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Abstract: Neurodegenerative diseases (NDs), such as Alzheimer’s disease (AD), Parkinson’s disease
(PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS), are disorders character-
ized by progressive degeneration of the nervous system. Currently, there is no disease-modifying
treatments for most NDs. Meanwhile, numerous studies conducted on human and animal models
over the past decades have showed that exercises had beneficial effects on NDs. Inter-tissue com-
munication by myokine, a peptide produced and secreted by skeletal muscles during exercise, is
thought to be an important underlying mechanism for the advantages. Here, we reviewed studies
about the effects of myokines regulated by exercise on NDs and their mechanisms. Myokines could
exert beneficial effects on NDs through a variety of regulatory mechanisms, including cell survival,
neurogenesis, neuroinflammation, proteostasis, oxidative stress, and protein modification. Studies
on exercise-induced myokines are expected to provide a novel strategy for treating NDs, for which
there are no adequate treatments nowadays. To date, only a few myokines have been investigated
for their effects on NDs and studies on mechanisms involved in them are in their infancy. Therefore,
future studies are needed to discover more myokines and test their effects on NDs.

Keywords: Alzheimer’s disease; amyotrophic lateral sclerosis; exercise; Huntington’s disease;
muscle–brain axis; myokines; neurodegenerative diseases; Parkinson’s disease

1. Introduction

Neurodegenerative diseases (NDs) such as Alzheimer’s disease (AD), Parkinson’s
disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS) are
characterized by progressive loss of neurons and accumulation of abnormal protein aggre-
gates [1]. They are accompanied by cognitive impairments, memory loss, and locomotor
deficits and share several fundamental processes, including cell survival, neurogenesis,
neuroinflammation, proteostasis, oxidative stress, and protein modification [2–7]. The
pathological hallmark of each ND contains an abnormal aggregation of different proteins:
amyloid-β (Aβ) and tau in AD, α-synuclein in PD, huntingtin in HD, and several proteins
including Tar DNA-binding protein of 43 kDa (TDP-43) and mutant superoxide dismutase
1 (SOD1) in ALS [8]. Pathological deposition of these proteins in neurons takes place long
before psychological symptoms of each ND appear, and substances that can block their
abnormal aggregation are expected to be used as preventive or therapeutic agents for
NDs [9–13].

Results of numerous studies conducted on human and animal models over the past
decades have shown that exercise has beneficial effects not only on physical health, but
also on neuronal functions, resulting in improved learning and memory, inhibition of
neurodegeneration, and reduction of depression [14]. Exercise can increase brain volume or
connectivity by enhancing neurogenesis and synaptic plasticity and changing metabolism
and vascular function [14,15]. Beneficial effects of exercise on brain health are thought to be
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mediated by several factors, including increased trophic factors such as brain-derived neu-
rotrophic factor (BDNF), changed expression levels of many genes, decreased inflammation,
and improved brain redox status [16–20].

Since exercise has a beneficial effect on brain function, it is thought to be able to slow
the onset or progression of various NDs. In some studies, regular physical activity has less
side effects, but better effects than currently used treatments for NDs [21–23]. The effect of
exercise on NDs has been mostly studied on AD, one of the NDs with the highest incidence.
Many systematic reviews and meta-analyses have shown that physical inactivity is one
of the most common risk factors for AD development and that physically active elderly
people have a lower risk of AD and dementia [23,24]. Moreover, beneficial effects of exercise
on brain function and cognitive behavior have been repeatedly confirmed in AD mouse
models [25]. In addition, physical exercise improved the physical functioning of people
with PD [26] and it has been demonstrated that exercise protected the rodent models of PD
from neurodegeneration [27–31]. Furthermore, studies on other NDs such as HD and ALS
have also reported that exercise has a beneficial effect on these diseases [32,33]. However,
some studies have failed to confirm the effect of exercise on NDs, and other studies have
even shown that exercise has a rather harmful effect on NDs [34–36]. In addition, few
studies have accurately proven the effect of exercise on NDs using appropriate biomarkers.
Thus, verifying exercise’s effect through high-quality studies with large sample numbers is
required in the future [32,35]. Nevertheless, it is clear that exercise is worth considering as
an important therapeutic strategy if there are accurate data about the effect of exercise on
each disease according to its type and amount.

Given the beneficial effect of exercise on neuronal health, various recent studies have
revealed the importance of the muscle–brain axis in transmitting the effect of exercise
to the brain as well as the role of muscles in secreting various factors for regulating
brain function [37]. In this review, we examine the definition, function, and regulation
of myokines released from skeletal muscles during exercise and their effects on neuronal
health. In addition, molecular mechanisms underlying myokine’s effects on NDs are
investigated. Finally, the potential of myokine as a therapeutic agent for NDs and the
direction of future myokine research are discussed.

2. Myokines and Neuronal Health

Molecular mechanisms of how physical activity exerts protective effects against NDs
have not been completely elucidated yet. However, inter-tissue communication by myokine
is being proposed as a strong candidate for them [38]. Myokine was first postulated by
Pederson in 2003 [39]. As a cytokine or a peptide produced and secreted by skeletal
muscles, it exerts autocrine, paracrine, and endocrine effects [37,40]. It mediates crosstalk
between muscles and other organs, promoting neurogenesis and vascularization in the
brain [41,42], inducing browning of white adipose tissue (WAT) [43], accelerating hepatic
glucose production, and stimulating insulin secretion by pancreatic β-cells [44,45]. In the
following, we will review studies on factors secreted by muscles during exercise, which are
known to affect neuronal health.

2.1. Apelin

Apelin, named APJ endogenous ligand, was first isolated in 1998 as a ligand for
orphan G protein-coupled receptor APJ [46]. Apelin and APJ are widely distributed in the
body and play an important role in cell protection in many organs [47]. The gene APLN
encodes the pre-proprotein of apelin. Active apelin-13, pyroglutamate-apelin-13, apelin-17,
and so on are produced by post-translational modification of the pre-proprotein [48].

Apelin was discovered as an exercise-induced myokine with an increased expression
level after performing an 8-week endurance training program in 11 obese non-diabetic male
subjects, and was confirmed to be secreted by human primary myotubes in vitro [49]. In
addition, apelin level was decreased in an age-dependent manner in humans and rodents,
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and muscle function was decreased with aging in mice deficient in either apelin or its
receptor APJ [50].

It is well-known that apelin contributes to conditions such as cardiovascular disease,
obesity, and cancer [51]. In addition, apelins are distributed throughout the nervous system
and have been reported to possess neuroprotective effects [52–58]. The role of apelin in
NDs has only been studied recently. The results from these studies, which have been mainly
focused on AD and PD using rodent models or cellular models, have suggested that apelin
has beneficial effects on these diseases through various pathways [59–67]. One study has
shown that apelin deficiency can accelerate ALS-like phenotype in an SOD1 (G93A) mouse
model [68]. However, studies on changes in the expression level of apelin and its effects in
human ND patients are insufficient. It is necessary to confirm the relationship of apelin
with ND and its potential as a therapeutic agent through human studies in the future.

2.2. BDNF

BDNF is a member of the neurotrophin family, which regulates neural circuit de-
velopment and function [69]. It was purified from porcine brain in 1982 as a neuronal
survival factor [70]. Subsequently, numerous studies have shown that BDNF can perform
a variety of functions. BDNF has been known to penetrate the blood–brain barrier (BBB)
by a saturable transport system [71]. It can promote the survival and growth of a variety of
neurons, affect synaptic transmission, enhance neurogenesis, and alter activity-dependent
synaptic plasticity [72]. BDNF is initially synthesized as pre-pro-peptide that is cleaved
to pro-BDNF, then the pro-BDNF is converted to mature BDNF by furin endopeptidase
intracellularly, or by proteases such as plasmin or MMP7 extracellularly [73]. Mature
BDNF is involved in neuronal plasticity such as neurogenesis, neurite arborization, and
synaptogenesis by binding to tropomyosin receptor kinase B (TrkB) [74,75]. On the other
hand, pro-BDNF functions in programmed neuronal death, neurite retraction, and synaptic
pruning through a p75 neurotrophin receptor (p75NTR) [75].

According to previous studies, BDNF was increased in both acute aerobic and re-
sistance exercises [76,77]. More recently, it has been shown that BDNF is expressed and
secreted in muscles, and the muscle-derived BDNF acts as a hormone and affects whole-
body metabolism and insulin secretion [78,79]. Additionally, increasing BDNF levels
could mimic beneficial effects of exercise, including improving cognitive impairment and
promoting combined adult hippocampal neurogenesis in 5×FAD mice [80]. In addition,
TrkB inhibitor treatment blocked beneficial effects of exercise in a rat model of PD [81],
suggesting that BDNF is an important factor mediating beneficial effects of exercise on ND.

Numerous studies have reported the importance of BDNF in ND pathology. In AD
patients, hippocampal BDNF mRNA [82] and peripheral BDNF levels [83] were decreased
compared to those in the control group, and serum BDNF levels were negatively correlated
with future occurrence of dementia and AD [84], suggesting that BDNF plays a role in
protecting the brain from AD. Consistently, studies using numerous in vitro and in vivo
AD models have clearly shown that BDNF has neuroprotective effects [85–89]. In addition,
genetic studies on human AD patients have reported that BDNFVal66Met SNP, known to
reduce synaptic BDNF release [90], is associated with greater cognitive impairment and
higher vulnerability of hippocampus-frontal connectivity to primary AD pathology [91,92].
Meanwhile, BDNF acts as a neurotrophic factor in dopaminergic neurons of the substantia
nigra [93], and its neuroprotective effect has been verified in various PD models [94–98].
Recent studies have reported that α-synuclein, a PD-related protein, can block BDNF-
TrkB signaling and induce dopaminergic cell death [99,100], suggesting that BDNF-TrkB
signaling is implicated in PD pathology. The idea that degenerative diseases of the nervous
system might be due to insufficient supply of neurotrophic factors has generated great
interest in BDNF as a potential therapeutic agent.
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2.3. CTSB

Cathepsin B (CTSB) is a lysosomal cysteine protease and is involved in catabolism
of proteins in lysosome and autophagy [101,102]. Interestingly, it can be secreted from
cells and plays a role in proteolysis of extracellular components, thus contributing to
tumorigenic processes including apoptosis and invasion [103].

A recent study has demonstrated that CTSB is a myokine increased by aerobic exer-
cise [41]. In the same study, treatment with AMP-kinase agonist induced CTSB secretion
from cultured skeletal muscle cells, suggesting that CTSB expression is dependent on AMP
kinase that has been suggested to mediate beneficial effects of exercise [41,104,105]. More
recently, it has been reported that long-term exercise training (35 ± 15 years) significantly
reduced resting serum levels of BDNF and plasma levels of CTSB in human, although they
are beneficial for the brain and muscle health, which suggests that exercise may sensitize
BDNF and CTSB signaling [106].

In CTSB-deficient condition, unlike in wild type (WT), beneficial effects of exercise,
such as improvement of memory and adult neurogenesis, were not found, suggesting that
CTSB mediates beneficial effects of exercise on brain health [41]. Furthermore, numer-
ous studies using various models have suggested that CTSB would be beneficial to AD
and PD by reducing Aβ and α-synuclein accumulation respectively, due to autophagy
and lysosome-related functions of CTSB in the brain [107–112]. In the similar context,
treatment with Z-Phe-Ala-diazomethylketone (PADK; also known as ZFAD), a CTSB ac-
tivator, reduced Aβ deposition and improved synaptic and cognitive dysfunctions in an
APP/presenilin-1 (PS1) and mild cognitive impairment (MCI) mouse model [112].

2.4. CX3CL1

C-X3-C Motif Chemokine Ligand 1 (CX3CL1), also called fractalkine or neurotactin, is a
type of chemokines which are secreted proteins that play an important role in inflammation
and trafficking of white blood cells during immune surveillance [113,114]. G-protein-
coupled receptor C-X3-C Motif Chemokine Receptor 1 (CX3CR1) has been identified as the
receptor for CX3CL1 and implicated in the function of leukocytes and microglia [115,116].
CX3CL1 has a cysteine signature motif, CX3C, which contains three unspecified amino
acids between cysteine residues [113]. It is synthesized as a transmembrane molecule, and
a chemo-attractive-soluble form containing CX3C motif is generated by metalloproteases
ADAM 10 and ADAM 17 [117–119]. Based on its chemo-attractive role, CX3CL1 has been
intensively associated with various inflammatory diseases [119].

CX3CL1 was identified as a protein secreted from skeletal muscles [120]. Several
recent studies have found that CX3CL1 mRNA levels were increased in muscles and its
protein levels were increased in plasma after acute or resistance exercise [121–124]. These
findings suggest that CX3CL1 is an exercise-induced myokine that might be involved in
communication between skeletal muscles and other organs.

In the brain, CX3CL1 might suppress neuroinflammation through activation of mi-
croglial CX3CR1 [125]. Given that neuroinflammation is an important factor in progressing
NDs, the CX3CL1-CX3CR1 pathway is expected to have beneficial effects on NDs. How-
ever, to date, the role of the CX3CL1-CX3CR1 pathway in NDs is inconclusive and findings
are controversial. First of all, there are conflicting reports about levels of CX3CL1 in AD
patients. Some previous studies reported that CX3CL1 levels were decreased in brains
and cerebrospinal fluid (CSF) of AD patients and in brains of AD model mice [126–129],
while other studies reported that CX3CL1 was increased more in CSF or plasma of MCI
and AD patients than in healthy people [130,131]. CX3CL1 expression is also inconsis-
tent in other NDs. CX3CL1 levels in CSF of PD patients did not change compared to
age-matched controls [132], whereas CX3CL1 levels in the putamen of HD patients were
downregulated [133]. CX3CL1 mRNA levels in spinal cords of ALS model mice were
reported to increase at 40 days of age but decrease at 90 and 120 days compared to those
in WT mice [134]. In most ND-related studies, it was shown that the soluble form of
CX3CL1 had beneficial effects [135–141], suggesting that increased CX3CL1 level in the
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blood after exercise might have beneficial effects on NDs. However, results of CX3CR1
deficiency are clearly contradictory. While CX3CR1 deficiency showed beneficial effects in
some studies [142–147], it showed deteriorating effects in other studies [127,148–151]. The
reason for these inconsistent results might be because the CX3CL1-CX3CR1 pathway is
related to the function of microglia, which can play an opposing role in the ND process
by acting on neuroinflammation and phagocytic clearance at the same time. To develop a
therapeutic agent based on CX3CL1, in-depth studies on more detailed mechanisms should
be conducted.

2.5. FGF2

Fibroblast growth factor 2 (FGF2), also known as basic fibroblast growth factor (bFGF)
and FGF-β, is one of the growth factors that plays an essential role in neural development
and proliferation of neural stem and progenitor cells [152]. FGF2 is ubiquitously expressed
in various tissues, including brain and muscles, and aerobic exercise has been found to
increase FGF2 expression levels in animal models [153–155]. However, it is unclear whether
exercise can increase FGF2 expression in humans [156]. FGF2 is unconventionally secreted
from cells, in which it forms lipidic membrane pores by binding to phosphoinositide
PI(4,5)P2, and it is secreted by the separating action of membrane proximal heparan
sulfates proteoglycans [157–160].

As a neurotrophic factor, FGF2 is known to stimulate neurogenesis and angiogenesis
in adult brains and developing brains [161–167]. Accordingly, it exerted beneficial effects
in some ND animal models [168,169]. Especially, FGF2 treatment inhibited Aβ production
in primary cultured neurons of APP/PS1 mice and APPswe-HEK293 cells [170,171] and
improved synaptic transduction, plasticity, and neurogenesis in an APP/PS1 mouse, while
reducing hippocampal Aβ deposition and memory impairment [170]. However, effects of
FGF2 on AD or ALS are more complex than expected. FGF2 levels in brains of AD patients
and serum and CSF of ALS patients were reported to be elevated compared to those in
normal controls [172–174]. FGF2 elevated the expression of tau, glycogen synthase kinase-3
(GSK-3) activity, and GSK-3-mediated tau phosphorylation [175]. Furthermore, it reduced
neurogenesis in cultured neural progenitor cells derived from adult rat hippocampus [176]
and induced dysregulation of dentate gyrus neurogenesis [177]. Contrary to the expec-
tation that reduced FGF2 levels would worsen the phenotype of ALS, FGF2 deficiency
significantly delayed disease onset and improved impaired motor performance in mutant
SOD1 mice, a common ALS model [178].

2.6. FGF21

Fibroblast growth factor 21 (FGF21), a hormone belonging to the FGF superfamily,
was first discovered in mouse embryos in 2000 [179]. Although this hormone is mainly
expressed in the liver, it is also produced in various organs, including muscle, adipose
tissue, pancreas, and heart, regulating energy homeostasis in an autocrine, paracrine, or
endocrine manner [180,181]. As a result of preclinical studies, FGF21 has been attracting
attention for its potential use as a treatment for metabolic syndromes such as diabetes by
increasing insulin sensitivity, improving glucose tolerance, and reducing body weight [182].
Exercise elevated blood FGF21 levels mainly due to increased FGF21 expression in the
liver [183–185]. In addition, expression levels of FGF receptor-1 (FGFR1) and β-Klotho
(KLB), a co-receptor, were increased in adipose tissues during exercise, thus improving the
sensitivity of adipose tissues to FGF21 [186] and promoting browning of white adipose
tissues [187].

FGF21 was reported as a myokine regulated by the phosphoinositide 3-kinase (PI3K)/
Akt axis [188], and its expression was increased in muscles during acute aerobic exer-
cise [189]. Interestingly, FGF21 is also known as ’mitokine’, which is expressed and secreted
in cells with mitochondrial damage due to autophagy dysfunction, endoplasmic reticulum
stress, and mitochondrial gene abnormalities, and non-autonomously affects metabolism
of other cells [190–194]. In particular, mitochondria damage in muscle cells induced an
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ATF4-dependent increase of FGF21 expression, thereby inducing systemic metabolic adap-
tation such as improved insulin sensitivity, increased energy expenditure, and enhanced
lipid catabolism and WAT browning [190].

In addition to metabolic function, FGF21 can penetrate the BBB [195], and has been
reported to improve cognitive performance in diabetes and trauma models [196–199].
In various brain damage models, FGF21 prevented inflammation and BBB disruption
through PPAR-γ activation and induced neovascularization [196–198,200–204]. Although
not many studies have been conducted on the effect of FGF21 on NDs, several recent
preclinical studies have shown that FGF21 has a neuroprotective effect in ND models by
affecting several signaling pathways. In both in vivo and in vitro AD models, FGF21 has
shown anti-inflammatory and antioxidant effects, and prevented amyloid plaque formation,
neurofibrillary tangle formation, and neurodegeneration [205–208]. Moreover, FGF21
treatment led to alleviated dopaminergic neuron loss, improved mitochondrial function
and behavioral ability, and decreased inflammation in PD models [209–212]. Additionally,
intraperitoneal injection of R1Mab1, a pharmacological agonist of FGF21 which is an IgG
humanized monoclonal antibody with agonistic activity on FGFR1, improved the motility
of the ALS model mice [213].

2.7. IGF-1

Insulin-like growth factor 1 (IGF-1), also called somatomedin C, is a secreted peptide
with a structure similar to insulin and is involved in various physiological functions [214].
IGF-1 is composed of 70 amino acids with three disulfide bonds, the position of which
is the same as the disulfide bond connecting A and B chains of insulin [215]. IGF-1 is a
potent myoanabolic factor, which is expressed and secreted in muscle tissue, and muscle
hypertrophy can increase IGF-1 expression [216]. According to previous studies, although
there is some disagreement on the proportional relationship between exercise status and
serum IGF-1 levels, many studies have shown that serum IGF-1 levels were increased in
the elderly after aerobic and resistance exercise [217–219]. Moreover, a study revealed that
IGF-1 is indispensable for exercise-induced neurogenesis [220].

A previous study showed that IGF-1 enters into the brain through the blood-CSF path-
way [221]. Although it is known that IGF-1 plays an important role in brain development
and neurogenesis and that large amounts of IGF-1 receptors are expressed in the brain [222],
its role in cognitive function and NDs of the aging brain is still complex and controver-
sial [214]. In some studies, serum IGF-1 levels in the elderly were positively correlated with
cognitive function, whereas in other studies, those were not correlated or reversely corre-
lated [223–226]. Results from studies on IGF-1 levels in ND patients are also complicated.
A large-scale study on AD patients has reported that low serum IGF-1 levels are associated
with an increased risk of developing AD dementia [227]. However, a meta-analysis based
on results of nine studies comparing serum IGF-1 levels with normal subjects failed to find
a significant difference between AD patients and normal subjects [228]. On the other hand,
most studies on the association between PD and IGF-1 levels have reported higher IGF-1
levels in PD patients than in normal subjects [229]. More importantly, studies using rodent
PD, HD, or ALS models have consistently shown that IGF-1 has beneficial effects on these
diseases [230–236]. However, results from studies on the role of IGF-1 signaling in AD
mouse models are not consistent with each other. In some studies, systemic infusion of
IGF-1 reduced brain Aβ levels and toxicity [237,238]. However, in other studies, decreased
IGF-1 signaling alleviated Aβ toxicity in AD mice [239–241]. In addition, a systematic
review of the literature showed that it was unclear whether circulating or brain IGF-1 could
reverse or slow the rate of decline in cognitive impairment in patients with dementia [242].

2.8. Irisin

Irisin, named after the Greek messenger goddess Iris, is a 112 amino acids-cleaved
product of fibronectin type III domain-containing protein 5 (FNDC5), a type I transmem-
brane glycoprotein [43]. After being proteolytically cleaved from FNDC5, irisin is secreted
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and functions as a myokine [243]. Irisin was initially identified in skeletal muscles, but it
was later found to also be expressed in a variety of tissues, including the brain [244]. Exer-
cise elevated the expression of transcription factor PGC-1α in muscles [19], thus enhancing
the expression of FNDC5 and consequently increasing the amount of irisin secreted into
the blood by proteolytic cleavage of FNDC5, and irisin level was elevated in the plasma of
individuals undergoing aerobic training [43,245].

Irisin has been shown to exert beneficial effects on various tissues including bone,
fat, liver, and muscle [246–248]. One study showed that irisin could trigger cell prolifera-
tion in hippocampal cell lines [249] and the secretion of irisin during exercise enhanced
the expression of BDNF and neurotrophic genes in mouse brains [250,251]. In addition,
overexpression of irisin in the brain suppressed neuroplasticity defects and memory im-
pairment in AD model mice, and intraperitoneal injection of anti-FNDC5 eliminated the
beneficial effect of exercise on AD-like phenotype [252]. Moreover, co-treatment of irisin
with bone marrow stem cells protected dopaminergic neurons from degeneration and
apoptotic process in a MPTP-induced PD mouse model [253]. Interestingly, a study with
14 AD patients and 25 non-demented controls revealed that CSF irisin levels were posi-
tively correlated with levels of Aβ and BDNF in CSF and cognitive status of patients with
AD [254]. Similarly, one study found that serum irisin levels in patients with ALS were
higher than those in normal controls and that irisin levels were negatively correlated with
the extent of functional and respiratory impairment in patients with ALS [255]. A study on
the effect of irisin on ND is in its infancy, and many future studies are needed to reveal the
potential of irisin as an ND therapeutic or diagnostic biomarker.

2.9. LIF

Leukemia inhibitory factor (LIF) is a member of the interleukin-6 family of cytokines
with pleiotropic functions [256] and was first identified to be able to induce the differ-
entiation of macrophages [257]. It plays an important role in promoting proliferation,
differentiation, and survival of various types of cells, including neurons, myoblasts, hepa-
tocytes, adipocytes, megakaryocyte progenitors, and myeloid cells [258].

LIF has also been identified as a myokine whose expression is increased by exercise
in human and animal models [259,260]. It has a secretion signaling peptide that regulates
its secretion from cells [261], and its secretory property was confirmed in cultured human
myotubes and mouse skeletal muscles [262]. According to a study by Broholm et al.,
immediately after performing an aerobic exercise for 3 hours, LIF mRNA expression levels
in muscles were increased up to 4 times and then gradually decreased [259]. In a more
recent study, plasma LIF content was increased about 50% after a static exercise, although
it was not increased after a dynamic exercise, which means that the regulation of LIF
expression might differ depending on the type of exercise [263]. Meanwhile, treatment
with ionomycin, a Ca2+ ionophore, elevated LIF mRNA and protein expression levels
in human muscle cells [259], suggesting that oscillations of Ca2+ concentration following
muscle contraction could affect LIF transcription. In addition, in cultured human myotubes,
LIF was regulated by the PI3K-Akt pathway, and expression levels of JunB and c-Myc
induced by LIF were also increased in skeletal muscles after a resistance exercise [264].

Since LIF is known to be able to pass through the BBB [265], it is expected that plasma
LIF can affect the brain function. Expression levels of LIF and its receptor, LIFR, were
increased in brains of AD and PD patients compared to healthy controls [266]. Furthermore,
LIF was increased in skin samples of ALS patients [267], suggesting that LIF might be
related to the pathophysiology of NDs. However, to date, research on the role of LIF in ND
pathology is very limited. A recent study has shown that LIF reduced amyloid β-induced
neurotoxicity in HT-22 mouse hippocampal cell lines and primary hippocampal cells
through Akt/extracellular signal-regulated kinase (ERK)-mediated c-fos induction [268].
However, LIF treatment did not show a beneficial effect on the disease progression in ALS
model mice [269]. Considering the effect of LIF on brain function as a neurogenesis- and
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inflammation-related factor, further studies are needed to determine the association of ND
with LIF using various ND models.

3. Molecular Mechanisms Underlying Myokine Action in Neurodegenerative
Diseases

Most NDs, including AD, PD, HD, and ALS, share pathological changes such as
progressive loss of neurons, accumulation of abnormal protein aggregates, and abnormally
increased neuroinflammation [1]. Studies on exercise-induced myokines have shown
that myokines play a beneficial role in NDs through a variety of mechanisms, including
regulations of cell survival, neurogenesis, neuroinflammation, proteostasis, oxidative stress,
and protein modification (Table 1). Here, we examined actions of myokines on NDs by
each mechanism (Figure 1).

3.1. Cell Survival

Neuronal cell death is one of the most important features in the brain of patients
during ND progression [270]. During ND, neurons die by activating the death signaling
pathway, resulting in brain atrophy [271]. In particular, apoptosis is an important form
of cell death in ND, which includes intrinsic pathways that occur inside cells damaged
by stress and extrinsic pathways that are triggered by signals from other cells [272]. In
apoptosis, cell death is induced by the activation of protease activity of a series of caspases,
and then, various factors activate or inhibit caspase actions to form cell death or survival
signals, respectively [271]. Numerous proteins including apoptosis signal-regulating kinase
1 (ASK1), c-Jun N-terminal kinases (JNK), B-cell lymphoma 2 (BCL2)-associated X protein
(Bax), and apoptotic protease activating factor 1 (Apaf-1) are involved in cell death signals
that activate apoptosis of neurons, while many factors including nerve growth factor (NGF),
PI3K, Akt, and BCL2 are included in neuronal survival pathways [271].
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evidence that some myokines penetrate the BBB (solid arrows from blood vessels through the BBB to the brain), others do
not so far (dashed arrows from the blood vessels through the BBB to the brain).
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Table 1. Myokines secreted during exercise and their beneficial effects on NDs. ↑, activated or increased; ↓, inactivated or decreased.

Myokine ND Function Mechanism Model Reference

Apelin

AD

Decreased cell death
Aβ-induced autophagy ↓
Caspase-3 activity ↓
mTOR phosphorylation ↑

Rats injected with Aβ25–35 and apelin-13 [62]

Decreased cell death BDNF/TrkB signaling pathway ↑ Rats injected with streptozotocin and apelin-13 [64]
Anti-inflammation Astrocyte and microglia activation ↓

IL-1β and TNF-α expression ↓
Decreased cell death RIP1 and RIP3 expression ↓ Rats injected with streptozotocin and apelin-13 [67]
Anti-inflammation TNF-α expression ↓

PD

Decreased cell death ERK1/2 phosphorylation ↑
ER stress ↓ SH-SY5Y cells treated with MPP+ and apelin-13 [60]

Decreased cell death
PI3K signaling pathway ↑
Cytoplasmic cytochrome c ↓
Cleaved caspase-3 ↓

SH-SY5Y cells treated with 6-OHDA and apelin-13 [61]

Increased α-synuclein clearance PI3K/Akt/mTOR-autophagy signaling
pathway ↑ SH-SY5Y cells treated with MPP+ and apelin-36 [65]

Decreased cell death IRE1α/XBP1/CHOP signaling pathway ↓ Mice injected with MPTP and apelin-13 [273]
Increased α-synuclein clearance Autophagy ↑

Increased α-synuclein clearance AMPK/mTOR/ULK1-autophagy
pathway ↑ SH-SY5Y cells treated with rotenone and apelin-13 [66]

Decreased cell death
ASK1/JNK signaling pathway ↓

Mice injected with MPTP and apelin-36 [274]
Caspase-3 activity ↓

Antioxidative stress GSH and SOD ↑
ALS Pro-inflammation Microglia activation ↑ SOD1-G93A mice crossed with apelin−/− mice [68]

BDNF
AD

Decreased Aβ production BACE1 and PSEN1 ↓ APPswe mice injected with TAT-BDNF peptide
Rats injected with scopolamine and TAT-BDNF
peptide

[275]
Decreased tau phosphorylation GSK3β activation ↓

HD Increased neurogenesis TrkB phosphorylation ↑ N171-82Q mice administered with
4′-DMA-7,8-DHF by oral gavage [276]

CTSB AD
Increased Aβ clearance Proteolytic activity of CTSB itself

hAPPJ20 mice injected with Lenti-CTSB
Primary cortical neurons from hAPPJ20 mice
infected with Lenti-CTSB
In vitro cleavage assay using Aβ1–42 and CTSB

[107]

Increased Aβ clearance Lamp1 expression ↑ APP/PS1 mice injected with AAV-CTSB [111]
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Table 1. Cont.

Myokine ND Function Mechanism Model Reference

CX3CL1

AD

Pro-inflammation IL-6 and TNF-α expression ↑ hAPPJ20 mice crossed with CX3CR1−/− mice [127]
Decreased tau phosphorylation GSK3α/β activation ↓ Tau P301L mice injected with AAV-CX3CL1 [137]Anti-inflammation Microglia activation ↓
Pro-inflammation NRF2/HO-1 signaling pathway ↓ CX3CR1−/− mice injected with AAV-TAUP301L [148]
Pro-oxidative stress
Increased neurogenesis TGF-β/Smad2 signaling pathway ↑ Tau P301S mice crossed with Tg-CX3CL1 mice [277]

Anti-inflammation Microglia activation ↓ APP/PS1 mice injected with MSCs carrying
CX3CL1 [141]

PD

Anti-inflammation Microglia activation ↓ Rats injected with 6-OHDA and CX3CL1 [135]

Anti-inflammation
Microglia activation ↓

CX3CL1−/− mice injected with MPTP and CX3CL1 [136]
TNF-α and IL-1β expression ↓

Pro-inflammation Il-1β and IL-6 expression ↑ CX3CR1−/− mice injected with AAV-α-SYN [150]

ALS
Pro-inflammation

Microglial activation ↑
IL-1β, iNOS, and TNF-α expression ↑
Arginase 1 and TGF-β expression ↓
NF-κB signaling pathway ↑

SOD1-G93A mice crossed with CX3CR1−/− mice [151]

Decreased SOD1 clearance Autophagy ↓

FGF2 AD

Decreased cell death Akt phosphorylation ↑ CVEC treated with Aβ1–40 and FGF2 [278]
Decreased Aβ production BACE1 expression ↓ APP23 mice injected with FGF2

N2a cells transfected with APPswe and treated with
FGF2

[279]

Anti-inflammation iNOS expression ↓
Astrocyte activation ↓

Decreased Aβ production BACE1 expression ↓ APPswe-HEK293 cells treated with GCM
SH-SY5Y cells treated with FGF2 [171]
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Table 1. Cont.

Myokine ND Function Mechanism Model Reference

PD

Antioxidative stress GSH ↑ Primary rat embryonic mesencephalic cultures
treated with 6-OHDA and FGF2 [280]

Decreased cell death

MEK/ERK1/2 signaling pathway ↑
BAD phosphorylation ↑
AIF translocation ↓
PI3K/Akt signaling pathway ↑

SH-SY5Y cells treated with rotenone and FGF2
Primary ventral mesencephalic cultures treated
with rotenone and FGF2

[281]

Decreased cell death Caspase-3 expression ↓ Rats injected with 6-OHDA and PEGylated FGF2
[282]

Anti-inflammation Astrocyte activation ↓ PC12 cells treated with 6-OHDA and PEGylated
FGF2

Decreased cell death
MEK/ERK1/2 signaling pathway ↑
PI3K/Akt signaling pathway ↑
ER stress ↓

Rats injected with 6-OHDA and FGF2
Primary hippocampal neurons treated with
6-OHDA and FGF2

[283]

FGF21

AD

Decreased cell death Caspase-3 activity ↓
SH-SY5Y cells treated with Aβ1–42 and FGF21 [206]

Anti-inflammation HSP90/TLR4/NF-kB signaling pathway ↓

Decreased cell death
Expression ratio of BCL2 to Bax
(BCL2/Bax) ↑
Cleaved caspase-3 ↓

Rats injected with Aβ25–35 and FGF21
SH-SY5Y cells treated with Aβ25–35 and FGF21 [207]

Decreased tau phosphorylation PP2A phosphorylation ↓

PD

Increased α-synuclein clearance SIRT1-autophagy signaling pathway ↑ Mice injected with MPTP and FGF21
SH-SY5Y cells treated with MPTP and FGF21 [210]

Decreased cell death

Cleaved caspase-3 and JNK
phosphorylation ↓
Expression ratio of BCL2 to Bax
(BCL2/Bax) ↑

Mice injected with MPTP and treated with FGF21
via intranasal routine
SH-SY5Y cells treated with MPP+ and FGF21
Primary dopaminergic neurons treated with MPP+

and FGF21

[211]

Anti-inflammation
Astrocyte and microglia activation ↓
IL-1β, IL-12, IFN-γ, and TNF-α expression
↓

Enhanced mitochondrial function AMPK/PGC-1α signaling pathway ↑
ALS Anti-inflammation Serum TNF-α, MCP-1 level ↓ SOD1-G93A mice injected with R1Mab1 [213]
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Table 1. Cont.

Myokine ND Function Mechanism Model Reference

IGF-1

AD

Decreased cell death Akt phosphorylation ↑ Rats infused with Aβ25–35 and IGF-1 via
subcutaneous osmotic minipump [237]

Increased Aβ clearance Aβ carrier-mediated transport ↑ APP/PS2 mice injected with IGF-1
Choroid plexus epithelial cell culture system treated
with Aβ1–40 and IGF-1

[238]
Anti-inflammation Astrocyte activation ↓

Decreased cell death

Mitochondrial membrane potential ↑
Cytoplasmic cytochrome c ↓
Cleaved caspase-3 ↓
Expression ratio of BCL-XL to Bax
(BCL-XL/Bax) ↑

SH-SY5Y cells treated with Aβ25–35 and IGF-1 [284]

Antioxidative stress
SOD and CAT activity ↑
PI3K/Akt/Nrf2/HO-1 signaling pathway
↑

Decreased cell death C-myb expression ↑
SH-SY5Y cells treated with Aβ25–35 and IGF-1 [285]

Decreased tau phosphorylation p25 protein production ↓
µ-Calpain expression ↓

Decreased Aβ production ADAM10 exprssion ↑
BACE1 expression ↓ APP/PS1 mice injected with IGF-1 [286]

PD

Decreased cell death PI3K/Akt signaling pathway ↑ Rats injected with 6-OHDA and IGF-1 [232]

Decreased cell death Caspase-3 expression and activity ↓
PARP cleavage ↓ PC12 cells treated with 6-OHDA and IGF-1 [287]

Antioxidative stress NRF2/HO-1 signaling pathway ↑

Decreased cell death
ERK1/2/CREB signaling pathway ↑
Akt/GSK3α/β/β-catenin signaling
pathway ↑

Rats injected with 6-OHDA and IGF-1 [288]

HD Decreased cell death PI3K/Akt signaling pathway ↑
Huntingtin phosphorylation ↑

Primary striatal neurons transfected with mutant
huntingtin and treated with IGF-1
SH-SY5Y cells treated with IGF-1
HEK293T cells transfected with mutant huntingtin

[289]
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Table 1. Cont.

Myokine ND Function Mechanism Model Reference

ALS

Decreased cell death Akt/caspase-9/caspase-3 signaling
pathway ↓ SOD1-G93A mice injected with AAV-IGF-1 [230]

Anti-inflammation Astrocyte activation ↓

Anti-inflammation Astrocyte activation ↓
TNF-α expression ↓

SOD1-G93A mice crossed with MLC/mIgf-1
transgenic mice [233]

Decreased cell death Cleaved caspase-9 ↓ SOD1-G93A mice injected with AAV-IGF-1
SOD1-G93A astrocyte-neuron coculture system
treated with IGF-1

[290]

Anti-inflammation
Astrocyte and microglia activation ↓
NOS activity and peroxynitrite formation
↓

Anti-inflammation Macrophage invasion ↓
TNF-α expression ↓ SOD1-G93A mice injected with AAV-IGF-1 [291]

Decreased cell death

JNK and p38 MAPK phosphorylation ↓
Bax expression ↓
BCL-2 expression ↑
Cleaved caspase-3 and cleaved caspase-9 ↓

SOD1-G93A mice injected with AAV-IGF-1 [292]

Anti-inflammation Astrocyte and microglia activation ↓

Irisin AD Anti-inflammation
IL-1β and IL-6 level ↓
Akt/IκBα/NF-κB/COX-2 signaling
pathway ↓

Primary hippocampal astrocytes treated with
Aβ25–35 and irisin [293]

LIF AD Decreased cell death Aβ-induced autophagy ↓ HT-22 mouse hippocampal cells treated with
Aβ1–42 and LIF [268]
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IGF-1, a well-established activator of the PI3K-Akt pathway, has been reported to
inhibit cell death by increasing Akt phosphorylation in various models [236,285,288]. In-
terestingly, in a human HD cell model, Akt activated by IGF-1 inhibited the toxicity of
huntingtin by phosphorylating it [289]. Furthermore, IGF-1 treatment inhibited apoptosis
in ND models by inactivating the apoptosis pathway, such as increasing the activity of
NF-kB, expression of BCL2, or inhibiting caspase activity [230,284,287,290,292,294,295]. It
was also found that FGF2 and FGF21 increased Akt phosphorylation and BCL2 expression
in various ND models, while inhibiting apoptosis by lowering JNK and caspase activi-
ties [207,211,278,281–283]. BDNF and LIF could also reduce neuronal cell death in AD
models by activating the PI3K-Akt pathway [268,296]. In addition, intranigral injection
of apelin-36 in an MPTP-induced PD mouse model reduced cell death by inhibiting the
ASK1/JNK/caspase-3 pathway [274].

3.2. Neurogenesis

Adult neurogenesis occurs actively in healthy brain subjects, but falls sharply in AD
brains [7], suggesting that neurogenesis is deeply associated with the onset of ND [297].
Interestingly, exercise is known to promote adult neurogenesis [298], and as neurotrophins,
some myokines are believed to have beneficial effects on NDs by mediating the promot-
ing effect of exercise on neurogenesis. In particular, BDNF and CX3CL1 overexpression
induced neurogenesis in AD model mice [277,299] and enhanced AD therapeutic effects
of engrafted stem cells [141,300]. Moreover, neurogenesis was increased in an N171-82Q
HD mouse model after they were treated with BDNF receptor agonists [276], and some
myokines, including irisin, CTSB, and apelin-13, are thought to contribute to neuroge-
nesis by increasing the expression of BDNF in brains of animal models [41,64,250]. In
addition, FGF2 stimulated neurogenesis in various models of NDs including AD, PD and
HD, although high concentrations of FGF2 rather inhibited neurogenesis [168–170,176,177].
Meanwhile, in mutant mice with low levels of serum IGF-I, adult hippocampal neurogene-
sis was lowered without showing a decrease in anxiety behavior by exercise, suggesting
that IGF-1 is involved in exercise-induced neurogenesis [220].

3.3. Neuroinflammation

Inflammation is a host defense system by activating innate immune cells such as mi-
croglia against infection, tissue injury, and cellular insults, and various cytokines secreted
from immune cells mediate or inhibit inflammation [301]. However, chronically activated
neuroinflammation in the nervous system of ND patients plays a causal role in the patho-
genesis of ND [302,303]. Various clinical and preclinical studies have reported that exercise
reduces neuroinflammation by increasing the expression of anti-inflammatory cytokines
and lowering levels of pro-inflammatory cytokines and activated microglia [304,305]. When
apelin-13 was injected intracerebroventricularly, it inhibited the activation of microglia and
astrocytes and reduced the expression of IL-1β and TNF-α in a streptozotocin-induced rat
model of AD [64]. This effect of apelin-13 was inhibited by treatment with K252a, a TrkB
antagonist, suggesting that apelin-13 inhibits neuroinflammation through the BDNF-TrkB
pathway [64]. The anti-neuroinflammation function is best known in CX3CL1. As an
inhibitor of microglial activation, CX3CL1 has been proven to be able to inhibit neuroin-
flammation in various models for ND [127,136,141,148,150,151]. Likewise, irisin showed
an anti-inflammatory effect by reducing the secretion of cytokines, IL-6 and IL-1β, from cul-
tured astrocytes, and irisin-pretreated astrocytes protected neurons from Aβ toxicity [293].
In addition, FGF21 exerted neuroprotective effects by suppressing the expression of NF-κB
in Aβ42-treated SH-SY5Y cells and pro-inflammatory cytokines in the models of PD and
ALS [206,211,213]. Furthermore, a series of studies showed that IGF-1 reduced the expres-
sion of TNF-α and the activity of astrocyte and microglia in an APP/PS2 AD mouse model
and a SOD1(G93A) mouse model [230,233,238,290–292].
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3.4. Proteostasis

The pathology of most NDs involves pathogenic protein aggregation and deposition.
Aggregation and deposition of Aβ and tau in AD, α-synuclein in PD, and huntingtin in
HD are examples. Neurons and glial cells internalize these proteins into cells through
endocytosis and then degrade them using autophagy-lysosome and ubiquitin-proteasome
systems, thereby protecting neuronal cells [306]. Exercise activates autophagy in the brain
as well as muscles [307], and it has been reported that physical activity not only lowers
levels of pathogenic protein aggregation in various ND models [308,309], but also tau
in normal brains of the elderly [310]. However, there are insufficient data supporting
these findings, and the specific mechanism is also unclear. Nevertheless, there are reports
about the effect of some myokines in the maintenance of proteostasis. Intranigral apelin-13
injection promoted α-synuclein clearance by activating autophagy in MPTP-induced PD
model mice [273]. In vitro and in vivo studies have demonstrated that CX3CR1-deficient
microglia have poor phagocytosis ability against tau and α-synuclein proteins [146,149].
Moreover, CX3CR1 deficiency exacerbated SOD1 aggregation and impaired the autophagy-
lysosome degradation pathway in the SOD1(G93A) ALS mouse model [151]. CTSB has
been identified as a regulator of autophagy and lysosomal dynamics [102,311]. Accordingly,
a series of studies have shown that CTSB plays an important role in the clearance of Aβ

and α-synuclein [107–109,111,112]. Similarly, in the MPTP mouse model of PD, FGF21
promoted autophagic degradation of α-synuclein via SIRT1 [210].

3.5. Mitochondrial Function and Oxidative Damage

Oxidative stress due to increased mitochondrial damage and reactive oxygen stress
(ROS) plays an important role in the pathophysiology of ND [312]. Therefore, one of
the possible mechanisms by which myokine exerts beneficial effects on NDs is to act
as an antioxidant scavenging ROS or to protect mitochondria in the ND brain. In fact,
it has been shown that some myokines have antioxidant or mitochondrial protective
functions in several ND models. Most importantly, as a mitokine that is induced by
mitochondrial dysfunction, FGF21 is intensively related to oxidative stress [313]. FGF21
treatment reduced oxidative stress in an Aβ-injected rat model and an Aβ-treated cell
model by inhibiting HSP90-TLR4-NF-κB or PP2A-MAPKs-HIF-1α pathways [206,207].
Furthermore, FGF21 treatment not only enhanced mitochondrial functions through PGC-
1α activation in human dopamine neurons [209], but also showed neuroprotective effects by
stimulating the AMPK/PGC-1α axis to promote mitochondrial functions in MPTP-treated
PD models [211]. Apelin-13 and FGF2 also showed neuroprotective effects in cellular PD
models treated with 6-OHDA, an oxidative injury inducer [61,280]. In addition, IGF-1
promoted the survival of rat primary neurons and hypothalamic rat GT1-7 cells treated
with hydrogen peroxide by the PI3K-NF-κB pathway [294].

3.6. Aβ Production and Tau Phosphorylation

Aβ production through APP processing and hyperphosphorylation of tau are impor-
tant in the pathophysiology of AD [314]. The amyloidogenic process that produces Aβ is
catalyzed by beta- and gamma-secretase and takes place in the intracellular endosome [315].
It has been reported that intracranial injection of BDNF into the hippocampus reduced
Aβ production in the brain of wild-type mice by upregulating gene expression of sorting
protein-related receptor with A-type repeats (SORLA), which acts as a sorting receptor
for APP and downregulates its processing into Aβ [316]. In addition, in vitro and in vivo
studies have demonstrated that FGF2 reduced Aβ production in part by lowering BACE1
expression level [171,279]. Meanwhile, IGF-1 treatment increased α-secretase activity in
a PI3K-dependent manner, and subcutaneous injection of IGF-1 increased the expression
of ADAM 10 and decreased the expression of BACE1 in the cortex of APP/PS1 mice,
which suppressed Aβ production by precluding the amyloidogenic pathway [286,317].
However, other studies showed that neuronal insulin receptor deficiency rather reduces
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Aβ deposition in APPswe mice [318]. Thus, further studies on detailed functions of IGF-1
in APP processing are needed.

Neurofibrillary tangles composed of highly phosphorylated tau proteins is a char-
acteristic pathological feature of AD brain [319]. It is known that insoluble tau present
in AD brain is phosphorylated at more than 45 residues by various kinases, including
glycogen synthase kinase-3 (GSK-3), cyclin-dependent kinase-5 (cdk5), casein kinase 1
(CK1), and cyclic AMP-dependent protein kinase (PKA), while it is dephosphorylated by
phosphatases such as PP2A [319]. Interestingly, BDNF stimulation of neuronally differ-
entiated mouse embryonic cells resulted in a rapid decrease in tau phosphorylation in
a PI3K-GSK-3β-dependent manner [320]. Given that the PI3K-Akt pathway negatively
regulates GSK-3β [321], the BDNF-TrkB pathway might activate PI3K to inhibit GSK-
3β, thereby lowering tau phosphorylation. Moreover, intraperitoneal injection of mature
BDNF reduced Aβ and tau pathologies by inhibiting GSK-3β in the hippocampi of APPswe
mice [275]. Similarly, when mesenchymal stem cells carrying CX3CL1 and Wnt3a were
transplanted into brains of APP/PS1 mice, CX3CL1 activated PI3K-Akt signaling to inhibit
GSK-3β [141]. In addition, tau phosphorylation was decreased in the hippocampi of APP23
transgenic mice when FGF2 was injected subcutaneously, but some studies showed that
FGF2 rather elevates tau expression and phosphorylation by increasing GSK-3β activity
in adult rat hippocampal progenitor cells [175,177,279]. Meanwhile, FGF21 induced by
calorie restriction reduced tau phosphorylation through the mTOR axis, and tau pathology
was ameliorated by FGF21 in Aβ-treated SH-SY5Y cells [205,207]. Furthermore, astrocyte-
neuron lactate shuttle (ANLS) was implicated in decreased tau phosphorylation by FGF21
in a transwell co-culture system with C6 astrocytes and PC12 neurons [208].

4. Conclusions and Perspectives

In this review, we examined the beneficial effects of exercise-induced myokines in
NDs and their molecular mechanisms. In particular, we focused on the direct mecha-
nism of action of myokine on the brain. However, myokines not only act directly on the
brain, but also affect systemic metabolism, and consequently can have beneficial effects
on NDs. Exercise regulated the remodeling of adipose tissue, reducing lipid content and
controlling lipid browning [322]. In addition, muscles were closely related to systemic lipid
homeostasis [323,324]. Moreover, some myokines have been known to affect lipid home-
ostasis [38,325]. For example, BDNF polymorphism was associated with type 2 diabetes
mellitus in Caucasian females with obesity [326], and serum BDNF level was associated
with obesity in female patients with type 2 diabetes mellitus [327]. Furthermore, BDNF
treatment improved the lipid metabolism of a mouse model of type 2 diabetes [328], and in-
tracerebroventricular injection of BDNF in rats increased lipolysis in adipose tissue [329]. In
addition, FGF21 was identified as a key mediator of hepatic lipid metabolism in a high-fat,
low-carbohydrate ketogenic diet [330]. A recent study showed that exercise sensitizes the
action of FGF21 in adipose tissues, while long-term high-fat diet-fed obese mice exhibited
compromised effects of exogenous FGF21 on alleviation of hyperglycemia, hyperinsuline-
mia, and hyperlipidemia [186]. Meanwhile, it has been suggested that dysregulation of
lipid homeostasis is associated with NDs such as AD and PD [331,332]. Several previous
studies have provided evidence that diverse types of lipids influence AD pathogenesis
through various mechanisms, including mitochondrial dysfunction, BBB destruction, amy-
loidogenesis, inflammation, and oxidative stress [331]. Although there are few definitive
studies on the effects of systemic regulation of lipid homeostasis by myokine on NDs so
far, considering the function of some myokines in maintaining lipid homeostasis and the
importance of lipid in the pathogenesis of NDs, myokines not only act directly on the brain,
but may exert beneficial effects on NDs by affecting systemic metabolism.

Myokines may have indirect beneficial effects on NDs by affecting the composition of
gut microbiota. Gut microbiota composition is affected by exercise, aging, diet, etc., and
they not only affect the profile of myokines [333], but are closely related to NDs [334]. For
example, according to a recent study, the gut microbiota of PD patients was different from
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that of normal people, which was associated with the motor phenotype [335]. Furthermore,
a recent study reported that gut microbiota modulated motor deficits and neuroinflam-
mation in a mouse model of PD [336]. Interestingly, it was reported that muscle mass
decreased in germ-free mice [337], suggesting a close association between microbiota and
muscle. Considering the effect of exercise on the gut microbiota, it is possible that myokine
might affect the microbiota. However, few studies have been carried out on how myokines
affect the composition of the microbiota. Further studies on this point are needed in the
future, and the results of the studies are expected to provide more information about the
role of myokine as a systemic regulator.

Since many myokines are simultaneously expressed and secreted by the muscles
during exercise, the beneficial effects of exercise are manifested not only through each
myokine, but also through the interactions between them. In this respect, it is noteworthy
that some myokines promote the expression of others and act on the same molecular
mechanism. For example, it has been reported that apelin, IGF-1, and irisin can maximize
their effects by increasing the expression of BDNF [250,338,339]. In addition, as shown in
Table 1, various myokines influence NDs by modulating similar molecular pathways: for
example, both FGF2 and IGF-1 activate the PI3K/AKT signaling pathway. Therefore, when
their expression is increased by exercise, it can be expected that they will create synergy.
Advanced studies on the interactions between them are needed, and these studies will
broaden our knowledge about the benefits of exercise manifested by myokine.

Based on the results of previous studies over the past 20 years, myokine is emerging
as a promising treatment for NDs. However, studies about the effects of myokines on
NDs are currently in their infancy, for several reasons. First, studies to date have focused
on only a few myokines. In this review, we have examined nine myokines that are in-
creased by exercise with relatively clear evidence for their direct effects on NDs. However,
they only account for a small fraction of total myokines released from skeletal muscles
during exercise. In fact, previous proteomics studies have shown that muscles secrete
more than 600 proteins [340]. Some myokines, including adiponectin, β-aminoisobutyric
acid, bone morphogenetic protein- and retinoic acid-inducible neural-specific protein-3,
ciliary neurotrophic factor, CXCL10, CXCL12, follistatin-like-1, IL-6, IL-7, IL-15, matrix
metalloproteinases-2, meteorin 1, musclin, myonectin, myostatin, osteoglycin, and secreted
protein acidic and rich in cysteine (SPARC), are well-known for their effects on other
organs [341,342], while their effects on the nervous system remain unclear. Therefore,
more myokines with effects on NDs should be newly discovered and studied in the future.
Second, even for known myokines studied up to date, their efficacies for NDs have not been
fully established yet. For example, as we have seen in this review, IGF-1 showed beneficial
and sometimes harmful effects. This means that effects of myokines may appear differently
depending on physiological conditions. To use them safely as therapeutic agents, their
effects under various conditions must be accurately grasped. Third, data about detailed
mechanisms of action of myokines are currently lacking. With the exception of very few
myokines, the exact mechanism of action is unknown for most myokines. Moreover, de-
spite many studies showing the beneficial effects of myokines on ND, there are few studies
on the ability of myokines to penetrate the BBB. The ability to penetrate the BBB has been
experimentally demonstrated only for some of the myokines, such as BDNF, FGF21, and
LIF. Although there is no direct experimental evidence yet, there is no reason to rule out
the possibility that the remaining myokines will penetrate the BBB. In the future, detailed
studies on this issue are needed. In addition, it should be considered that different types
of physical exercise can release different profiles of myokines. Since the expression level
of each myokine may differ depending on the type of exercise, the effects of exercise on
NDs may vary depending on it. These limitations are important obstacles that should be
overcome to develop myokines as therapeutic agents.

Despite these limitations, results on beneficial effects of exercise and myokines on
NDs emphasize that it is important to study myokines induced by exercise for developing
treatments for NDs. Each myokines’ expression condition is diverse depending on exercise
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type so difference of exercise type could bring different beneficial effects by expressing
different myokines. In the absence of clear treatments for most NDs, studies of myokines
known to mediate beneficial effects of exercise on NDs could provide a breakthrough for
the development of novel treatments for these diseases.
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Abbreviations

α-SYN Alpha-synuclein
Aβ Amyloid beta
AD Alzheimer’s disease
AIF Apoptosis-inducing factor
ALS Amyotrophic lateral sclerosis
AMPK AMP-activated protein kinase
APP Amyloid beta precursor protein
ASK1 Apoptosis signal-regulating kinase 1
BACE1 Beta-site APP cleaving enzyme 1
BAD BCL2-associated agonist of cell death
BAX BCL2-associated X protein
BCL2 B-cell lymphoma 2
BCL-XL B-cell lymphoma-extra large
BDNF Brain-derived neurotrophic factor
CAT Catalase
CHOP C/EBP homologous protein
c-myb Cellular myeloblastosis
COX-2 Cyclooxygenase 2
CREB cAMP responsive element binding protein
CTSB Cathepsin B
CVEC Post-capillary venular endothelial cell
CX3CL1 C-X3-C motif chemokine ligand 1
CX3CR1 C-X3-C motif chemokine receptor 1
ER Endoplasmic reticulum
ERK Extracellular signal-regulated kinase
FGF2 Fibroblast growth factor 2
FGF21 Fibroblast growth factor 21
4′-DMA-7,8-DHF 4′-Dimethylamino-7,8- dihydroxyflavone
GCM Glioma cell-conditioned medium
GSH Glutathione
GSK3 Glycogen synthase kinase 3
HD Huntington’s disease
HO-1 Heme oxygenase 1
HSP90 Heat shock protein 90
IFN-γ Interferon gamma
IGF-1 Insulin-like growth factor 1
IκBα Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha
IL-1β Interleukin 1 beta
IL-6 Interleukin 6
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IL-12 Interleukin 12
iNOS Inducible nitric oxide synthase
IRE1α Inositol-requiring enzyme 1 alpha
JNK c-Jun N-terminal kinase
Lamp1 Lysosomal-associated membrane protein 1
LIF Leukemia inhibitory factor
MAPK Mitogen-activated protein kinase
MCP-1 Monocyte chemo-attractant protein 1
MEK Mitogen-activated protein kinase kinase
MPP+ 1-Methyl-4-phenylpyridinium
MPTP 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
MSC Mesenchymal stem cell
mTOR Mechanistic target of rapamycin
NF-κB Nuclear factor kappa B
NOS Nitric oxide synthase
NRF2 Nuclear factor erythroid 2-related factor 2
PARP Poly (ADP-ribose) polymerase
PD Parkinson’s disease
PGC-1α Peroxisome proliferator-activated receptor gamma coactivator 1-alpha
PI3K Phosphoinositide 3-kinase
PP2A Protein phosphatase 2
PSEN1 Presenilin 1
RIP1 Receptor-interacting protein kinase 1
RIP3 Receptor-interacting protein kinase 3
SIRT1 Sirtuin 1
6-OHDA 6-hydroxydopamine
Smad2 Mothers against decapentaplegic homolog 1
SOD Superoxide dismutase
TAT Transactivator of transcription
TGF-β Transforming growth factor beta
TLR4 Toll-like receptor 4
TNF-α Tumor necrosis factor alpha
TrkB Tropomyosin receptor kinase B
ULK1 Unc-51 like autophagy activating kinase 1
XBP1 X-box binding protein 1

Notes

APP/PS1 mice APP/PS1 mice overexpress human APP with Swedish mutation (K670N and
M671L) and presenilin 1, bearing an L166P mutation in neurons driven by
thymocyte differentiation antigen 1 (Thy-1) promoter [343].

APP/PS2 mice APP/PS2 mice overexpress human APP with the Swedish mutation and presenilin 2,
bearing an N141I mutation driven by the Thy-1 promoter and prion protein (Prnp)
promoter, respectively [344,345].

APPswe mice APPswe mice overexpress human APP with the Swedish mutation driven by
the Prnp promoter [346].

APP23 mice APP23 mice overexpress human APP with the Swedish mutation in neurons
driven by the Thy-1 promoter [347].

hAPPJ20 mice hAPPJ20 mice overexpress human APP with the Swedish mutation and
Indiana mutation (V717F) in neurons driven by platelet-derived growth
factor (PDGF)-β promoter [348].

MLC/mIGF-1 MLC/mIGF-1 mice express rat mIGF-1, an isoform of IGF-1, cDNA driven by
skeletal muscle-specific regulatory elements from the rat myosin light chain
(MLC)-1/3 locus [349].

N171-82Q mice N171-82Q mice express an N-terminally truncated huntingtin cDNA that contains
82 glutamines and encompasses the first 171 amino acids of huntingtin (N171-82Q)
driven by the Prnp promoter [350].
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PS19 mice PS19 mice overexpress human tau with a mutation (P301S) driven by the Prnp
promoter [351]

R1Mab1 R1Mab1 is an IgG humanized monoclonal antibody with agonistic activity on the
fibroblast growth factor receptor 1 (FGFR1) [213].

SOD-G93A mice SOD-G93A mice overexpress human SOD1 with a mutation (G93A) and
develop adult-onset motor neuron loss [352].

Tau P301L mice Tau P301L mice overexpress human tau with a mutation (P301L) in neurons
driven by the Thy-1 promoter [353].
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