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Integrating physical and chemical technologies for the characterization and modifi-
cation of plants and animal tissues has been used for several decades to improve their
detection potency and quality [1]. Scientists have been exploring the scientific basis and
mechanism of action of the chemical constituents in biological tissues [1,2]. Additionally,
special attention has been paid to investigating the different methods for maximizing the
detection efficacy of their bioactivities and understanding the changes in their chemical
compositions [3–6]. As an example, using ultrasound (US) in detecting the chemical com-
position of the biological tissues and their bioactivities has become an important emerging
technologies [7,8]. Bourdeau, et al. [9] developed an acoustic method for visualizing and
imaging the microbial cellular chemical composition inside mammalian hosts in vivo. In
addition, these methods proved their efficiency in their application as analytical methods.
For example, acoustic sensors based on quartz crystal microbalance (QCM) were used to
detect tea aroma (e.g., linalool, geraniol, linalool oxide, and Trans-2- hexenal) during its
fermentation process [10]. In addition, micro/nano-acoustic biosensors are frequently used
to enhance the activity of specific biomolecules such as enzymes for increasing detection
sensitivity [11]. These biosensors are based on a unique class of air-filled protein nanos-
tructures called gas vesicles that vibrate in response to US waves. The use of US can easily
image deep tissue with high spatiotemporal resolution. For instance, Jiang, et al. [12] used
US for the bio-imaging of plant chemical composition by using quantum dots technology
for in vitro cell imaging and the in vivo imaging of natural plants. Moreover, Lakshmanan,
Jin, Nety, Sawyer, Lee-Gosselin, Malounda, Swift, Maresca and Shapiro [8] used acoustic
biosensors for imaging the enzyme activity inside the mouse gastrointestinal tract. The
principle of using acoustic-based biosensors is based on coupling the measurement nature
(such as analyte adsorption) as a modulation in the physical properties of the acoustic wave
(such as US frequency and velocity) that could be correlated with the analyte concentra-
tion [11]. Existing molecular biosensors, based on fluorescent emission, have limited utility
due to the scattering of light and interference with their phytochemicals’ fluorescents. The
use of US can easily image deep tissue with high spatiotemporal resolution. Jiang, Jin and
Gui [12] used a US-assisted solvothermal reaction for bio-imaging of plant zinc-ions by
using quantum dots technology. The authors suggested that the viability of the technique
could be used for in-vitro cell imaging and in vivo imaging of natural plants.

Furthermore, other emerging technologies have been developed for enhancing analyt-
ical measurement efficiency. For instance, Gouda, Chen, Li, Liu and He [1] fabricated an
electrochemical method based on single plant cells for tracking the chemical composition
and the antioxidant activity during the cultivation process. In addition, recent emerging
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and chemical-free technologies that are related to the in situ detection of the physicochemi-
cal changes in the biological media are one of this Special Issue’s targets. As an example,
Gouda, et al. [13] developed a method, based on Raman microspectroscopy and circu-
lar dichroism, for tracking the changes in the secondary protein structure of microalgae
species and its impact on the physicochemical patterns. Moreover, several studies have
documented the efficacy of these technologies for the replacement, enhancement, and
improvement of various conventional analytical techniques in detecting animal and plant
tissues [6,14–18].

Thus, the objective of this Special Issue is to demonstrate the potential of US and other
recent physicochemical analytical technologies in providing a comprehensive chemical
composition and bioactivity relationship of the different biological and organic chemicals.
The topic collection includes, but is not limited to, molecular mechanisms of action of
organic and inorganic molecules, especially if giving support to visualization approaches
by acoustic-based sensors and biosensors, for example, identifying enzymes’ biomarkers, as
well as methodologies to investigate the chemical hazardous pollutants and heavy metals
through sonochemistry and other related approaches. Further topic includes food, the
environment, biomedicine, biotechnology, and the chemical composition of biosystems. In
conclusion, this Special Issue could play an important role in maximizing the phytochemical
functionality tracking and detection in the drug discovery and biotechnology fields through
a very simple application via sonochemistry, electrochemistry, spectroscopy, and other
related applications.
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