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Abstract: Dent disease is a rare X-linked renal tubulopathy due to CLCN5 and OCRL (DD2) mutations.
OCRL mutations also cause Lowe syndrome (LS) involving the eyes, brain and kidney. DD2 is
frequently described as a mild form of LS because some patients may present with extra-renal
symptoms (ESs). Since DD2 is a rare disease and there are a low number of reported cases, it is still
unclear whether it has a clinical picture distinct from LS. We retrospectively analyzed the phenotype
and genotype of our cohort of 35 DD2 males and reviewed all published DD2 cases. We analyzed the
distribution of mutations along the OCRL gene and evaluated the type and frequency of ES according
to the type of mutation and localization in OCRL protein domains. The frequency of patients with
at least one ES was 39%. Muscle findings are the most common ES (52%), while ocular findings
are less common (11%). Analysis of the distribution of mutations revealed (1) truncating mutations
map in the PH and linker domain, while missense mutations map in the 5-phosphatase domain, and
only occasionally in the ASH-RhoGAP module; (2) five OCRL mutations cause both DD2 and LS
phenotypes; (3) codon 318 is a DD2 mutational hot spot; (4) a correlation was found between the
presence of ES and the position of the mutations along OCRL domains. DD2 is distinct from LS. The
mutation site and the mutation type largely determine the DD2 phenotype.

Keywords: Dent disease 2; OCRL mutations; OCRL domains; genotype–phenotype correlations;
Lowe syndrome

1. Introduction

Dent disease is a rare X-linked tubulopathy caused by mutations either in CLCN5
(Dent disease type 1 (DD1) MIM #300009) or OCRL (Dent disease type 2 (DD2) MIM
#300555) genes. While a role for CLCN5 in Dent disease was suggested in 1994 [1], it
was only 11 years later that OCRL was identified as a second disease-causing gene [2].
Pathogenic variants in the OCRL gene are known to cause Lowe syndrome (LS) (MIM
#309000 LS) [3], while DD2 is frequently described as a mild form of LS [4]. LS is character-
ized by multi-organ involvement with a triad of symptoms including congenital cataracts,
neurological abnormalities and a selective proximal tubular dysfunction of variable extent,
while patients with DD2 mainly manifest a proximal tubulopathy [5]. Genotype–phenotype
correlations conducted on a relatively small number of DD2 cases suggest that the location
of DD2 mutations in OCRL is quite different from that of LS mutations, since most DD2
pathogenic variants were located among exons 1–7, while those responsible for the LS
phenotype were found among exons 8–23 [5,6].

OCRL encodes for a member of the inositol polyphosphate-5-phosphatase enzyme fam-
ily (OCRL), a phosphatase able to remove the 5′ phosphate group from phosphatidilinositol-
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4,5-bisphosphate (PIP2), a second messenger involved in vesicular trafficking [7]. Studies
in Zebrafish demonstrated that a lack of OCRL1, the homolog of human OCRL, resulted
in defective tubular endocytosis, a reduction in cell surface megalin expression and an
accumulation of megalin in the endocytic compartments, thus supporting a role for OCRL
in the recycling of this multiligand receptor [8].

The OCRL protein contains the following two major conserved domains: a central
inositol polyphosphate 5-phosphatase domain and a C-terminal region with homology to
the RhoGAP domain that is found in proteins that bind and stimulate the GTPase activity
of Rho family small GTP-binding proteins [9]. The N-terminus of OCRL contains a PH
(pleckstrin homology) domain that lacks the basic patch needed for phosphoinositide
recognition and cannot directly bind to phosphoinositide-containing liposomes. Instead,
binding is achieved by a loop within the PH domain containing an unconventional clathrin
box linking phosphoinositide metabolism to clathrin-mediated membrane trafficking [10].
The PH domain connects to the 5-phosphatase domain by a linker region of approximately
100 amino acids, which contains an AP-2 binding site. The 5-phosphatase domain of OCRL
is followed by a short helix that connects it to an ASH domain (ASPM-SPD2-Hydin) and
RhoGAP. A loop in the RhoGAP domain contains a second clathrin box [11].

Dent disease is usually diagnosed by the presence of low-molecular-weight proteinuria
(LMWP), hypercalciuria and often nephrocalcinosis/nephrolithiasis and chronic kidney
disease (CKD) [12], but it is widely accepted that phenotypic heterogeneity characterizes
the disease. Even if the phenotypic heterogeneity observed in Dent disease patients can
be attributed to a proximal tubular defect [13], DD2 subjects also present with extra-renal
signs such as milder cognitive, behavioral impairments, a mild increase in lactate dehy-
drogenase (LDH) and/or creatine kinase (CK) levels, presumably reflecting the expression
of OCRL in the brain and skeletal muscle. In addition, OCRL mutated males may present
with growth defects and bone abnormalities [14]. However, patients with DD2 lack the
typical facial findings, behavioral features, metabolic acidosis, and congenital cataracts
of classical LS [15].

It is still unclear whether DD2 has a clinical picture distinct from LS, and what
determines the final phenotype. Due to the rarity DD2 disease and the low number of
cases reported to date in comparison to DD1, the spectrum of clinical presentations in DD2
patients remains less well-defined. Here, we describe the phenotypes of 35 males clinically
diagnosed with DD2 and genetically confirmed with pathogenic variants in OCRL in order
to better define the clinical picture of the disease. Furthermore, to shed light on whether a
clinical expression of a DD2 phenotype identifies a mild form of LS or instead represents a
distinct phenotype due to OCRL gene pleiotropism, we collected and analyzed clinical and
genetic data of all published DD2 patients.

2. Materials and Methods
2.1. Subjects

Index patients from twenty-five unrelated families with a clinical diagnosis of Dent
disease and confirmed as DD2 by molecular diagnosis were retrospectively enrolled for
this study. Ten families had two siblings affected, bringing the total of enrolled patients
to 35.

Twenty-three patients were referred for molecular diagnosis to the Laboratory of
histomorphology and molecular biology of the kidney (Italy) and 12 were referred to
the Rare Kidney Stone Consortium (RKSC) in the USA. Sanger sequencing was used to
determine and verify the pathogenic variants in OCRL in our cohort [16]. OCRL variants
were classified as pathogenic or likely pathogenic according to American College of Medical
Genetics and American College of Pathologists (ACMG/AMP) guidelines [17].

2.2. Assessment of Phenotypic and Genetic Features

Clinical data at the time of clinical DD2 diagnosis were retrieved from Dent Dis-
ease Registry assembled by Rare Kidney Stone Consortium (n = 19) or from the referring
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clinicians from different nephrological centers in Italy. Abstracted data included anthro-
pometrical and biochemical parameters as well as clinical data such as nephrocalcinosis,
nephrolithiasis, family history of nephropathy and presence of extra-renal symptoms.
Urine analyses were performed on spot samples or on 24-hour urine collections. Since
units of measurement were reported for urine and serum biochemical parameters, we con-
verted these continuous data into the following categorical variables: LMWP, albuminuria,
proteinuria, hematuria, nephrotic syndrome, hypercalciuria, hypophosphatemia, hyper-
phosphaturia, glycosuria, acidosis and aminoaciduria. Height was compared to reference
tables, and failure to thrive was defined as a value below the 50th percentile. eGFR was
calculated using the “Bedside Schwartz” formula [18] and CKD was classified according to
K/DOQI CKD staging system [18]. Renal tubular reabsorption of phosphate (TRP) was
considered abnormal when less than 85%. Extra-renal symptoms were categorized in three
groups, i.e., ocular, muscle and CNS symptoms.

For genotype–phenotype correlations, we considered OCRL mutations grouped ac-
cording to the expected effect on the protein, i.e., non-truncating mutations comprising
missense and in-frame mutations that are unlikely to cause a complete lack of protein,
truncating mutations comprising nonsense and frameshift, which are assumed to produce
no protein or truncated proteins, and splice site mutations (IVS). Furthermore, we grouped
mutations according to their position in OCRL domains (UniProtKB/Swiss-Prot protein
accession Q01968).

2.3. Statistical Analysis

Fisher’s exact test was used to compare clinical data between our cohort of DD2
patients and literature data, and to highlight differences in the presence of extra-renal
symptoms among different groups. A value of p < 0.05 was considered as significant. Data
analysis was conducted using R software version 3.6.3 [19].

3. Results
3.1. Clinical Data of Our Cohort of DD2 Patients

Table S1 contains detailed clinical and genetic data of all 35 patients. The data pre-
sented were collected at the time of a clinical diagnosis of Dent disease that was subse-
quently confirmed as DD2 by a molecular diagnosis. Table 1 summarizes the clinical data
of the current DD2 cohort (n = 35).

Table 1. Clinical signs of the 35 Dent disease type 2 (DD2) subjects enrolled. Continuous vari-
ables were reported as median [Min, Max], categorical variables as number of cases (%). LMWP:
Low-molecular-weight proteinuria, eGFR: estimated glomerular filtration rate, CKD: Chronic
kidney disease, CNS: central nervous system, TRP: renal tubular reabsorption of phosphate,
Y: present, N: absent.

Clinical Sign DD2 (n = 35)

LMWP
Y 27 (100.0)
N 0 (0.0)

Albuminuria
Y 12 (92.3)
N 1 (7.7)

Proteinuria
Y 29 (96.7)
N 1 (3.3)

Nephrotic syndrome Y 8 (29.6)
N 19 (70.4)

eGFR 90.00 [44.00, 143.00]

CKD

0 1 (4.3)
1 13 (56.5)
2 8 (34.8)
3 1 (4.3)
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Table 1. Cont.

Clinical Sign DD2 (n = 35)

Glucosuria
Y 8 (30.8)
N 18 (69.2)

Aminoaciduria
Y 7 (43.8)
N 9 (56.2)

Hematuria
Y 10 (58.8)
N 7 (41.2)

Hypercalciuria Y 20 (95.2)
N 1 (4.8)

TRP
Normal 7 (63.6)

<85% 4 (36.4)

Hypophosphatemia Y 5 (22.7)
N 17 (77.3)

Nephrocalcinosis Y 13 (41.9)
N 18 (58.1)

Urolithiasis
Y 10 (29.4)
N 24 (70.6)

Rickets
Y 3 (10.3)
N 26 (89.7)

Hypertension Y 1 (3.8)
N 25 (96.2)

Family history Y 11 (50.0)
N 11 (50.0)

Extrarenal symptoms Y 22 (68.8)

N 10 (31.2)

Ocular symptoms Y 9 (39.1)
N 14 (12.2)

CNS symptoms Y 13 (46.4)
N 15 (53.6)

Muscular abnomalities
Y 14 (63.6)
N 8 (36.4)

Growth

Normal 2 (7.1)
Below 50 percent 2 (7.1)
Below 25 percent 4 (14.3)
Below 10 percent 2 (7.1)
Below 5 percent 18 (64.3)

The time to clinical diagnosis of Dent disease ranged between 3 months and 15 years of
age. LMWP (100%), proteinuria (97%) and albuminuria (92%) were the most common signs.
Other evidence of proximal tubulopathy included hypercalciuria (95%) and aminoaciduria
(44%). Nephrotic syndrome was detected in 8/35 (30%) of the patients.

Nephrocalcinosis was identified in 42% of the patients, nephrolithiasis in 32%, and
hematuria in 59%. The majority of the patients had CKD at the time of the clinical diagnosis
(22/23), but 50% were stage 1 and 35% were stage 2 according to the K/DOQI CKD staging
system. One patient presented with stage 3B CKD at age 14. Failure to thrive was identified
in as many as 94% of the patients with a severe growth retardation (below 5th percentile
height) in 68% of cases.

Extra-renal symptoms were present in more than 60% of our patients (22/32). Ocular
symptoms were identified in 9 out of 23 patients (39%). CNS symptoms were detected
in 46% of the patients (13/28), and muscular abnormalities in 64% (14/22) (Table 1).
Congenital cataracts were absent, and developmental delay was the most frequently
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reported sign of CNS involvement, whereas an elevated serum level of CK and/or LDH
was the only reported muscular abnormality (Table S1).

Only three patients had symptoms related to muscle, CNS and eyes, one was an
individual who carried both OCRL and CLCN5 pathogenic variants, the other two were
brothers carrying the recurrent p.(Arg318Cys) OCRL variant. Half of the patients that
manifested extra-renal signs (11/22) had only one organ system involved.

To determine the severity of the extra-renal symptoms in DD2, and to establish what
extra-renal symptoms are more frequent in DD2 patients, we examined the frequency
of ocular, CNS and muscular symptoms among all the published data. We reviewed all
publications that reported patients clinically identified as DD2. Together with our cohort, a
total of 143 DD2 subjects were included in the analysis (Table S2). In the combined cohort,
we found that extra-renal symptoms were present in 39%, absent in 27%, and unreported
in 34% (Figure 1A).
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Ocular symptoms were rarely present in the DD2 patients (11.5%), whereas muscular
symptoms were significantly more frequent than CNS symptoms (Figure 1B). The majority
of the patients only had one extra renal symptom (33/143, 23%) (Figure 1A), muscular
manifestations being the most common (17/33, 52%) (Figure 1C), with elevated serum CK
and/or LDH the sole manifestation in most of these.

3.2. Histopathological Data of Our Cohort of DD2 Patients

Seven out of the 35 DD2 (20%) patients underwent a kidney biopsy on suspicion of
a glomerulopathy. Almost all our patients presented with morphological abnormalities
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within both the glomerular (6/7) and tubular compartments (5/7), with a preponderance
of global sclerosis and interstitial fibrosis (Table 2).

Table 2. Histopathological data from 21 DD2 kidney biopsies. Data are shown as number of cases with each characteristic
within all described cases. FGGS: Focal global glomerulosclerosis, FSGS: Focal segmental glomerulosclerosis, GBM:
Glomerular basement membrane, TEM: Transmission electron microscopy.

DD2 Cohort (n = 7) Literature (n = 14)

Age at Biopsy 4–11 yr 11 mo 3–14 yr

Glomerular histology
Number of glomeruli 8–75

Normal 1/7 2/14
Unspecified sclerosis

FGGS 4/7 1/14
FSGS 0/7 3/14

Mesangial proliferation 0/7 6/14
Minor glomerular abnormalities 0/7 1/14

Periglomerular fibrosis 0/7
Expansion of mesangial matrix 2/7 1/14

Immature glomeruli 1/7
Adherence to Bowman capsule 0/7 1/14

Other (Perihyliar hyalinosis, ECM hyperplasia,
Collapsed tuft, Podocytes’ hypertrophy, glom lesion) 2/7 2/14

Tubular histology
Normal 2/7 2/6

Tubular atrophy 4/7 1/6
Interstitial fibrosis 4/7 1/6

Calcification 0/7
Tubulointerstitial lesions 0/7 2/6

Calcium deposits 0/7
Intratubular proteinaceous casts 0/7 1/6

Interstitial inflammation 1/7
Nephrocalcinosis 0/7

Vascular degeneration 1/7
Interstitial mononuclear cells infiltrate 0/7

Interstitial lymphocytes infiltrate 0/7 1/6
Acute tubular necrosis 0/7 1/6

Other (Cortical fibrosis, Interstitial chronic
inflammation, chronic tubulointerstitial nephropathy

with ischemic renal damage)
1/7

Immunofluorescence
Negative 3/7 2/2

IgM deposits 1/7
C3 deposits 1/7

OTHER 3/7

TEM
Normal 0/6

Foot process effacement 5/6 2/2
Electrondense deposits 1/6
Mesangial proliferation 2/6

Global sclerosis 2/6
Irregular GBM folding 2/6 1/2

Other (Expansion of mesangial matrix,
Microvillarization of podocytes) 4/6

A few patients had proliferative lesions such as mesangial expansion or interstitial
inflammation. The morphological picture of the glomeruli, mainly characterized by focal
global glomerulosclerosis (FGGS), is further supported by electron microscopy data.
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Glomerular lesions are also reported in 12/14 published DD2 biopsies, although the
type of lesions was largely inflammatory such as mesangial proliferation. Unexpectedly,
tubulointerstitial morphological lesions were less often described in these biopsies, even
though DD2 is a tubulopathy. Since a biopsy is usually performed for proteinuria before a
clinical suspicion of DD2 is made, more attention could have been paid to the glomerulus
by the pathologist and/or person abstracting data for publications.

3.3. Genetic Data of Our Cohort of DD2 Patients

Table S1 details the genetic data of our 35 patients. It comprises 25 unrelated families
with a total of 20 OCRL mutations from exon 3 to exon 19 including two novel mutations
in exons 5 (c.309_310delCT, p.(His103Glnfs*27)) and 7 (c.543delC, p.(Ser183Glnfs*2)) (in
bold in Table S1). Eleven out of twenty mutations are missense, exclusively localized in
exons 10–12 encoding the 5-phospatase domain, while all but one mutation leading to a
premature stop codon (n = 8) were localized in exons 3–7 encoding the PH domain. One
was an in-frame deletion involving the entire exon 6. Three mutations were shared by eight
unrelated families, in particular the missense p.(Arg318Cys) by four families, three coming
from different geographical areas of Italy and one from the USA, suggesting the absence of
a common ancestor. OCRL codon 318 seems to be a hot spot of missense mutations in our
cohort, being involved in eight unrelated families. Forty per cent of our families had at
least one affected sibling and 50% had a positive family history (Table 1).

3.4. Mapping DD2 Mutations in the OCRL Gene and OCRL Domains

To better define the distribution of DD2 mutations along the OCRL gene and OCRL
protein domains, we surveyed all the OCRL mutations detected in the patients that were
clinically defined as having DD2 disease in the literature (Table S3), including our families.

Seventy-nine different mutations have been detected in 120 families, spanning from
exon 1 to exon 24 (Figure 2A). Fifty seven percent are non-truncating and 36% are truncating
mutations, the majority (52%) are localized in the 5-phosphatase domain (Figure 2B,C).
Twelve are recurrent mutations, including p.(Arg318Cys) that has been reported in 13 and
p.(Arg318His) that has been reported in six unrelated families.

To verify whether a founder effect might have accounted for so many families sharing
the same mutation, we reconstructed the geographical provenance of DD2 probands. This
is reported in Figure 3. As shown, the DD2 patients in the current cohort and the published
literature were identified mainly in Italy, Japan and China.

Of the 20 families carrying Arg318 mutations, 17 were from six different countries,
confirming that there is no founder effect but rather that codon 318 is a mutational hot spot
for Dent disease type 2 (Figure 4).

Figure 2A shows the distribution of OCRL mutations along the gene. All the truncating
mutations except three (nonsense, frameshift and gross deletions), and six splice-site
mutations (IVS) cluster in the 5′ region of the gene (exons 1–9), which primarily encodes
the PH domain. Missense mutations, except three, map in the 3′ region (exons 9–23),
encoding the OCRL catalytic domains, thus confirming what was previously seen in
smaller samples of DD2 patients, including our cohort. Interestingly, the mutations in the
5-phosphatase domain are almost exclusively missense.

Truncating mutations are expected to lead to the loss of almost all of the protein
including the PH domain, 5-phosphatase and the ASH-RhoGAP module that regulates
most of the known protein–protein interactions and has a key role in membrane recruitment.
Eight missense and three truncating mutations map in this last module.
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3.5. Genotype–Phenotype Correlation in Dent Disease 2

To determine if there is a correlation between the type of mutation and the appearance
of extra-renal symptoms, we analyzed the distribution of extra-renal signs according to
the type of mutations (truncating vs. non-truncating vs. IVS) and their localization in the
OCRL domains (Figures 5 and 6).
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No significant difference in the frequency of extra-renal signs was observed except
for a near significance (p = 0.05) of ocular symptoms for non-truncating vs. truncating
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mutations (Figure 5). Instead, significant differences were observed among OCRL domains
independently from the mutation type (Figure 6). We found that ocular symptoms were
more frequently present when mutations affected the ASH domain compared to those
affecting the PH and 5-phosphatase (p < 0.01) domains. CNS symptoms were significantly
more frequent in patients carrying mutations in the 5-phosphatase and linker domains in
respect to the PH (p < 0.01).

Muscular symptoms were not statistically analyzed due to the low number of affected
cases, but, as Figure 6 shows, most patients with muscular signs carried mutations in the
PH, linker or 5-phosphatase domains.

4. Discussion

In this study, we analyzed the genotypic and phenotypic data of the largest cohort of
DD2 patients reported to date and made genotype–phenotype correlations by analyzing
these and all the DD2 cases published in the literature.

Histopathological data from our cohort and those from the literature (total n = 21 renal
biopsies) confirm that glomerulopathy is a frequent finding in DD2, as in DD1 [9]. It is
known that OCRL is widely expressed in human glomeruli in podocytes, mesangial and
endothelial cells, and that close interaction between OCRL and CD2AP, a protein involved
in slit diaphragm maintenance in podocytes, has been demonstrated [9]. Pathogenic
variants in the OCRL gene could disrupt this mechanism, inducing glomerular damage as
a result.

As previously reported, the tubulopathy in the patients with DD1 and DD2 is similar,
including aminoaciduria and metabolic acidosis typical of LS phenotype [9]. However, the
age of clinical diagnosis seems to be earlier than in DD1 [9] as well as a greater frequency
of familial cases, which is consistent with a greater degree of penetrance of clinical signs.
Among the serious clinical aspects, failure to thrive is present in 94% of our cases, even
in a severe form. Indeed, this is a typical feature of the patients with LS. A deficiency
of growth hormone is not reported in DD2 as has been reported for some patients with
DD1 [9], although growth defects were well documented in Ocrl KO mice [20]. CKD stage
II–V was recently reported in 28% of DD2 patients [5], CKD stage II–III was also observed
in 26% of the patients, despite their relatively young age.

A more severe presentation of DD2 is observed compared to DD1 due to the presence
of extra-renal symptoms, which are almost absent in DD1 [9]. More than 60% of the
DD2 patients in our cohort (6% without available data) had extra-renal symptoms, mostly
involving a single organ system, compared to only 39% in the complete cohort (although
34% lacked data in the larger cohort analysis). Thus, extrarenal manifestations appear
to affect the majority of the DD2 patients. Muscular symptoms are the most frequently
reported extrarenal finding in the DD2 patients (52%), although the amount of missing
data is higher than for the other extrarenal symptoms. Muscular involvement appears
largely subclinical and almost exclusively manifests as elevated levels of LDH and/or CK.

The distinctive extra-renal manifestation of LS, which is described in 100% of the
patients is the presence of bilateral congenital cataracts [21]. Congenital cataracts were
absent in our DD2 cohort and present in only one published child [22]. In two other reported
cases, cataracts were described without indicating whether it was congenital [4,23]. These
two cases also presented CNS signs and, in one of them, an increase in serum LDH was
also reported, suggesting that these two cases could be better classified as LS.

The overall clinical picture of DD2 patients suggests that their phenotype may be a
mild form of LS [15]. Analysis of the distribution of mutations along the OCRL gene in small
cohorts of patients [5,6] has shown that the majority of DD2 mutations mapped within the
5′ region while the LS ones mapped in the 3′ region of the gene, as if to suggest a form of
gene pleiotropism, i.e., different mutations in the same gene cause different phenotypes.
This hypothesis is now supported by data from the current cohort of 35 DD2 patients, and
by the larger series that includes all the published cases for a total of 143 DD2 patients. Only
a small number of OCRL mutations (n = 8) causes both DD2 and LS phenotypes and the hot
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spot codon 318 is affected only in DD2 patients. Indeed, only five mutations appear clearly
shared by patients with a DD2 or LS phenotype (Supplementary Table S2). Hichri et al. [6]
reported one LS patient carrying p.(Arg318Cys) who manifested CNS symptoms without
ocular signs; there was no mention of muscular involvement. The c. 2257-5G>A variant
is shared by two brothers, one with DD2 and the other with partial LS since he did not
present ocular symptoms [24]. We hypothesize that these two boys could both have a DD2
(as opposed to LS) phenotype. We do not have information on extra-renal symptoms of
the patient carrying the c.2464C>T nonsense variant [25] that is commonly reported in
LS [5,6,26–29], and, therefore, we cannot exclude that this is a misdiagnosed LS patient.
Furthermore, DD2 truncating mutations map almost exclusively in the PH and linker
regions (exon 1–7), while missense mutations map in the 5-phosphatase domain of the
gene, and only a few in the ASH-RhoGAP module (exons 9–24).

Zaniew et al. [5] found that mutations were mostly in the 3′ region, starting from
exon 8 to exon 24, independent of the type of mutation in an analysis of genetic data from
81 LS patients. A more recent analysis of the distribution of approximately 200 OCRL gene
mutations in LS patients [7] confirmed these results, demonstrating that LS truncating
mutations exclusively map to exon 8, which is otherwise rarely affected by LS mutations,
and that missense mutations in LS are predominantly localized in the 5-phosphatase
domain. In Figure S1, we summarize the distribution of LS and DD2 mutations along the
OCRL gene.

From these analyses, we conclude that the clustering of truncating vs. non-truncating
mutations in different regions of the gene is peculiar to DD2. These data are challenging
and seem to suggest that OCRL protein loss due to early stop codons is associated with a
less severe clinical phenotype than missense mutations that presumably lead to the protein
being synthetized but lacking its catalytic activity.

To test this hypothesis, we analyzed the distribution of extra-renal symptoms in DD2
patients according to OCRL mutation types and OCRL domains. The type of mutations
does not influence the frequency of extra-renal symptoms; in particular, truncating muta-
tions appear not to increase their frequency, further confirming the less severe impact of
these mutations on the clinical phenotype. One potential explanation is the possibility that
premature termination codons (PTCs) may not be fully inactivating because of the presence
of a later start codon. PTCs may also be bypassed when translational readthrough allows
the decoding of stop codons as sense codons, thus enabling protein translation [30], or can
prompt exon skipping by altering exonic splicing enhancer (ESE) and silencer (ESS) mo-
tifs [31]. Further studies by computational analysis of the mutations should be performed
to see if PTCs are predicted to affect splicing or if the mRNA context is appropriate for
the translational readthrough to take place. Associated functional studies will help us to
fully understand the genotype–phenotype correlation in DD2. Another explanation may
lie with INPP5B (also known as Type II 5-phosphatase), an OCRL homologue with ~45%
sequence identity and close structural similarity, which shares most interacting partners
with OCRL. A significant level of INPP5B expression in relevant tissues may attenuate the
severity of the OCRL loss-of-function phenotype [11]. In an Ocrl KO model, Jänne et al.
demonstrated the overlapping functions of the two enzymes, and the compensatory role of
Inpp5b [32].

Significant differences, instead, have been found between the presence of extra-renal
symptoms and the position of the mutations along the different OCRL domains. Ocular
symptoms are almost absent in the 143 DD2 cases. When present, they are more frequent
in DD2 patients with mutations in the 3′ region of the gene—ASH and Rho-GAP domains
containing the majority of LS truncating mutations (Figure S1)—suggesting a reason why
ocular symptoms are more typical of LS. Elevated levels of CK and/or LDH are more
frequently observed in patients with mutations in the 5′ region of the gene, the site of many
DD2 mutations, suggesting that they are characteristic of DD2, while CNS symptoms more
frequently manifest in patients carrying mutations in the catalytic domain of the OCRL
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protein where both DD2 and LS missense mutations are localized. However, in this domain,
a few mutations (5 out of 8) have been associated with both diseases.

Our results suggest that the OCRL gene is pleiotropic. In fact, the available data
suggest that DD2 and LS are two distinctive diseases largely due to different types of
mutations and their position along the gene. However, when mutations affect the 3′ of
the gene, DD2 should be considered a mild form of LS because of the presence of extra-
renal symptoms. Nevertheless, a few mutations are shared by individuals with DD2
and LS phenotypes in the 5-phosphatase domain, and DD2 mutations rarely involve the
ASH and Rho-GAP region. An explanation of these findings may come from a structural
analysis of OCRL missense mutations conducted by Piruccello and De Camilli in 2012 [11].
They demonstrated that most LS mutations in the 5- phosphatase domain cluster in the
hydrophobic core of the protein, suggesting that these mutations would be destabilizing,
affecting the folding core of the protein. DD2 mutations, instead, primarily localize to
surface residues at or near the catalytic site, without affecting the core of the protein.

5. Conclusions

Certainly, our work suffers from some limitations due to the retrospective nature of
the study. These are mainly reflected in the comparison of DD2 clinical signs between
our cohort and that collected from the literature because of the different methods of
defining clinical signs. Nevertheless, from our results, it appears that DD2 has a distinct
phenotype and genotype from LS, and that the mutation site and the mutation type largely
determine the DD2 phenotype. The absence of extra-renal symptoms in DD2 is mainly
associated with truncating mutations in the PH and linker domain, whereas, as in LS,
ocular and CNS symptoms are mostly associated with missense mutations localized in the
5-phosphatase domain.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes12101597/s1, Table S1. Clinical and genetic data of our cohort of DD2 patients (n = 35),
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pathogenic variants reported in DD2 patients, Figure S1. Genogram showing the distribution of LS
and DD2 mutations along the OCRL gene. Upper panel shows LS mutations described in [7], lower
panel shows DD2 mutations from Table S3, References related to Table S3.
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