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Abstract

Many human genetic disorders and diseases are known to be related to each other through

frequently observed co-occurrences. Studying the correlations among multiple diseases

provides an important avenue to better understand the common genetic background of dis-

eases and to help develop new drugs that can treat multiple diseases. Meanwhile, network

science has seen increasing applications on modeling complex biological systems, and can

be a powerful tool to elucidate the correlations of multiple human diseases. In this article,

known disease-gene associations were represented using a weighted bipartite network. We

extracted a weighted human diseases network from such a bipartite network to show the

correlations of diseases. Subsequently, we proposed a new centrality measurement for the

weighted human disease network (WHDN) in order to quantify the importance of diseases.

Using our centrality measurement to quantify the importance of vertices in WHDN, we were

able to find a set of most central diseases. By investigating the 30 top diseases and their

most correlated neighbors in the network, we identified disease linkages including known

disease pairs and novel findings. Our research helps better understand the common

genetic origin of human diseases and suggests top diseases that likely induce other related

diseases.

Introduction

During the past decades, significant progress has been made in our understanding of human

diseases [1]. However, the genetic architectures of complex diseases are still largely unclear.

Many common diseases tend to be related to each other, and it is speculated that they may

share common genetic origin. Thus, studying the correlations of human diseases has the

potentials of better understanding the genotype to phenotype mapping [2, 3] and better pre-

dicting disease association genes [4, 5, 6, 7, 8]. Moreover, learning which diseases are corre-

lated can help use existing drugs to treat multiple similar diseases [9, 10, 11, 12, 13].

Meanwhile, network science is a rising field where entities and their complex relationships

are studied on a global scale [14, 15, 16], and has seen increasing applications to perform

advanced analysis on biomedical data [17, 18, 19, 20, 21, 22, 23, 24]. There are various cellular

components in the human body that interact with each other within the same cell or across dif-

ferent cells [15]. A network called the human interactome can be constructed according to the
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interactions of those different cellular components. Each component can be represented as a

vertex in the network and interactions among them can be captured as links (or edges) con-

necting pairs of the cellular components. Those cellular components can be proteins or metab-

olites, and the network refers to protein-protein interaction (PPI) network [25, 26, 27] or

metabolic network [28, 29, 30].

Some studies aimed at identifying the correlations among diseases through network analy-

sis [15, 31, 32]. Goh et al. [33] constructed a human disease network (HDN) by connecting

pairs of diseases when they share common association genes. Of 1,284 diseases in the HDN,

867 have at least one link to other diseases, and 516 form a giant component, suggesting that

the genetic origins of most diseases, to some extent, are shared with other diseases. Moreover,

the HDN naturally and visibly clustered according to major disease classes such as cancer

cluster and neurological disease cluster. Zhou et al. [34] extracted over twenty million biblio-

graphic records from PubMed [35] in order to obtain 147,978 connections between 322 symp-

toms and 4,219 diseases. A human symptoms-disease network (HSDN) was then constructed

and was able to show the symptom similarity between all pairs of diseases (7,488,851 links) in

the network. The weight of links represented the similarity of symptoms between two diseases.

They showed that the correlations among diseases were significantly related to the genetic

associations that each pair of diseases had in common as well as the interactions between their

related proteins. Lee et al. [36] built a disease metabolism network in order to study disease

comorbidity for better disease prediction and prevention. Two diseases are connected if

enzymes associated with them catalyze adjacent metabolic reactions. Their results show that

diseases with higher degrees, i.e., connecting with many other diseases, have a higher rate of

prevalence and mortality.

Measuring the centrality of vertices helps identify important vertices in the network in

terms of connecting to all other vertices. Centrality measures have been used frequently to ana-

lyze biological networks over the past decades [37, 38, 39]. The most common centrality mea-

sures include degree (the total number of neighbors), closeness (the total distance to all other

vertices), and betweenness (the fraction of locating on the shortest paths of all pairs of vertices)

[40]. Despite wide applications in biological networks, these centrality measures are rather

general and may not be able to capture all the properties of vertices in the context of biological

networks. Furthermore, closeness and betweenness have high computational complexity due

to the fact that pair-wise shortest paths in a network need to be enumerated in order to com-

pute the centralities. Therefore, carefully tailored and more efficient centrality measures are

needed for specific network of interest, in this study, the human disease network.

Köhler et al. [41] proposed a vertex importance measure for disease genes in the context of

PPI networks. They used a random walk strategy to assess the distance between vertices in the

network, and reported improved performance comparing with conventional distance-based

centrality measures. Wu et al. [42] integrated PPI networks with gene expression data in order

to rank disease genes associated with various cancers. They showed that their method was able

to find replicable high-rank genes using different datasets. Martinez et al. [43] proposed a

generic vertex prioritization method using the idea of propagating information across data

networks and measuring the correlation between the propagated values for a query and a tar-

get set of entities. The authors tested their method by ranking disease genes associated with

Alzheimer’s disease, diabetes mellitus type 2 and breast cancer. They reported some new high-

rank association genes that could bring new insights into the diseases.

In this article, we propose a new method for the construction of a weighted human disease
network(WHDN) and a new centrality measure to identify the most important diseases. First

we use a large database of disease-gene associations to build a weighted bipartite disease-gene

network, and then construct a weighted disease network where link weights capture the

Centrality measure in the weighted human disease network
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strengths of the pairwise disease correlations. After the backbone extraction of the WHDN, we

design a centrality measure for the context of the WHDN that considers not only the degree of

a vertex but also the importance of its incident edges. Then we compare our new centrality

measure with degree, closeness and betweenness by evaluating the network efficiency decline

rate with the removal of top-ranked vertices by each centrality measurement. Finally, we pres-

ent the top 30 diseases ranked by our centrality measure in our WHDN and discuss their bio-

logical implications.

Methods and results

Given the multiple-step pipeline structure of this study, we show the result of each step after

the description of the corresponding method. The source code of our analysis and network

files are accessible through the Github link: https://github.com/MIBlab-MUN/vertex-

centrality-DILW.

Disease-gene associations (DGAs)

The data used in this project describe disease-gene associations (DGAs) from multiple curated

databases including UNIPROT [44], CTD (human subset) [45], PsyGeNET [46], Orphanet

[47], and HPO [48]. The disease-gene association data are collected by DisGeNet group, avail-

able on DisGeNET v4.0 [49]. The current version of the data set contains 130,821 DGAs,

between 13,075 diseases and 8,949 genes. Each DGA is assigned with a score aj
i, for disease i

and gene j, within the range of [0, 1] based on its level of evidence, the number and the type of

database sources supporting the DGA, and the number of publications verifying the associa-

tion between the gene and the disease [49]. We first clean up the data in order to ensure that

all diseases and genes in the dataset are unique and that there is no replication of disease-gene

associations. Next, since we would like to consider the correlation among all diseases, we keep

diseases and syndromes in the dataset for our analysis and remove injuries or poisonings, ana-

tomical abnormalities, acquired abnormalities, mental or behavioral dysfunctions, signs or

symptoms, findings, congenital abnormalities, neoplastic processes, and pathologic functions.

We use DisGeNet web-based application [49] for this filtering.

Network construction

Bipartite disease-gene association network. The best representation for depicting the

associations among genes and diseases is a bipartite graph, which is called the disease-gene
association network in this research. The bipartite graph contains two different sets of vertices.

One set includes diseases and the other one contains genes. By definition, no edge is allowed

to connect a pair of vertices in the same set of vertices in a bipartite graph. That is, there can be

no link either between a pair of diseases or a pair of genes. There is an edge between a gene

and a disease if there is an association between them. Their link weight is assigned as the score

aj
i, for disease i and gene j, computed in the DGA database described in the previous section. A

sample subgraph of the bipartite network is shown in Fig 1.

Fig 2 depicts the degree distributions of diseases and genes in the bipartite disease-gene

association network. For the set of diseases, the maximum degree is 564, of the disease epilepsy,

and the average degree is 5.43. In Fig 2a), the degree distribution of the diseases is right-skewed

and heavy-tailed, indicated by the straight linear fit on a log-log scale. For the set of genes, the

maximum degree is 111, of the gene LMNA, and the average degree is 5.81.

The bipartite network is comprised of multiple connected components with a single giant

component. Fig 3 shows its distribution of the size of connected components. The giant

Centrality measure in the weighted human disease network
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component has 10,212 vertices consisting of 5,278 diseases and 4,934 genes. Apart from the

giant component, all other connected components are small with a size varying from two to

nine, and most of them are only single pairs of one disease and one gene. Fig 3 shows that

there is a considerable number of components with two vertices, i.e., 844 isolated disease-gene

pairs. Since we are interested in investigating the large-scale genetic correlations of human dis-

eases, we focus on the giant component of the disease-gene bipartite network in the down-

stream analyses.

Weighted human disease network (WHDN). We construct the WHDN using the giant

connected component of the bipartite disease-gene network. We use D and G to denote sets of

Fig 1. An example subgraph of the human disease-gene association network. The bipartite network has two sets of

vertices, i.e., genes and diseases, represented by rectangle and gray ellipses respectively. An edge connects a disease and

a gene if there is a known association between them. The weight of an edge reflects the strength of the DGA aj
i between

disease i and gene j.

https://doi.org/10.1371/journal.pone.0205936.g001

Fig 2. Degree distribution of a) diseases and b) genes in the bipartite disease-gene association network. The distributions are shown on a log-log scale.

https://doi.org/10.1371/journal.pone.0205936.g002
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5,278 diseases and 4,934 genes respectively in the giant connected component. In the WHDN,

an edge links two diseases i and j if they have at least one association gene in common, and the

weight of the edge, wij, is computed based on the number of shared association genes, as well

as the strengths of those associations.

Such a weight definition is inspired by Newman’s study on scientific collaboration networks

[14], where vertices are scientists and two scientists are connected by an unweighted edge if they

have coauthored one or more scientific papers together. To define the strength of the tie between

two connected scientists, two factors are considered. First, two scientists whose names appear

on a paper together with many other coauthors know one another less well on average than two

who are the sole authors of a paper. Thus, the collaborative ties are weighted inversely according

to the number of coauthors of a paper. Second, authors who have written many papers together

will know one another better on average than those who have written few papers together. Thus,

all coauthored papers are added up to account for the tie strength of two scientists.

Here, similarly, first we consider that the correlation of two diseases through a gene is

stronger when they are the sole associated diseases with this gene than when there are many

other diseases associated with the same gene. Second, the correlation of two diseases is consid-

ered stronger when they share more genes through stronger associations than less genes or

weaker associations. Thus, we extend Newman’s method to weighted graph and define the

weight of edge wij between two diseases i and j as

wij ¼
X

g2G

d
g
i d

g
j ða

g
i þ ag

j Þ

sg
; ð1Þ

Fig 3. The size distribution of the connected components in the bipartite disease-gene network. The network has a

single giant component with 10,212 vertices, and the majority of other connected components are of size two, i.e.,

consisting of only one disease and one gene.

https://doi.org/10.1371/journal.pone.0205936.g003
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where d
g
i is one if disease i and gene g have a DGA, and zero otherwise. ag

i is the score of their

DGA assessed by DisGeNET as discussed in the previous section, and sg is the strength of gene

g as a vertex in the bipartite disease-gene network, defined as the sum of the scores of the

DGAs between gene g and its directly linked diseases,

sg ¼
X

i2D

ag
i : ð2Þ

Such a weight definition indicates that the correlation strength of two diseases is weighted

inversely according to the strengths of the genes they share, and is proportional to the total

number of genes they share and the strengths of their DGAs.

For example, in Fig 1, the weight between diseases contact dermatitis (CD) and white sponge
nevus 1 (WSN1) is calculated as follows,

wCD;WSN1 ¼
X

g2G

d
g
CDd

g
WSN1
ðag

CD þ ag
WSN1Þ

sg

¼
aKRT4
CD þ aKRT4

WSN1

sKRT4

¼
0:2þ 0:48

0:881

¼ 0:7718:

Note that the weight of two diseases can be greater than one when they share multiple

genes. For example the weight between diseases WSN1 and hereditary mucosal Leukokeratosis
(HML) is calculated as follows,

wWSN1;HML ¼
X

g2G

d
g
WSN1

d
g
HMLða

g
WSN1 þ ag

HMLÞ

sg

¼
aKRT4
WSN1
þ aKRT4

HML

sKRT4

þ
aKRT13
WSN1

þ aKRT13
HML

sKRT13

¼
0:48þ 0:201

0:881
þ

0:2þ 0:2008

0:6008

¼ 0:7729þ 0:6671

¼ 1:44:

Since the WHDN is constructed using vertices from the giant component of the bipartite

disease-gene association network, it only has a single connected component with all 5,278 ver-

tices in the disease set D. Two vertices have an edge connecting them if the represented two

diseases have at least one shared gene, and the edge weight is assessed as described above. The

WHDN has 11,2324 edges and an average vertex degree of 42.56. That is, a disease correlates

with on average 42.56 other diseases with varying strengths. Fig 4 depicts the distribution of all

the edge weights in the WHDN. As we can see that a large number of edge weights are of small

values and may not be particularly interesting for the subsequent analysis. Those weak edges

not only add computational overhead to the network analysis, but also render the network dif-

ficult to interpret. Therefore, next we perform an edge reduction and only extract the most

meaningful structure of the network.

Centrality measure in the weighted human disease network
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The multi-scale backbone of WHDN. The most straightforward strategy for network

reduction may be to use a global weight threshold and remove all links that have weights lower

than the threshold. However, such a global thresholding strategy is somewhat arbitrary and

may overlook the network information present below the cutoff scale. Here, to preserve the

multi-scale backbone of the WHDN while removing less relevant and meaningful edges we

use a multi-scale filtering method proposed by Serrano et al. [50]. Such a multi-scale backbone

exaction algorithm has been used to reduce the network size while preserving the meaningful

structure of biological networks in multiple studies [34, 51, 52, 53].

First, the weight of edge linking vertex i with its neighbor j can be normalized as

Nij ¼
wij

si
; ð3Þ

where si is the vertex strength, i.e., the sum of weights incident to vertex i, similar to Eq (2) and

defined as

si ¼
X

j2Gi

wij; ð4Þ

where Γi is the set of vertex i’s neighbors. Therefore, there are two different normalized values

for a link eij using the strengths of its two end vertices si and sj as the denominator.

Second, a null model is used to assess the expectation if the weights of links connecting to a

particular vertex were distributed randomly. That is, the normalized weight Nij that corre-

sponds to the link connecting to a certain vertex of degree k is produced by a random assign-

ment from an uniform distribution. Thus the probability density function for the variable

Fig 4. Distribution of edge weights in the WHDN. The weight of an edge quantifies the shared genetic background

of two connected diseases. There are 112,324 edges in the graph with weights ranging from 0.0152 to 22.4506.

https://doi.org/10.1371/journal.pone.0205936.g004
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taking a particular value x is

pðxÞdx ¼ ðk � 1Þð1 � xÞk� 2dx: ð5Þ

Then, to identify whether the probability, βij, of link weight Nij is compatible with the null

model with a threshold β is given as

bij ¼ 1 � ðk � 1Þ

Z Nij

0

ð1 � xÞk� 2dx < b: ð6Þ

All links with computed βij lower than a given threshold β are preserved in the network.

Note that each edge has two different values βij and βji. For solving this problem, OR and AND

rules can be used. Under the first rule, if either βij and βji is lower than β, the link will be pre-

served. In the second case, an edge is preserved if both βij and βji are lower than β. Darabos

et al. [51] empirically found that the AND rule preserve the network features better than using

the OR rule in the context of human phenotype networks. In this article, the AND rule is

adopted to reduce the size of the network by removing the links which are less relevant.

To find the best cutoff for β, we calculate clustering coefficient, percentage of remaining

vertices and links, and total weight of the networks as a function of β in the range [0, 1]. Fig 5

shows the results of network metrics as a function of β cutoffs. We choose a β cutoff when the

clustering coefficient and the remaining vertices and weights are maximally preserved while

as many links are removed as possible. Accordingly, the cutoff β = 0.501 can be determined,

shown as the vertical dashed line in the figure.

Fig 5. Choosing the β value. CC represents clustering coefficient, %Vertices is the percentage of remaining vertices, %

Weights is the percentage of weights left after removing links, and %Links is the percentage of remaining links.

https://doi.org/10.1371/journal.pone.0205936.g005
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After the backbone extraction, the WHDN has 4,898 vertices and 38,275 edges. Those verti-

ces are no longer connected in a single component. Fig 6 shows the size distribution of its con-

nected components. There is a giant component with 4,810 vertices and its degree distribution

is shown in Fig 7. Again the degree distribution is heavy tailed and resembles a power-law rela-

tionship. The vertex epilepsy has the highest degree of 576. This giant component will be the

focus for our next step analysis, i.e., measuring vertex importance in order to find the most

central diseases in terms of correlating with other diseases.

Measuring vertex importance in WHDN

Although various vertex centrality measures have been proposed in the literature [37, 38, 40,

41, 54], the quantification of the importance of a vertex in a network is often context-specific.

For some networks, measuring degree may suffice since a vertex can be considered important

when its number of neighbors is the sole criterion. For some networks, e.g., information com-

munication networks, a vertex may be considered more important if its distances to all other

vertices are short, then closeness centrality serves this purpose well. For our WHDN, a disease

is considered important if it correlates with many other diseases (degree) as well as if the corre-

lations are themselves very important (edge importance).

We propose a vertex importance measure for WHDN by extending a centrality measure for

unweighted networks proposed by Liu et al. [54]. This measure assesses the centrality of a ver-

tex based on both its degree and the importance of its incident links (DIL centrality). For its

extension on weighted graphs, we name it the DIL-W centrality.

Fig 6. The size distribution of connected components in the extracted backbone of the WHDN. The network has a

single giant component with 4,810 vertices.

https://doi.org/10.1371/journal.pone.0205936.g006
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First, in the context of unweighted graph, the importance of a link eij that connects vertex vi
and vj can be calculated as follows:

Ieij ¼
Ueij

leij

; ð7Þ

where Ueij
¼ ðki � t � 1Þðkj � t � 1Þ and leij

¼ t
2
þ 1. Following the convention, ki and kj

are the degrees of vertex vi and vj, respectively, and t is the number of triangles with one edge

being eij.
Subsequently, the contribution that vertex vi makes to the importance of eij is computed as

Cvivj
¼ Ieij �

ki � 1

ki þ kj � 2
; ð8Þ

where j 2 Γi, and Γi is the neighborhood of vertex i.
Then, the DIL centrality of vertex vi is calculated by combining both its degree and the

importance of its incident links,

DILvi
¼ ki þ

X

vj2Gi

Cvivj
:

ð9Þ

For weighted networks, we modify the computation of U in Eq (7) as

Ueij
¼ ðsi � tiÞ � ðsj � tjÞ; ð10Þ

where si is the strength of vertex vi, calculated as in Eq (4), and ti is the weight sum of links

Fig 7. Degree distribution of vertices in the giant component of the extracted backbone of the WHDN. The

distribution is shown on a log-log scale.

https://doi.org/10.1371/journal.pone.0205936.g007
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incident to vertex vi that form triangles with eij. This follows the intuition that first an edge is

considered more important when its two end vertices have higher strengths. Second, the

importance of an edge is reduced when it has alternative two-hop paths connecting the same

set of end vertices. Therefore, we subtract ti from si in Eq (10).

We define λ for weighted graphs as

leij
¼

ti þ tj
2
þ 1: ð11Þ

Finally, the importance of a vertex can be measured by

DIL � Wvi
¼ si þ

X

vj2Gi

Cvivj
;

ð12Þ

where Cvivj
is defined as

Cvivj
¼ Ieij �

si
si þ sj

: ð13Þ

Note that, if we remove the second component in the definition of DIL-W, the centrality mea-

sure simply becomes vertex strength, i.e., weighted degree.

In the weighted graph given in Fig 8, vertex a has a higher strength but a lower degree than

vertex b. We compute their DIL-W centralities and investigate which one is more central

when both factors are considered.

First we have their strength values sa = 0.9 + 0.3 + 0.5 + 0.6 = 2.3, and sb = 0.2 + 0.11 + 0.2

+ 0.7 + 0.5 = 1.71. Their neighborhoods are Γa = {b, c, d, g} and Γb = {a, c, e, f, g}. For vertex a,
X

vj2Ga

Cavj
¼ Cab þ Cac þ Cad þ Cag;

Fig 8. An example weighted graph.

https://doi.org/10.1371/journal.pone.0205936.g008
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where

Cab ¼ Ieab �
sa

sa þ sb
;

and

Ieab ¼
Ueab

leab

¼
ðsa � taÞ � ðsb � tbÞ

taþtb
2
þ 1

:

We have

ta ¼ wac þ wag ¼ 0:3þ 0:6 ¼ 0:9;

and

tb ¼ wbc þ wbg ¼ 0:2þ 0:7 ¼ 0:9:

So

Cab ¼
ðsa � taÞ � ðsb � tbÞ

ta þ tb
2
þ 1

�
sa

sa þ sb

¼
ð2:3 � 0:9Þ � ð1:71 � 0:9Þ

0:9þ0:9

2
þ 1

�
2:3

2:3þ 1:71

¼ 0:3423

We can also have

Cac ¼ 0:3285; Cad ¼ 1:4878; and Cag ¼ 0:4312:

Then

DIL � Wa ¼ sa þ
X

vj2Ga

Cavj

¼ 2:3þ ð0:3423þ 0:3285þ 1:4878þ 0:4312Þ

¼ 4:8898:

Similarly, we can compute the DIL-W centrality of vertex b DIL-Wb = 2.8916. Therefore,

based on both the degree and importance of incident edges, vertex a is considered more

important than vertex b.

We apply the DIL-W centrality measurement to the giant component of the backbone of

WHDN, the distribution is shown in Fig 9. The DIL-W scores have a high dynamic range,

from 0.0610 to 80688.1129. The majority of the vertices have low scores and a few number of

vertices can have scores that are greater by orders of magnitude.

Comparison and evaluation

We compare our DIL-W measurement with three most commonly used centralities, i.e.,

degree, closeness, and betweenness, when applied to the giant component of the backbone of

WHDN. For weighted graphs, degree centrality is calculated as vertex strength given by Eq (4).

Closeness and betweenness are shortest-path-based centralities. Shortest path computation
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can be extended for weighted graph as follows,

dw
ij ¼ minð

1

wih
þ :::þ

1

whj
Þ: ð14Þ

Here dw
ij denotes the weighted distance between vertex i and j, and wih is the weight of

the edge linking vertex i and h, where h is the intermediate vertex between vertices i and j.
Since in our WHDN edge weight suggests strength, the distance between two vertices is

the minimum sum of the inverse of edge weight along the path connecting them. Once the

weighted distance is defined, closeness and betweenness can be calculated by their original

definitions.

Fig 10 shows the correlation of DIL-W scores with a) degree, b) closeness, and c) between-

ness centralities. As we can see, there is a positive correlation between DIL-W measure and all

other three vertex centrality measures. The Spearman’s rank correlation coefficient is 0.672

comparing DIL-W with closeness, is 0.71 comparing DIL-W with betweenness, and is 0.947

comparing DIL-W with degree.

To evaluate our new vertex importance quantification method, DIL-W, we measure the

network efficiency before and after we remove the most important vertices in the WHDN. In

the context of the WHDN, the network efficiency indicates the extend to which the original

connectivity of the network is maintained. We calculate the decline rate of network efficiency

after removing m top-rank vertices. The network efficiency [55] is computed based on the

connectivity of a network. A higher connectivity suggests a higher network efficiency. The

Fig 9. Distribution of DIL-W centrality in the giant component of the WHDN on a log-log scale.

https://doi.org/10.1371/journal.pone.0205936.g009

Centrality measure in the weighted human disease network

PLOS ONE | https://doi.org/10.1371/journal.pone.0205936 March 22, 2019 13 / 24

https://doi.org/10.1371/journal.pone.0205936.g009
https://doi.org/10.1371/journal.pone.0205936


network efficiency is defined by

Z ¼
1

nðn � 1Þ

X

vi 6¼vj2V

1

dij
; ð15Þ

where n is the total number of vertices in the network, V is the vertex set, and dij is the

weighted distance between vertex vi and vj. Thus, the decline rate of the network efficiency is

calculated as

m ¼ 1 �
Z

Z0

; ð16Þ

where η0 is the efficiency of the original network, and η is the network efficiency after some

vertices are removed.

When a more importance vertex is removed, we expect to see a greater decline rate of the

network efficiency. Thus we can use μ as an indicator for the actual impact of removing a

Fig 10. Correlation of DIL-W scores with a) degree centrality, b) closeness centrality, and c) betweenness centrality in the WHDN.

https://doi.org/10.1371/journal.pone.0205936.g010
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vertex in the network. Fig 11 shows the decline rate of the network efficiency when we remove

each of the top 40 vertices ranked by a) degree (DC), b) closeness (CC), c) betweenness (BC),

and d) DIL-W. Further removal of top ranked vertices could be investigated but was not

included in the current study given the high computational demand. As shown in the figure,

we do not observe a monotonic relationship across all four centrality methods. However, the

correlation analysis shows that our method, DIL-W, has a slighter stronger negative correla-

tion between the decline rate and the rank of the removed vertex than the other three. The

Spearman’s rank correlation coefficient, ρ, for degree, closeness, and betweenness is −0.1801,

−0.0017, and −0.0679, respectively. In comparison, DIL-W has a negative correlation coeffi-

cient −0.2698.

Fig 11. Decline rate of network efficiency after removing a single vertex ranked by a) degree centrality (DC), b) closeness centrality (CC), c) betweenness centrality

(BC), and d) DIL-W.

https://doi.org/10.1371/journal.pone.0205936.g011
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We also consider removing all m top-rank vertices at once and see how this accumulative

removal affects the efficiency of the network. Fig 12 shows the decline rate of the network effi-

ciency after removing all top m vertices ranked by different centrality measures. The graph

shows that the proposed method, DIL-W, has the highest decline rate of network efficiency for

57.5% of the data points, while betweenness, closeness, and degree have 27.5%, 10%, and 5%,

respectively. This suggests that DIL-W is able to select a set of more important vertices com-

paring with the other three centrality measures. As seen in Fig 12, the four methods are very

comparable until the top 11 diseases are removed from the network. Then DIL-W has a signifi-

cant higher network efficiency decline rate than the rest. Betweenness centrality catches up

around point 30 and becomes very comparable afterwards.

Since one main contribution of our study is to add edge weights to the HDN, we collect

another set of results by computing vertex centralities without the consideration of edge

weights. That is, the network structure remains the same but edges now do not carry weights,

then the weighted DC, CC, and BC simply become their original definitions for un-weighted

graphs, and DIL-W is replaced by the original DIL. The comparison is depicted in S1 Fig,

which shows that excluding edge weights results in very similar vertex rankings by various cen-

trality measures and essentially no significant difference in evaluation.

Table 1 shows the top 30 diseases ranked by our DIL-W method, their degrees, and their

neighbors that have the strongest correlations (i.e., edge weights). References that support the

known comorbidity of the disease pairs are also given.

In addition, we compare the top 30 diseases ranked by different centrality measures (see

Fig 13). The figure shows the top 30 diseases ranked by our proposed DIL-W (x-axis), as

well as their rankings by other three centrality measures. If a disease is not among the top 30

ranks by a centrality measure, the data point will be shown as a zero on the x-axis. We see

Fig 12. The decline rate of the network efficiency as a function of removing the top m vertices ranked by degree

centrality (DC), closeness centrality (CC), betweenness centrality (BC), and DIL-W.

https://doi.org/10.1371/journal.pone.0205936.g012
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that 18 out of 30 top diseases ranked by DIL-W are not picked up by at least one other cen-

trality measures. This comparison result further justifies the utility of our proposed centrality

measure on finding central vertices (diseases) undetected by other conventional centrality

measures.

Discussion

In this article, we use a network-based analysis to identify important human diseases that

share genetic background with many other diseases through strong associations. We collect a

large number of known disease-gene associations (DGAs) using DisGeNET in order to con-

struct a bipartite disease-gene network. Subsequently, a weighted human disease network

(WHDN) is built by connecting pairs of diseases that share associated genes and the edge

weights reflect the number of genes they share as well as the strength of the DGAs. Then we

develop a new vertex centrality measure for the WHDN, degree and importance of link cen-

trality (DIL-W), which considers both the degree of a vertex and the importance of its incident

Table 1. The 30 top-ranked diseases using DIL-W and their most correlated diseases. The table shows the diseases, along with their rankings, their degrees in the

WHDN, their direct neighbors with the strongest edge weight, and literature references that have discussed the correlations of the disease pairs.

Rank Disease Degree The most correlated disease Ref.

1 Epilepsy 576 Pediatric failure to thrive –

2 Pediatric failure to thrive 462 Epilepsy –

3 Sensorineural hearing loss (disorder) 313 Retinitis pigmentosa [56]

4 Anemia 327 Pediatric failure to thrive [57]

5 Obesity 268 Retinitis Pigmentosa [58]

6 Osteoporosis 326 Osteopenia [59]

7 Nystagmus 276 Epilepsy [60]

8 Liver cirrhosis 278 Chemical and drug induced liver injury [61]

9 Low vision 270 Nystagmus [62]

10 Heart failure 311 Obesity [63]

11 Muscle degeneration 277 Amyotrophic lateral sclerosis [64]

12 Diabetes mellitus, non-insulin-dependent 245 Obesity [65]

13 Strabismus 293 Epilepsy [66]

14 Exophthalmos 302 Strabismus [67]

15 Myopia 266 Sensorineural hearing loss (disorder) [68]

16 Degenerative polyarthritis 239 Rheumatoid arthritis [69]

17 Cerebral atrophy 267 Epilepsy [70]

18 Optic atrophy 236 Nystagmus –

19 Rheumatoid arthritis 188 Lupus erythematosus, systemic [71]

20 Hydrocephalus 250 Epilepsy [72]

21 Alopecia 241 Dystrophia unguium –

22 Myocardial ischemia 166 Obesity –

23 Myocardial infarction 228 Coronary artery disease [73]

24 Chemical and drug induced liver injury 174 Cholestasis [74]

25 Asthma 198 Dermatitis, atopic [75]

26 Endometriosis 135 Obesity [76]

27 Hypertrophic cardiomyopathy 187 Pediatric failure to thrive [77]

28 Conductive hearing loss 163 Sensorineural hearing loss (disorder) [78]

29 Brain ischemia 191 Diabetes mellitus, non-insulin-dependent –

30 Gastroesophageal reflux disease 190 Epilepsy [79]

https://doi.org/10.1371/journal.pone.0205936.t001
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edges in weighted graphs. Our network-based analysis methods are shown to be able to iden-

tify more important diseases comparing to degree, closeness and betweenness centralities. The

identified disease-disease correlations include previous knowledge supported by published lit-

erature as well as less known and novel correlations that can be valuable for further studies.

The contribution of our study is two fold, the construction of the WHDN and the impor-

tance measurement of a vertex considering both its degree and edge(s). First, comparing to

the HDN (an un-weighted graph) proposed by Goh et al. [33], the mechanism of including

vertices and edges is the same, but we add the consideration of the confidence and strength

of disease-disease correlations and add weights to edges of the HDN. Such a WHDN allows us

to prune the network using a vertex disparity filter [50], which considerably reduces the com-

plexity of the network by removing less-significant edges (from 112,324 to 38,275 before and

after the back-bone extraction), while preserving most of the vertices (from 5,278 to 4,898,

respectively).

Second, we further extend a new vertex centrality measure DIL-W for the WHDN, which

quantifies the importance of a vertex by considering its degree and the aggregative importance

of its attached edge(s), with the inspiration that a disease should be considered important if it

is correlated with many other diseases (i.e., its degree) and these correlations are themselves

strong and significant (i.e., edge importance).

Fig 13. The 30 top-ranked diseases by DIL-W and their ranks using degree centrality (DC), closeness centrality (CC), and

betweenness centrality (BC). The diseases on the x-axis are ordered based on their ranks by DIL-W. A data point landing on the x-

axis indicates that the corresponding disease was not among the top 30 ranked by a centrality measure.

https://doi.org/10.1371/journal.pone.0205936.g013
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DIL-W only uses local information of a vertex for its importance assessment, and its

computational complexity is OðjVj�k2Þ, where |V| is the total number of vertices and �k is the

average degree of vertices in a network. Thus, DIL-W can be efficient to compute for large and

sparse networks.

Upon application to the WHDN, DIL-W is shown to outperform three commonly used

centrality measures, degree, closeness and betweenness, and has identified top diseases includ-

ing epilepsy, anemia, and obesity. Table 1 shows the degree in the WHDN and the most corre-

lated disease of those 30 top-rank diseases. We are also able to find previous publications that

verify almost all the correlations of those pairs of diseases, shown as references in the table.

Besides some very well-known correlations such as heart failure—obesity and diabetes—obe-
sity, the table also reports some less known but interesting correlations. For instance, Savin

[58] showed that atypical retinitis pigmentosa is correlated with obesity. Moreover, the correla-

tion between anemia and pediatric failure to thrive had not been reported in the literature until

recently Dimmock et al. [57] suggested anemia as one of the novel causes of failure to thrive in

children. Zimmerman [61] studied the cause of different types of cirrhosis resulting from dif-

ferent drug-induced injuries. This supports our finding on the correlation between cirrhosis
and chemical and drug induced liver injury.

The disease-gene associations come from DisGeNet [49] only. While this is a valuable

resource, it is merely one of the many databases that have disease gene information (including

Jensen Lab’s DISEASES [80] and DiseaseConnect [81] databases), all of which have their own

disease association scoring convention. The alternative databases will be explored in our future

study.

Another future direction we would like to explore is to implement our proposed centrality

measure DIL-W for other networks and to test its utility. Centrality measures essentially tell us

how important a vertex is in the context of a network structure, and this “importance” can

take different meanings in various types of networks. For instance, in Internet, vertices are

physical routers, servers, and computers that are responsible for information transportation,

therefore, vertex importance should reflect how much a vertex controls and its remove influ-

ences the traffic flow. We expect DIL-W to find useful venues for weighted networks that

consider vertices as important when they are connected with many others through strong

relationships.

Our understanding of human diseases is still largely unclear and the disease-gene associa-

tions are far from being complete. Future studies could explore the utilization of multiple

types of data and more powerful computational tools to better cluster and categorize human

diseases and to predict new genes and other factors that can explain diseases.

Supporting information

S1 Fig. The decline rate of the network efficiency as a function of removing the m (x-axis)

top-ranked vertices using centrality measures degree (DC), closeness (CC), betweenness

(BC), and DIL without the consideration of edge weight.
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