generally from responding to UWS groups, 
however, significant differences were only found between the Responding and the Asleep/UWS groups (for statistical details see text). Plot elements as in A2. 
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formerly referred to as Vegetative State, i.e. VS). 
The statistical composition of the auditory stimuli changed only once 

per trial at a random time or remained unchanged (catch trials). 

Simultaneously, neural responses were collected using EEG. First, we 
compared the onset and change locked components of the neural 
response between groups using classical ERP analysis and then using the 

Fig. 3. The complexity of the evoked EEG responses at change time decreases significantly with the level of consciousness. A Individual PCIa complexity scores 
computed for a [-0.25,1.25] s time window relative to change time across different consciousness groups/ While there is considerable within-group variation, the 
unconscious groups (Asleep (red) and VS patients (yellow)) lead to lower scores than the (presumably) conscious individuals (MCS (maroon), Passive (blue), 
Responding (light blue)). B The PCIa scores exhibited clear and significant differences between the unconscious and conscious groups (Kruskal-Wallis ANOVA: p <
0.00001, post-hoc tests between conscious and unconscious sets: all p < 0.05, Bonferroni corrected), while there were no significant differences within these sets (p 
> 0.05). The significance and effect size were much more pronounced than the same analysis performed on a corresponding window around stimulus onset (see 
Supplementary Fig. 3) and silent activity (see text). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 4. PCIa of the evoked EEG responses correlates best with the behaviorally assessed state of consciousness. A Peak potential values measured within the interval 
[0.2, 0.3] s related to sound onset from the central set of channels (P2 at stimulus onset) did not show a significant correlation with the total CRS-R score for in-
dividual PDOC patients. B The correlation of peak potential values measured within [0.6, 0.8] s related to change in acoustic texture from the parietal set of channels 
(CPP) and total CRS-R individual scores also remained insignificant. C PCIa computed over the interval [-0.5, 1.5] s relative to sound onset (from 14 channels, see 
Methods) correlate with total CRS-R individual scores, but only borderline significant. D PCIa computed over the interval [-0.5, 1.5] s relative to the change in 
statistics exhibited a strong correlation with the individual CRS-R scores of PDOC patients. Correlation is computed across both groups (MCS (maroon), UWS (dark 
yellow)) combined using Pearson’s correlation (indicated in the top left corner of each plot with its significance). E Combining the P2 with the PCIa data via a linear 
discriminant analysis provides a correct classification rate of 79% (19/24 patients) on the basis of a cross-validated model estimate. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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PCIa complexity measure (Casali et al., 2013; Ziv and Lempel, 1977). 

4.1. The onset ERP only differentiates patients from healthy controls. 

Onset activity for auditory stimulation is classically represented by a 
small, negative deflection at ~ 100 ms (’N1′) and a large, positive po-
tential at 200–250 ms (’P2′), peaking at the central electrodes (Nie et al., 
2014). Since the N1 component is relatively small for the present type of 
acoustic stimuli (Górska et al., 2018), we focused here on the P2 
component (as in Górska et al., 2018). Additionally, in Asleep NREM 
condition, we detected a classical auditory multi-phasic response that 
consists of the N350, P450 and N550 components (Perrin et al., 2000). 
For the P2 analysis we used a set of 3 electrodes per subject, for healthy 
subjects, the commonly significant set [‘FCz’,‘FC1′,‘FC2′] and for pa-
tients an individual set of the 3 most significant electrodes selected from 
a broader set (see Methods). 

The mean P2 potential differed significantly across all groups (1-way 
Kruskal-Wallis ANOVA, p≪0.0001, Fig. 2A1/2). For the healthy par-
ticipants (i.e. Responding (light blue), Passive (dark blue), NREM Asleep 
(red), see Fig. 2A2) the P2 response represented a significant deflection 
(~2μV, significantly>0, p < 0.001 for all groups, Wilcoxon signed rank 
test, Tukey HSD corrected) and did not differ significantly between 
groups (p > 0.95, pairwise Wilcoxon ranksum tests). The largest local 
maximum within a window centered on the typical P2 interval (i.e. 
150–300 ms after the response, indicated by the black bar in Fig. 2A1) 
was used to measure the individual P2 amplitudes. Thus, the mean of the 
individual values (Fig. 2A2) was typically larger than the peak of the 
corresponding grand-average curve (Fig. 2A1). 

The median P2 response for MCS and UWS patients only exhibited a 
small positive excursion with an amplitude very close to 0 (Fig. 2A1). 
Both the MCS and UWS patients’ responses were nonetheless sig-
nificantly>0 (p < 0.05, Wilcoxon signed ranks test, Tukey HSD cor-
rected). However, the P2 response did not differ between the two patient 
groups (p > 0.05, Wilcoxon Signed Ranks test for comparing medians, 
with Tukey HSD correction), although all healthy groups differed 
significantly from all patient groups (p < 0.01, Wilcoxon Signed Ranks 
test for comparing medians, with Tukey HSD correction). 

For a subset of patients, onset P2 responses were visually detectable 
and differed significantly from 0 in single subject averages both for MCS 
(7/12, p < 0.05, nonparametric permutation-based statistical analysis, 
see Methods; Supplementary Table 1) and UWS (9/12, p < 0.05) groups 
(Individual P2 peaks were quantified as described above for the healthy 
controls; a representative, detectable onset response from patient groups 
is shown in Supplementary Fig. 1). The lack of significance for some 
patients could have been caused by a generally reduced level of cortical 
processing in these groups and background EEG with a dominance of 
‘abnormal’ delta activity (Forgacs et al., 2014; Kotchoubey, 2005; 
Kotchoubey et al., 2005), which remains characteristic of patients with 
the most severe forms of structural injuries, usually most often in the 
UWS group (Schiff et al., 2014). However, a subset of the patients from 
the patient groups also exhibited more erratic motor activity, which 
contributes additional noise to the recordings, potentially masking the 
genuine ERPs. In particular, the set of UWS patients without a significant 
P2 response had a ~ 1.5 fold greater number of artifacts than even 
responding controls (0.8 vs. 0.5 / trials). Together, these factors could 
have reduced the P2 amplitude in these groups, rendering it closer to 
zero on average. The peak maxima of P2 (Responding: 0.19 ± 0.02 s; 
Passive: 0.19 ± 0.02 s; Asleep: 0.20 ± 0.02 s, MCS: 0.21 ± 0.03 s, UWS: 
0.21 ± 0.04 s) did not differ significantly (p > 0.05, 1-way Kruskal 
Wallis ANOVA). 

In summary, the onset ERP in response to the presented textural 
stimuli exhibited a strong difference between healthy controls and pa-
tients but did not allow to differentiate between patient groups. 

4.2. The change-elicited ERP only differentiates responding controls from 
UWS and asleep subjects 

In healthy subjects, the change in statistics for natural auditory 
textures was reflected by a late positive response in the parietal region 
(peak at ~ 650 ms post-change for the Responding group; see Fig. 2B1). 
Previous studies have shown that this response reflects properties of 
evidence integration required to make a decision on statistically defined 
stimuli (Boubenec et al., 2017; Górska et al., 2018). We therefore hy-
pothesized that MCS and UWS patients may show some distinctive 
neural signature of stimulus integration. 

Accordingly, we analysed a set of parietal electrodes (averaged Pz, 
POz, P1, and P2 channels), selected from the condition with the longest 
change time (3 s) as they represent the most prominent ERP at the scalp 
(Górska et al., 2018). In order to compensate for the increased vari-
ability in the patient groups, we used the area under the curve (AUC, 
computed as the sum of the potentials, divided by the integrated time, 
see Fig. 2B2, black bar) to quantify the strength of the parietal response 
(1-way Kruskal-Wallis ANOVA, p = 0.007, Fig. 2B2). 

Similar to our previous results (Górska et al., 2018), we found the 
parietal response of the Passive group to be substantially lower on 
average (0.78 ± 0.19 vs. 0.38 ± 0.18 μV*s), although this comparison 
did not reach statistical significance for the present group. Significant 
differences were found between the Responding group and UWS (p =
0.03) and Asleep (p = 0.01) subject groups (2-group Wilcoxon rank sum 
test, Fig. 2B2; Table 2). Hence, evidence integration in complex stimuli - 
reflected in the parietal ERP size in Responding subjects (O’Connell 
et al., 2012; Boubenec et al., 2017; Górska et al., 2018) - differed be-
tween certain groups. Neither the MCS nor the UWS patient groups 
showed responses significantly>0 (p > 0.05, Wilcoxon Signed Ranks 
test). 

4.3. Complexity of EEG activity following change differentiates across 
states of consciousness. 

Recently, it has been suggested that the global state of consciousness 
is correlated with the dynamical complexity of neural activity recorded 
in EEG (e.g. Schartner et al., 2017; Thul et al., 2016). Specifically, 
methods to quantify the complexity of the brain response/activity were 
shown to carry diagnostic value for PDOC patients (Casali et al., 2013; 
Wu et al., 2011). The Lempel-Ziv measure estimates the set of unique 
activity patterns and has been proposed as a robust estimator of 
dynamical complexity of the ongoing EEG signal (see Methods for de-
tails). Here, we evaluated its ability to relate the response evoked by a 
complex stimulus with the global state of consciousness. 

In the present dataset, we analysed a 1.5 s period around the sound 
onset or the change time [-0.25 to 1.25 s] using the index of complexity 
(PCIa) for each subject. Within-group averaged PCIa around both onset 
and change time reliably distinguished the purportedly conscious 

Table 2 
The series of comparisons in onset and parietal ERP responses between subse-
quent experimental groups with one-way Kruskal-Wallis ANOVA / t-tests. * was 
used for marking p < 0.05, ** for marking p < 0.001.  

Comparison Onset (central channels) Change (parietal channels) 
p - value Cohen’s d p - value Cohen’s d 

Responding vs. Passive  0.9872  0.178  0.896  0.548 
Responding vs. MCS  0.000**  1.686  0.487  0.818 
Responding vs. Asleep  1.0000  − 0.057  0.001**  0.948 
Responding vs. UWS  0.001**  1.573  0.030*  1.272 
Passive vs. MCS  0.004**  1.376  0.953  0.297 
Passive vs. Asleep  0.991  − 0.192  0.173  0.693 
Passive vs. UWS  0.006**  1.287  0.263  0.934 
MCS vs. Asleep  0.000**  − 1.440  0.585  0.561 
MCS vs. UWS  0.999  − 0.101  0.696  0.750 
Asleep vs. UWS  0.000**  1.366  0.999  − 0.191  
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(Responding, Passive, MCS) from the purportedly unconscious groups 
(Asleep NREM, UWS). Individual PCIa values around change time are 
displayed in Fig. 3 (Fig. 3A and B, 1-way Kruskal-Wallis ANOVA overall 
groups, p≪0.0001, with p < 0.05 for all post-hoc Mann-Whitney tests 
between the purportedly conscious and unconscious subgroups). Indi-
vidual PCIa of a similar window size around the onset time are shown in 
Supplementary Fig. 3. 

We repeated the PCIa analysis for a duration-matched, silent period 
following the end of the stimulus. While the overall comparison across 
groups was still significant (p = 4.6e-5 for the central electrodes, p =
6.2e-6 for parietal electrodes), many post-hoc comparisons were non- 
significant, in particular the awake conditions could not be distin-
guished anymore from the UWS patients’ condition. We therefore 
conclude that the neural response to the (complex) acoustic stimulation 
might be important for distinguishing the conscious and unconscious 
groups using the index of complexity. However, this is important to note 
that longer silence periods should be used in further research in order to 
allow for the complete return to baseline that would better match the 
resting-state condition. 

Further, we tested how well the ERP size and PCIa correlated with 
behavioral indicators (CRS-R scale) and the derived clinical classifica-
tion. For the P2 activity evoked by stimulus onset, we did not find a 
positive correlation with CRS-R (Pearson’s r = 0.22; p = 0.31; Fig. 4A), 
as well as it remained non-significant for the CPP activity following the 
change in stimulus statistics (r = 0.065; p = 0.76; Fig. 4B). Alternatively, 
PCIa at the stimulus onset and change correlated significantly with the 
CRS-R total score (r = 0.44; p = 0.03, Fig. 4C; r = 0.56, p = 0.0044, 
Fig. 4D, respectively). 

Next, we combined the P2 with both PCIa outcomes using linear 
discriminant analysis in order to assess a combined estimate for the 
clinical classification of the state of consciousness. Estimates for indi-
vidual subjects were created using leave-one-out cross-validation, and 
thus represent a lower bound for the actual model performance (Sahani 
and Linden, 2003). The estimates indicated a correct classification rate 
of 79%, corresponding to a ratio of 19/24 patients (Fig. 4E). Moreover, 
the LDA analysis on the same data, but with shuffled labels (and 

crossvalidation), had the expected random predictive success of 50%. 
Further, we related ERP and PCIa data with CRS-R subscales, revealing 
that Auditory, Visual, Motor and Communication subscales correlate 
significantly with PCIa at both onset and the change, and Arousal sub-
scale also correlated with PCIa at change. The detailed correlations for 
each measure are presented in Supplementary Table 2. Additionally, we 
provided a comparison between all tested groups and conditions with 
the confusion matrix (Supplementary Fig. 4A), revealing that most 
confusions seemed to happen within, respectively, the purportedly 
conscious and unconscious groups, rather than across. 

For most of the patients, who continued to be treated in the Care 
Center, the behavioural assessment of CRS-R was repeated multiple 
times over the years of their stay (but not as a part of the present EEG 
study). Within this group, some patients tend to recover together with 
obtaining a higher CRS-R score, while some revealed a lower level of 
overall functioning and lower total scores than before. According to the 
CRS-R administration closest to EEG measurement and the latest CRS-R 
available (N = 16, 399 days on average, see Table 1), 4/16 changed 
diagnosis. Lastly, we explored how the classification on the basis of EEG 
recordings at a given point in time relates to the future classification of 
the subjects’ state of consciousness. We therefore collected for each 
patient the latest available CRS-R score and diagnosis (see last three 
columns in Table 1) and repeated the analysis above (see Fig. 5). On the 
basis of the EEG recording, the classification accuracy improved to 92% 
(Fig. 5E, 22/24). Similarly, the correlations with CRS-R increased for the 
PCIa for both the medial and the parietal electrodes (Fig. 5C-D). The 
significance of separating all groups based on the PCIa around change 
time also improved on the group level (p = 7e-9, compared to p = 3.7e-8 
from Fig. 3), together with less confusions (4 vs 10 cases) between 
purportedly conscious and unconscious groups (Supplementary Fig. 4B). 

In summary, using both the ERP and the index of complexity of the 
neural responses around the onset of the statistical stimuli, we find a 
significant relationship with the global state of consciousness. However, 
PCIa at the change in statistics was a substantially better predictor for 
the state of consciousness than the ERPs after the change in stimulus 
statistics. A linear discriminant model of the P2 and PCIa measures 

Fig. 5. Consciousness state classification improves when comparing against the latest available clinical assessment. Layout and statistics as in Fig. 4. The correlations 
for the PCIa measures improved for both the medial (C) and parietal (D) electrodes. Most importantly, the classification of the state of consciousness became more 
accurate with only 2/24 patients misdiagnosed by the EEG-based LDA classifier (E). 
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provided the best performance with high classification accuracy. Over-
all, PCIa around the change in acoustic stimulus statistics is a good 
candidate for assessing the level of consciousness in non-responsive 
patients. 

5. Discussion 

In the present study, we tested the capability of using complex 
acoustic stimuli to reliably differentiate between various states of con-
sciousness. Specifically, we investigated whether such a cost-effective 
and comparatively easy-to-use method could be clinically useful for 
distinguishing minimally conscious and unresponsiveness wakefulness 
syndrome patients. We found that a measure of dynamical complexity 
(perturbational complexity index - audition, PCIa) was comparable in 
distinguishing these conditions at both onset and change in statistics. 
Combining across these methods provided the best classification per-
formance, which could distinguish the purportedly conscious/uncon-
scious groups on the single subject level. 

5.1. EEG measures for differentiating between states of consciousness 

Objective measures for assessing the state of consciousness are 
important in the clinical assessment of patients with prolonged disorders 
of consciousness (PDOC). In particular, in PDOC patients the state of 
consciousness is often decoupled from measurable behavior, and might 
be distinct from responsiveness, hence, it is essential to develop objec-
tive indicators of consciousness based on neural responses in passive, no- 
report paradigms (as recently emphasized by Tsuchiya et al., 2015). 
Previous studies have suggested that the response of (primary) auditory 
cortex is preserved in PDOC patients (Laureys et al., 2004) and usually 
characterized by a cortical N1-P2 complex (Kotchoubey, 2005), which 
remains recognizable in about 80% of PDOC patients (Kotchoubey, 
2005) and is more frequent in MCS than UWS patients (Kotchoubey, 
2005; Perrin et al., 2006). The preserved response of the primary 
auditory cortex was even suggested as a useful predictor for recovery 
(Fischer et al., 1999). 

In our study, evoked responses were less well correlated with 
behavioral scores of individual subjects than the PCIa measure of 
complexity (see below). For the complex stimulus used herein, the P2 
onset component was pronounced (Górska et al., 2018): While promi-
nent and conserved in size across the healthy controls groups, it could 
not reliably differentiate between MCS and UWS patients (Fig. 2), even 
on the population level. Although it tends to be more pronounced in the 
MCS group, and appeared indicative of UWS patients whose behavioural 
diagnosis later changed into MCS (see: Fig. 5). 

Recent studies had debated the relation of the P3 activity (which 
appears quite related to centro-parietal positivity (CPP) activity; (Bou-
benec et al., 2017; Górska et al., 2018; Kelly and O’Connell, 2013; 
O’Connell et al., 2012) with consciousness: earlier studies (Bekinschtein 
et al., 2009) suggested that the P3 response reflects conscious aware-
ness, while recent studies argued to dissociate it from conscious expe-
rience and consider it more as a complex novelty response (Koch et al., 
2016) or the marker of responsiveness (Verleger, 2020). Presently, we 
find the CPP not to be suitable for distinguishing MCS and UWS patients. 
While it exhibited a reliable, slow positive response in Responding 
subjects, and progressively vanished in Passive and NREM sleep, it was 
insufficient to distinguish between the other groups (which - at least for 
the Passive group - may have been due to small group size and the 
smaller number of conditions used presently (Górska et al., 2018)). 
Previous studies suggest that the presence of P3 component in PDOC 
patient’s group is usually limited to a small subset of cases in the tested 
group (e.g. in Faugeras et al., 2012): the global effect of P3b was found 
in 4/28 MCS and 2/24 UWS patients, see also (Chennu et al., 2013; 
Kempny et al., 2018; Real et al., 2016) for similar effects). Moreover, 
most of those research aimed to elicit P3 activity with an earlier maxima 
(e.g. 400–600 ms in response to own name, (Sergent et al., 2017), while 

the CPP observed in reaction for the change in natural auditory texture is 
relatively late component and its formation possibly engages higher 
order cortical areas i.e. medial parietal cortex and a late response in 
auditory cortex (Gorska et al., 2018). While the CPP size significantly 
differed across the five groups, it did not distinguish reliably between 
the different non-responding groups. Hence, the evidence integration 
process required for statistical change detection only appears to be 
strong in actively participating subjects (Del Cul et al., 2007; Górska 
et al., 2018; Sergent et al., 2005), which may limit the activation also in 
MCS patients, whose degree of participation cannot be confirmed. An 
interesting modification would be to introduce stimuli with similar 
complexity, but higher emotional value, which has been shown to lead 
to larger responses (Heine et al., 2015). 

On the other hand, we found that signal complexity based on the 
Lempel-Ziv measure represents a reliable estimate of the state of con-
sciousness, distinguishing Active, Passive and MCS groups from the 
supposedly unconscious (NREM Asleep, UWS) groups. Specifically, the 
estimation of PCIa around the change in complex stimulus statistics 
seems to reflect the state of consciousness even when some reliable ERP 
could not be derived, and, importantly, the comparison remains more 
pronounced when compared to the baseline periods following each 
stimulation. A link between dynamical complexity and the actual state 
of consciousness had already been demonstrated (Tononi and Edelman, 
1998) and accordingly multiple complexity measures have been devised 
to classify these states (Bodart et al., 2017; Schartner et al., 2015; Thul 
et al., 2016). This series of studies demonstrated that the EEG response 
to transcranial magnetic stimulation (TMS) either differs between 
electrodes and spreads across the whole cortex (conscious states) or it 
remains more stereotypical across electrodes and local to the site of 
stimulation. This was demonstrated for multiple states of unconscious-
ness, including deep sleep (Massimini et al., 2005), anesthesia, (Sarasso 
et al., 2015), and brain injuries, (Rosanova et al., 2012; Casarotto et al., 
2016). In a previous study (PCI; Casali et al., 2013), the perturbational 
complexity index in response to TMS also revealed relatively low values 
for unconscious states, similar to the present PCIa results for the Asleep 
and UWS groups. 

Our results are consistent with the hypothesis that the perturbation 
used to measure signal complexity can also be introduced via sensory 
stimulation (Sitt et al., 2013). While PCI is believed to reflect complexity 
by simultaneously assessing integration and differentiation, PCIa could 
be related to a representation of a difference between the spec-
trotemporal composition before and after the change in statistics. 
However, this could also be reflected in a similar pattern of responses in 
a group of far spatially distributed channels, since the cortical channels 
receive strong inputs from subcortical structures. It has been shown that 
in NREM sleep, as well as UWS the cerebral cortex retains some reac-
tivity (Gosseries et al., 2015), but remains blocked in a state of low 
complexity (Casarotto et al., 2016). Recently, it was proven that cortical 
activity in UWS patients exhibits a pathological tendency to fall into 
periods of silence during down states, preventing the buildup of any 
complex response upon receiving an input (Rosanova et al., 2018). 

The complexity of neural activity has been shown previously to 
significantly discriminate between UWS and MCS patients, particularly 
for a set of electrodes over the parietal region (Sitt et al., 2014). This 
tendency corresponds to our findings where the discrimination between 
conscious and unconscious groups was lower to the onset as compared to 
the change response. 

5.2. Limitations of using the CRS-R scale as a reference for classification 

The behavioural assessment represents an indirect (mainly motor) 
measure of consciousness, and thus it may misclassify patients who are 
for example conscious but unable to move (Giacino et al., 2009); . The 
CRS-R scale is a trusted tool for assessing the state of consciousness 
(Schnakers et al., 2009), however, it is also not without limitations 
(Bodien et al., 2016). 
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CRS-R assessment of the same patient may change over longer pe-
riods, although typically it should remain stable over several days 
(Beukema et al., 2016; Schiff et al., 2007) and exhibits high test–retest 
reliability (Seel et al., 2010; La Porta et al., 2013). Due to technical 
limitations, we were not able to administer the CRS-R test on exactly the 
same day as the EEG measurement (average temporal separation: 2.7 
days). Recently, multiple administration of CRS-R was recommended in 
order to reduce the level of ambiguity in assessing the clinical condition 
of patients (Wannez et al., 2017). Thus, its single assessment in the 
current study may have increased the measurement error in comparison 
to multiple assessments. As a consequence, it cannot be ruled out that 
the lower accuracy of CRS-R result might have weakened the estimates 
of the existing relationship between the clinical state of the patient and 
his or her response to auditory textures. This may have added variability 
to the relation between clinical assessment and the neural predictor 
variables, although the relation remained overall quite strong (Fig. 4D). 

In the present study, we used clinical assessment (based on the CRS-R 
scores) as our reference for classification. While we find overall a good 
agreement of the ERP/PCIa-based linear discriminant classification with 
the CRS-R score estimated close in time to the EEG measurement 
(Fig. 4E), the classification improved when taking the follow-up CRS-R 
scores into account (Fig. 5E). This re-emphasizes the value of non- 
behavioral, brain-based measures of the state of consciousness. 

5.3. General limitations and future improvements to the study design 

In the present analysis, we focused on the properties of the evoked 
responses (ERPs), which seem to lack sensitivity in comparison with the 
estimation of dynamical complexity. However, single subject classifi-
cation could benefit from a combination of these properties (Sergent 
et al., 2017; Sitt et al., 2014), or even train a general classifier to cate-
gorize the global state of consciousness based on the entire set of neural 
recordings from a subject. 

Furthermore, we focused on EEG and acoustic stimulation as it is 
readily available, inexpensive and easy to administer in clinical settings. 
Future studies could investigate whether a combination of related 
techniques (e.g. TMS or fNIRS (functional near-infrared spectroscopy)) 
could improve classification performance or conversely, whether even 
simpler EEG systems with fewer electrodes could lead to comparable 
results, and thus allow the present analysis using much simpler setups. 
This is particularly important for recording sessions which have to be 
interrupted by clinical interventions, as is often the case in intensive care 
units. 

Finally, since here we tested the number of groups in various states/ 
levels of involvement, the number of subjects was more limited than in 
previous studies. In a follow-up study, we aim to increase the sample size 
of patients in particular, in order to divide them based on their etiology, 
while presently, there was a prevailing proportion of anoxic patients 
(11/18; see Table 1). This will also allow to validate the outcome of the 
classification on the new groups tested under the same conditions. 
Moreover, a larger sample size and increased recording time could allow 
the separation of all sleep stages in the healthy group or even the 
assessment of naturally disturbed sleep patterns in PDOC patients 
(Cologan et al., 2010; Malinowska et al., 2013; Pavlov et al., 2017; 
Wielek et al., 2018). 

6. Conclusions 

Recently, many algorithmic solutions have been developed to 
quantify the correlates of intact cognitive processes in PDOC patients. 
While we find basic ERPs to be insufficient for diagnosing individual 
patients, the combination of complex acoustic stimuli and dynamical 
complexity of the neural response appears promising for aiding the 
diagnosis of PDOC patients. 
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Perrin, F., Castro, M., Tillmann, B., Luauté, J., 2015. Promoting the use of personally 
relevant stimuli for investigating patients with disorders of consciousness. Front. 
Psychol. 6, 1102. https://doi.org/10.3389/fpsyg.2015.01102. 

Perrin, F., Pernier, J., Bertrand, O., Echallier, J.F., 1989. Spherical splines for scalp 
potential and current density mapping. Electroencephalogr. Clin. Neurophysiol. 72, 
184–187. https://doi.org/10.1016/0013-4694(89)90180-6. 

Perrin, F., Schnakers, C., Schabus, M., Degueldre, C., Goldman, S., Brédart, S., 
Faymonville, M.-E., Lamy, M., Moonen, G., Luxen, A., Maquet, P., Laureys, S., 2006. 
Brain response to one’s own name in vegetative state, minimally conscious state, and 
locked-in syndrome. Arch. Neurol. 63, 562–569. https://doi.org/10.1001/ 
archneur.63.4.562. 

Real, R.G.L., Veser, S., Erlbeck, H., Risetti, M., Vogel, D., Müller, F., Kotchoubey, B., 
Mattia, D., Kübler, A., 2016. Information processing in patients in vegetative and 
minimally conscious states. Clin. Neurophysiol. 127, 1395–1402. https://doi.org/ 
10.1016/j.clinph.2015.07.020. 

Rohaut, B., Naccache, L., 2017. Disentangling conscious from unconscious cognitive 
processing with event-related EEG potentials. Rev Neurol (Paris) 173, 521–528. 
https://doi.org/10.1016/j.neurol.2017.08.001. 

Rosanova, M., Fecchio, M., Casarotto, S., Sarasso, S., Casali, A.G., Pigorini, A., 
Comanducci, A., Seregni, F., Devalle, G., Citerio, G., Bodart, O., Boly, M., 
Gosseries, O., Laureys, S., Massimini, M., 2018. Sleep-like cortical OFF-periods 
disrupt causality and complexity in the brain of unresponsive wakefulness syndrome 
patients. Nat. Commun. 9, 4427. https://doi.org/10.1038/s41467-018-06871-1. 

Rosanova, M., Gosseries, O., Casarotto, S., Boly, M., Casali, A.G., Bruno, M.-A., 
Mariotti, M., Boveroux, P., Tononi, G., Laureys, S., Massimini, M., 2012. Recovery of 
cortical effective connectivity and recovery of consciousness in vegetative patients. 
Brain 135, 1308–1320. https://doi.org/10.1093/brain/awr340. 
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