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ABSTRACT We previously showed that liposomes composed of dioleoylphosphatidyl- 
ethanolamine and palmitoyl-homocysteine (8:2) are highly fusion competent when 'exposed 
to an acidic environment of pH <6.5. (Connor, J., M. B. Yatvin, and L. Huang, 1984, Proc. 
Natl. Acad. Sci. USA. 81:1715-1718). Palmitoyl anti-H2K k was incorporated into these pH- 
sensitive liposomes by a modified reserve-phase evaporation method. Mouse L929 cells (k 
haplotype) treated with immunoliposomes composed of dioleoylphosphatidylethanolamine/ 
palmitoyl-homocysteine (8:2) with an entrapped fluorescent dye, calcein, showed diffused 
fluorescence throughout the cytoplasm. Measurements by use of a microscope-associated 
photometer gave an approximate value of 50/~M for the cytoplasmic calcein concentration. 
This concentration represents an efficient delivery of the aqueous content of the immunoli- 
posome. Cells treated with immunoliposomes composed of dioleoylphosphatidylcholine (pH- 
insensitive liposomes) showed only punctate fluorescence. The cytoplasmic delivery of calcein 
by the pH-sensitive immunoliposomes could be inhibited by chloroquine or by incubation at 
20°C. These results suggest that the efficient cytoplasmic delivery involves the endocytic 
pathway, particularly the acidic organelles such as the endosomes and/or lysosomes. One 
possibility is that the immunoliposomes fuse with the endosome membranes from within the 
endosomes, thus releasing the contents into the cytoplasm. This nontoxic method should be 
widely applicable to the intracellular delivery of biomolecules into living cells. 

The development of an effective, nontoxic method for the 
delivery of macromolecules to the cytoplasm of living cells is 
important for studies of control mechanisms of cellular proc- 
esses. The versatility of liposomes, in their composition, size, 
and ability to encapsulate many different macromolecules, 
makes them attractive carriers for cellular delivery. Work in 
this lab, involving a model system for studying membrane 
fusion, led to the devleopment of a liposome composition of 
dioleoylphosphatidylethanolamine/palmitoyl homocysteine 
(DOPE/PHC) ~ (8:2) that undergoes fusion at acidic pH's (1). 
Concurrent with this model study, our laboratory established 
a reproducible cell targeting system, which involves the incor- 
poration of a fatty acid derivatized monoclonal antibody into 
liposomes (2). This allows for the specific binding of the 
immunoliposomes to target cells (3). Upon binding the im- 
munoliposome is endocytosed and eventually delivered to the 
lysosomes (4). The processing pathway includes an interme- 

Abbreviations used in this paper. DOPC, dioleoylphosphatidylcho- 
line: DOPE, dioleoylphosphat idylethanolamine;  PHC, palmitoyl 
homocysteine. 

582 

diate step at which the immunoliposomes encounter an acidic 
environment in the endosomes with a pH that varies from 4 
to 6 (5). 

In the work presented in this paper we have combined the 
established monoclonal antibody targeting system with the 
pH sensitive liposomes to generate pH-sensitive immunoli- 
posomes that become fusion competent at acidic pH's. Thus, 
if the liposomes were endocytosed and proceeded into the 
endosome vesicles they would encounter an acidic environ- 
ment and become fusion competent. If a fusion reaction 
occurred between the liposome and the endosome membranes 
the contents of the liposome would be released into the cell 
cytoplasm. The experiments in this paper were designed to 
test this hypothesis. 

MATERIALS AND METHODS 

Materials: PHC was synthesized and purified as described (6). DOPE 
and dioleoylphosphatidylcholine (DOPC) were purchased from Avanti Polar 
Lipids, Inc. (Birmingham, AL), Calcein and chloroquine were obtained from 
Sigma Chemical Co. (St. Louis, MO). 

THE JOURNAL or  CELL BIOLOGY . VOLUME 101 AUGUST 1985 582-589 

© The Rockefeller University Press - 0021-9525185108]0582]08 $1.00 



Antibody Preparation: Anti-H2K k antibody from a mouse hybri- 
doma cell line 11-4.1 was purified, labeled with ~2~I, and derivatized with N- 
hydroxysuccinimide ester of palmitic acid, as described by Huang et al. (2). 

Liposome Preparation: Reverse-phaseevaporationvesicleswerepre- 
pared as follows. Solvent-free lipid films containing DOPE/PHC (8:2) or DOPC 
were suspended in phosphate-buffered saline (PBS) containing 60 mM calcein. 
A trace amount of hexadecyl [3H]cholestanyl ether was included in the lipid 
mixture to facilitate the monitoring of the lipid. A critical ratio of 65 #1 buffer 
per 5 #mol lipid must be maintained in order to form a stable emulsion with 
the organic phase. The lipid suspension was sonicated at room temperature for 
10 rain with a bath sonicator (Laboratory Supplies Co. Inc., Hicksville, NY) 
and the pH was adjusted to 7.6. The sonicated liposomes were transfered to a 
25-ml round-bottom flask, and 4 ml of a 3:1 (vol/vol) mixture of chloroform/ 
ethyl ether was added. The mixture was briefly sonicated (~30 s) to form a 
stable emulsion. The emulsion mixture was rotovaped at 30"C with a water 
aspirator using a Buchi Rotavapor-R (Buchi Laboratoriums Technik AG, 
Switzerland) until all of the organic solvent was removed. The resulting reverse- 
phase evaporation vesicles were incubated in a fume hood for 1 h to remove 
any residual organic solvent. PBS was then added to the lipid suspension to 
bring the final concentration to 10 mM. 

Antibody' Incorporation: lmmunoliposomes were prepared by a 
modification of the methods developed by Shen et al. (7). Palmitoyl antibody, 
in PBS containing 0.15% deoxycholate at an antibody concentration of 1 mg/  
ml, was mixed with reverse-phase evaporation vesicles at a lipid-to-antibody 
weight ratio of 10. 5% (vol/vol) of ethyl ether was added to the vortexing 
antibody-liposome mixture; this final solution was dialyzed against three 
changes of 4 L PBS to remove ethyl ether, deoxycholate, and untrapped calcein. 
The resulting immunoliposomes were run on a 5-ml 5-20% linear sucrose 
gradient spun at 46,000 rpm for 5 h to evaluate the efficiency of incorporation. 
Sizing ofimmunoliposomes was done by measurements obtained from electron 
micrographs. The immunoliposomes were negatively stained with 0.5% 
aqueous uranyl acetate and viewed in a Hitachi 600 electron microscope 
(Hitachi Ltd., Tokyo) at 75 kV. Size histograms were produced from micro- 
graphs taken from various preparations of liposomes. 

Cell Incubations: Mouse L929 cells (k haplotype) and A31 cells (d 
haplotype) were grown on glass coverslips which had been pretreated with a 
1% solution of gelatin. The medium used for the incubation experiments 
consisted of PBS containing 1 mM Ca ++, 1 mM Mg ÷*, and 16 mM D-glUCOSC. 
lmmunoliposomes (DOPE/PHC or DOPC) at a lipid concentration of 50 #g/ 
ml were incubated with both types of cell at 4"C for 1.5 h. The cells were 
washed three times with medium and incubated in fresh medium for 30 min 
more at 4"C to reduce the nonspecific binding. 

After the second 4"C incubation the cell were again washed three times with 
buffer and then observed under a Leitz Orthoplan epiluminescence microscope 
equipped with an Orthomat-W camera. Both phase-contrast and fluorescent 
pictures were taken; all of the fluorescent pictures were taken with the same 
exposure time (1.5 rain). 

In parallel experiments cells that had been treated with liposomes at 4"C as 
above were then incubated at either 20 or 37"C for 2 h, washed, and then 
photographed under the fluorescence microscope. In another series of experi- 
ments the cells were incubated with 50 #M chloroquine before the 4"C binding 
step, and after all washing steps the fresh incubation buffer was also supple- 
mented with 50 #M chloroquine. After incubation with immunoliposomes at 
4°C these cells were then incubated at 37°C for 2 h in the presence of 
chloroquine, washed, and then photographed under the fluorescence micro- 
scope, 

Quantitation of Cytoplasmic Fluorescence Intensity': 
Calcein in concentrations from 1 ~M to 1 mM was entrapped in large (>20 
~m) multilamellar liposomes composed of DOPC (8). A calibration curve was 
established using a Leitz Wetzlar MPV-2 Microscope Photometer, by measuring 
the fluorescence intensity from an area of 4 ~m ~ of the flattened liposomes that 
contained varying concentrations of calcein. At least two different areas of 25 
liposomes were measured for each calcein concentration. The results showed a 
linear calibration curve over the concentration range of 1 t~M to 1 mM (data 
not shown). The fluorescence intensity from a spot of same surface area in the 
cytoplasm of the cells incubated at 37"C with pH-sensitive immunoliposomes 
was measured for two different areas of 15 cells. The cytoplasmic dye concen- 
tration was calculated from the calibration curve under the assumption that 
the thickness of the cytoplasm is about the same as that of the flattened 
liposomes. In reality the cytoplasm was probably thinner than the liposomes. 
Therefore, the estimated dye concentration in cytoplasm represents a lower 
limit of the actual value. Fluorescence intensity determination of untreated 
cells showed no measurable autofluorescence. The cytoplasmic dye concentra- 
tions of the control experiments were not measured, since the caleein fluores- 
cence appeared in granules and was not evenly distributed in the cytoplasm. 
The fluorescence intensity of the punctate granules did not fall along the 
established calibration curve. 

RESULTS 

Immunoliposomes 
The average size of  the immunoliposomes composed of 

DOPE/PHC (8:2), as determined by negative stain electron 
microscopy, was 1,400 + 400 .g,. The results of  the sucrose 
gradient centrifugation showed a co-migration of the lipo- 
somes and the monoclonal antibody, which appeared at the 
top of the gradient. Radioactive marker counting indicated 
an 80% incorporation of the derivatized antibody into the 
liposomes. 

4 °C Binding 
Previous work of this laboratory (4) demonstrated that there 

was specific targeting of immunoliposome with the anti-H2K k 
antibody to k-haplotype target cells whereas the d haplotype 
cells showed no specific binding. Fig. 1 shows the binding of  
calcein-entrapped DOPE/PHC (8:2) and DOPC immunoli- 
posomes to L929 cells. The immunoliposomes bound specif- 
ically to the target cells that show an external ring of fluores- 
cence. Incubation of immunoliposome with A-31 cells dis- 
played no detectable fluorescence of the cells. Cells incubated 
with liposomes without antibody showed no binding of lipo- 
somes to either cell type as determined by no visible fluores- 
cence (photographs not shown). Cells incubated with free 
caicein (0.3 mM) showed no uptake of dye. 

20°C Incubation 
Fig. 2, A and B are photographs of L929 cells treated with 

immunoliposomes at 4°C, washed, and then incubated at 
20°C. Punctate or granular fluorescence appeared inside the 
cells. Little or no diffused fluorescence in the cytoplasm was 
observed. It is clear that the liposomes were internalized by 
the cell, but no cytoplasmic release of  dye was observed. The 
internalized immunoliposomes and their contents remained 
in the endosome/lysosomes. No significant difference was 
found between the DOPE/PHC and DOPC immunolipo- 
somes. 

37°C Incubation 
In these experiments both DOPE/PHC and DOPC immu- 

noliposomes were bound to target cells at 4"C and then 
incubated at 37"C to allow endocytosis of  the bound immu- 
noliposomes. Figure 3A shows photographs of cells treated 
with the pH-sensitive DOPE/PHC liposomes. The diffused 
fluorescence observed in these cells clearly indicates a cyto- 
plasmic delivery of calcein. Cells also showed a dark nucleus 
shadow, which indicates that calcein did not penetrate the 
nuclear membrane. The calcein released into the cytoplasm 
would still maintain its charged nature and should therefore 
be unable to permeate the nuclear membrane. The calcein 
may also associate with cytoplasmic macromolecules, which 
could block its entrance into the nucleus. Using the micro- 
scope photometer, we measured the relative fluorescent emis- 
sion of the cytoplasmic calcein for a number of target cells. 
Based on the fluorescence intensity calibration curve the 
concentration of the calcein in the cellular cytoplasm was 50 
+__ 20 uM (n = 30). The average volume of the cell cytoplasm 
was -103 um 3, and that of the immunoliposomes was -1  x 
10 -3 ;zm 3. The calcein concentration in the immunoliposomes 
was 60 mM, which is about 1,000-fold higher than the con- 
centration found in the cytoplasm. This result indicates that 
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FIGURE 1 L929 cells incubated with ca[cein entrapped immuno]iposomes at 4°C as described in Materials and Methods. A, 
DOPE/PHC (8:2) immunoliposomes; B, DOPC immunoliposomes. Bar, 10 pm. x 1,000. 
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FIGURE 2 L929 cells incubated with immunoliposomes at 4°C for 1.5 h, washed, and then incubated at 20°C for 2.0 h as 
described in Materials and Methods. A, DOPE/PHC (8:2) immunoliposomes; B, DOPC immunoliposomes. Bar, 10/~m. x 1,000. 
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FIGURE 3 L929 cells incubated with immunol iposomes at 4°C for 1.5 h, washed, and then incubated at 37°C for 2.0 h as 
described in Materials and Methods. A, DOPE/PHC (8:2) immunoliposomes; B, DOPC immunoliposornes. Evidence of paranuclear 
fluorescence can be seen in B (I'). Bar, 10 #m. x 1,000. 
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FIGURE 4 Effect of chloroquine on the calcein delivery by immunoliposomes. Immunoliposomes were incubated with L929 ceils 
that had been constantly exposed to 50 #M chloroquine. Immunoliposomes were incubated at 4°C for 1.5 h, washed, and then 
incubated at 37°C for 2.0 h as described in Materials and Methods. A, DOPE/PHC (8:2) immunoliposomes; B, DOPC 
immunoliposomes. Bar, 10/~m. x 1,000. 
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about one thousand liposomes had released their entrapped 
calcein into the cytoplasm of a cell. 

Cells treated with the pH-insensitive DOPC liposomes did 
not show any release of dye (Fig. 3B). Only punctate fluores- 
cence was observed with these cells, indicating that the calcein 
was retained in the endosome/lyosome system. Cells treated 
with DOPC immunoliposomes did display capping of fluo- 
rescence, which has been observed in early work involving 
targeting of these liposomes (3). Paranuclear fluorescence was 
also seen in some of the cells treated with DOPC immunoli- 
posomes, indicating delivery of the liposome and its contents 
to the lysosomes had occurred. Cells incubated with free 
calcein (0.3 mM) at 37"C showed some punctate but no 
diffused fluorescence, probably as a result of pinocytosis. 

Incubation with Chloroquine 
Chloroquine is a weak base that is readily taken up by cells, 

and is partitioned into acidic organelles and raises their pH 
(9-11). It has been demonstrated that chloroquine does not 
interfere with the receptor-mediated internalization of ligands 
(9, 11, 12). Because incubation of target cells with chloroquine 
blocks the acidification of the endosomes and lysosomes, 
upon endocytosis the immunoliposomes should encounter a 
less acidic pH. 

Immunoliposomes were bound at 4"C to chloroquine- 
treated cells, and the incubation temperature was then raised 
to 37°C to activate endocytosis of the liposomes. Fig. 4, A and 
B, shows cells that received such treatment. Similarly to the 
20"C incubation, the fluorescence appeared punctate both on 
the periphery of the plasma membrane and inside the cells, 
which indicates that there was little or no release of the 
liposome-entrapped calcein. This is expected if the calcein 
delivery is dependent upon an acid-induced fusion of the 
immunoliposomes with the endosome membrane. The loss 
of cytoplasmic delivery with the neutralization of the endo- 
some clearly supports this hypothesis. The cells treated with 
DOPC immunoliposomes also displayed internal punctate 
fluorescence similar to that seen with the 20"C incubation. 

DISCUSSION 

We previously showed that liposomes composed of DOPE/ 
PHC (8:2) become highly fusion active at acidic pH's (1). The 
pH for half-maximal fusion lies at -6.4, whereas almost 100% 
fusion occurs at pH 4.8 or lower. Although the mechanism of 
liposome fusion is not known, it probably involves the for- 
mation of the hexagonal phase of DOPE when PHC is pro- 
tonated at the low pH. Since the pH range at which the 
liposome becomes fusion competent falls in the same range 
as the endosome and lysosome pH, the liposome may become 
fusion active if ~hey are delivered to these organdies. We 
previously showed that palmitoyl antibody can be incorpo- 
rated into liposome membranes and the immunoliposomes 
are rapidly endocytosed by the target cells by a process that 
resembles the receptor-mediated endocytosis (4). If fusion of 
the liposome with the endosome membrane occurs, one 
would expect to see the release of the liposome content into 
the cytoplasm of cells. We have used a fluorescent dye, calcein, 
for this purpose. It is a water-soluble and self-quenching dye. 
It does not permeate cell membrane due to the high charge 
content (5). 

Immunoliposomes were bound to target cells at 4"C, 
washed, and then incubated at 37"C so that normal endocy- 
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tosis and cellular processing, including endosome acidifica- 
tion, would occur. Cells incubated with liposomes composed 
of DOPE/PHC, which become fusion competent at acidic 
pH's, display diffused fluorescence throughout the cytoplasm, 
indicating a release of the entrapped calcein (Fig. 3A). Since 
the calcein cannot penetrate through the endosome mem- 
brane the dye must have been released directly into the 
cytoplasm probably by a fusion reaction between the liposome 
and the endosome membranes. The inability of calcein to 
cross membranes can also be seen by the lack of fluorescence 
in the nucleus. The pH-insensitive DOPC liposomes showed 
little or no diffused fluorescence after the 37"C incubation. 
Some cells showed high degree of paranuclear fluorescence, 
indicating this type of liposomes are delivered to the lyso- 
somes. 

The cytoplasmic delivery of calcein by the pH-sensitive 
liposomes could be blocked by chloroquine (Fig. 4A). Since 
chloroquine effectively raises the pH of the endosomes/lyso- 
somes (9-11), this result strongly indicates the importance of 
the acidic environment for calcein release. Incubation at 20"C 
also prevents the dye release by the pH-sensitive liposomes, 
but the liposomes appear to be intracellular (Fig. 2A). Studies 
with mutants of Semliki Forest Virus have shown that at 20"C 
cells actively endocytose but that the fusion of endosomes 
with lysosomes is blocked (13, 14); concurrent with this 
blocking effect is a large degree of heterogeneity of the endo- 
some pH (15). The lack of dye release from the pH-sensitive 
liposomes may indicate that the liposomes are located in 
those endosomes whose pH's are not sufficiently acidic. Al- 
ternatively, the dye release may take place in the lysosomes, 
which would be blocked if the endosome-lysosome fusion did 
not occur at 20"C. 

It is not clear from the present study if the liposomes 
actually fused with with endosome or lysosome membranes. 
We also do not know the fate of the liposomes after the dye 
release. In any case, the cells appeared to be morphologically 
normal and maintained normal doubling time after the treat- 
ment with the pH-sensitive immunoliposomes. If the lipo- 
somes fuse with the endosome or lysosome membrane as we 
suspect, the situation is very similar to the infection pathway 
of the enveloped virus such as the Semliki Forest, influenza, 
and vesicular stomatitis viruses. The viral membrane fuse 
with the endosome membrane in response to the acidic pH 
(references 16-20). The difference here is that the driving 
force for fusion in liposomes is a weakly acidic lipid such as 
PHC, whereas the driving force for the viruses is the viral 
glycoproteins. 

The efficiency of this pH-sensitive immunoliposome deliv- 
ery system is apparent from the high number of liposomes 
(-103 liposomes/cell) that released their contents to the cy- 
toplasm of the cell. This high level of delivery should prove 
very useful in future studies. For example, to know that 
immunoliposomes encapsulated with a monoclonal antibody 
at 10 mg/ml could deliver to each cell ~104 antibody mole- 
cules would obviously be very helpful in studying various 
cellular functions. There are a great many potential uses for 
this pH-sensitive immunoliposome system, depending only 
upon the ability to trap the desired molecule. 

In conclusion, we have designed a liposome system that 
efficiently delivers the contents to the cytoplasm of the cells 
in a target-specific manner. Since water-soluble molecules can 
be easily encapsulated in liposomes, this system should be 
very useful for the cytoplasmic delivery of drugs, enzymes, 



antibody, nucleic acids, and other biologically active mole- 
cules into the living cells. 

An article appeared after this paper was submitted for 
publication which described cytoplasmic delivery of calcein 
and fluorescently labeled dextran by pH-sensitive liposomes 
free of antibody (21). 

T h i s  w o r k  w a s  s u p p o r t e d  b y  g r a n t  C A  2 4 5 5 3  f r o m  t h e  N a t i o n a l  

I n s t i t u t e s  o f  H e a l t h .  D r .  H u a n g  is t h e  r e c i p i e n t  o f  a R e s e a r c h  C a r e e r  

D e v e ] o p m e n t  A w a r d  ( C A  0 0 7 1 8 0 ) .  
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