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Gonadotropin-inhibitory hormone (GnIH) was first discovered in the Japanese quail, and
peptides with a C-terminal LPXRFamide sequence, the signature protein structure
defining GnIH orthologs, are well conserved across vertebrate species, including fish,
reptiles, amphibians, avians, and mammals. In the mammalian brain, three RFamide-
related proteins (RFRP-1, RFRP-2, RFRP-3 = GnIH) have been identified as orthologs to
the avian GnIH. GnIH is found primarily in the hypothalamus of all vertebrate species, while
its receptors are distributed throughout the brain including the hypothalamus and the
pituitary. The primary role of GnIH as an inhibitor of gonadotropin-releasing hormone
(GnRH) and pituitary gonadotropin release is well conserved in mammalian and non-
mammalian species. Circadian rhythmicity of GnIH, regulated by light and seasons, can
influence reproductive activity, mating behavior, aggressive behavior, and feeding
behavior. There is a potential link between circadian rhythms of GnIH, anxiety-like
behavior, sleep, stress, and infertility. Therefore, in this review, we highlight the
functions of GnIH in biological rhythms, social behaviors, and reproductive and non-
reproductive activities across a variety of mammalian and non-mammalian vertebrate species.
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1 INTRODUCTION

Pituitary gonadotropins, stimulated by gonadotropin-releasing hormone (GnRH), did not have any
known inhibitory hormone until the discovery of a novel RFamide neuropeptide [RFamide-related
protein (RFRP)] in birds (1). Encoded by the npvf (neuropeptide VF) gene, RFRP dodecapeptide is
also known as gonadotropin-inhibitory hormone (GnIH) because of its inhibitory effect on GnRH
and gonadotropin release, shown for the first time in the Japanese quail Coturnix japonica (1). In the
two decades since its discovery, GnIH has been identified in several mammalian (2–5) and non-
mammalian species (4, 6). In general, GnIH and its orthologs perform similar functions across
species, which is to regulate reproduction via the inhibition of GnRH-mediated
gonadotropin release.

Three different RFamide-related proteins, RFRP-1, RFRP-2, and RFRP-3, orthologous to avian
GnIH, have been identified from the mammalian brain; these proteins are cleaved from the
propeptide NPVF (NPVF precursor) coded by the npvf gene (7). Among these mammalian GnIH
orthologs, RFRP-1 and RFRP-3 contain the LPXRFa sequence, which is lacking in RFRP-2 (8).
Subsequent studies have shown that the sequence previously considered to be the C-terminus of
RFRP-2 is actually a part of the N-terminus of RFRP-3 (3, 9, 10), which means that RFRP-1 and
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RFRP-3 are the only orthologous GnIHs present in mammalian
species (ovine, bovine, rodents, and primates). RFRP-3 has been
shown to inhibit the synthesis and release of mammalian
gonadotropin, demonstrating similar function and structural
similarity to GnIH (5, 11, 12). In this review, GnIH and RFRP-
3 will be used interchangeably, with RFRP-3 being used in
particular when discussing the mammalian variant of
the peptide.

From an evolutionary standpoint, peptides with a similar or
homologous structure to GnIH have been isolated and identified
in teleosts, birds, amphibians, reptiles, and mammalian species
(12, 13). In each of these peptides, a similar C-terminal
LPXRFamide (X = L or Q) sequence is observed, indicating
evolutionary conservation of the amino acid motif within
mammalian and non-mammalian vertebrates (14). While this
suggests that LPXRFamides share a common trait in regulating
pituitary functions and inhibiting GnRH, they have also
diversified in their hypophysiotropic activities, particularly in
non-mammalian vertebrates (15).

Internal factors such as sex steroids and external factors such
as stress can regulate GnIH, which in turn may positively or
negatively impact reproduction. GnIH-regulated gonadotropins
[luteinizing hormone (LH) and follicle-stimulating hormone
(FSH)] can also have an impact on GnIH itself—LH can
decrease RFRP neuronal activity during the LH surge (16).

GnRH neurons are directly regulated by estrogen via estrogen
receptor-b (ER- b) in mice (16–21), female hamster RFRP
neurons express estrogen receptor-a (ER-a) (22), and
estradiol-17b treatment decreases c-Fos activity in enhanced
green fluorescent protein (EGFP)–GnIH neurons (23) in rats.
The presence of estrogen receptors on GnIH neurons indicates
that the GnIH system may also mediate reproductive activity via
participation in the negative feedback loop of estrogen–GnRH.

More recently, in vitro hypothalamic GnIH neurons have
been demonstrated to express glucocorticoid receptors (24), and
Son et al. (25) have identified glucocorticoid responsive elements
in the promoter region of the rat npvf gene that are receptive to
corticosterone as well as corticosterone-stimulated recruitment
of glucocorticoid receptors. These discoveries describe a
molecular mechanism for the regulation of the GnIH system
under stress that involves direct action by glucocorticoids.
Another factor that controls GnIH is circadian rhythmicity.
The cyclic nature of reproductive rhythms (26–31) suggests
GnIH, being a reproductive molecule, changes in a seasonal
and cyclic manner.

In this review, we highlight the functions of GnIH in
reproductive rhythms, behaviors, and non-reproductive
activities across a variety of mammalian and non-mammalian
vertebrate species.
2 DISTRIBUTION

To date, very few studies have been conducted on the
localization, function, and binding of RFRP-1 and RFRP-2
independently of RFRP-3. In rodents, the distribution of
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RFRP-1 is highest in the hypothalamus, followed by the
thalamus, midbrain, and optic nerve, with trace amounts in the
hippocampus (3). GnIH peptides have been reported in the
hypothalamus of various vertebrates across multiple species—
bovine, rodent, avian, amphibians, and fish (32). Distribution
studies for GnIH are extensive and have been covered in many
reviews (14, 33, 34); as such, this paper will briefly summarize the
results of those findings, with a major focus on fish, avians,
and mammals.

In fish, GnIH mRNA is primarily localized in the nucleus
posterioris periventricularis (NPPv) in the hypothalamus of
goldfish (4), sockeye salmon (35), Indian major carp (36), and
the tilapia (37). GnIH-immunoreactive fibers have been shown
in the olfactory bulb, pituitary, and spinal cord (4, 35, 36). In the
avians, GnIH is primarily found in the paraventricular nucleus
(PVN) of the hypothalamus and GnIH fibers are seen in the
median eminence and the diencephalic and mesencephalic
regions (1, 12, 38).

GnIH neurons in rodents are located in highest density
particularly within the compact dorsal and ventral regions of
the dorsomedial nucleus of the hypothalamus (DMH) (22, 23).
Numerous GnIH-immunoreactive fibers project into the
hypothalamic and limbic structures, the diencephalic and
mesencephalic regions, and come into close apposition with
GnRH neurons (22, 39). In ovine species like the sheep, GnIH
neuronal population is disperse throughout the DMH, PVN, and
the medio-basal hypothalamus (2). In particular, GnIH cell
bodies are observed in high density in the DMH, with their
terminals projecting to the internal layer of the median eminence
and to several midbrain regions including the diagonal band of
Broca, preoptic area (POA), and the anterior pituitary (40). In
general, GnIH is found in different parts of the brain depending
on the species, though its presence in the hypothalamus and
pituitary is common across mammals, avians, and fish (Table 1).
The prominence of GnIH in the hypothalamus contributes to
majority of its functions such as reproduction, feeding, anxiety,
and social behaviour (Figure 2).
3 RECEPTOR BINDING AND MECHANISM
OF ACTION

3.1 Specific Binding of GnIH to GPR147
G protein-coupled receptors (GPCRs) for GnIH were first
identified by Hinuma et al. (7) where they found a cDNA that
encoded a GPCR that responded to RFRP-1 and RFRP-3. The
seven transmembrane receptor was named OTGT022 that
corresponds to GPR147 (7). Bonini et al. (45), while
investigating receptors for neuropeptide FF-amide (NPFF), a
neuropeptide with a C-terminal PQRFa motif, discovered two
GPCRs that interacted with NPFF, namely, NPFF1 (essentially
GPR147) and NPFF2 (essentially GPR74) (45, 46). NPFFs bind
to GPR74 with higher affinity in both COS-7 and HEK293 cell
lines (45), indicating a possible difference in binding affinity
between RFRP and NPFF with GPR147 and GPR74, respectively.
RFRPs have about 100 times higher binding affinity for GPR147
September 2021 | Volume 12 | Article 728862
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than NPFFs, while NPFFs have about 10 times higher binding
affinity to GPR74 than RFRPs (46–49).

Yin et al. (41) used a combination of 3′/5′ RACE with PCR
primers based on the structure of the GPR147 from rats and
cloned a cDNA encoding a GnIH receptor. They verified using a
crude membrane fraction of COS-7 cell line transfected with the
putative GnIH receptor cDNA that GnIH and GnIH-related
peptides (GnIH-RPs) bind to GPR147 with high affinity, while
non-amidated GnIH (GnIH-OH) fails to bind to GPR147 (41).
Yin et al. (41) also used mammalian RFRP, chicken GnIH,
GnIH-OH, and other neuropeptides lacking the C-terminal
LPXRFa motif in competitive binding experiments to reveal
that binding of GnIH to GPR147 relies on the critical LPXRFa
C-terminal motif. In the competitive binding experiments, all
GnIH orthologs successfully inhibited binding of avian GnIH,
while GnIH-OH and the other neuropeptides without the
C-terminal LPXRFa motif did not inhibit binding (41). The
Scatchard plot analysis also showed that GPR147 had a single
class of high-affinity binding sites (Kd = 0.752 nM) for GnIH and
GnIH-RPs (41). Thus, it is well documented that GnIH mainly
couples with GPR147.

Localization studies have shown GPR147 in brain areas such
as the hypothalamus (50), pre-optic area (51), and spinal cord
(52). GPR147 is also present in GnRH neurons of fish (6), avians
(43), reptiles (44), amphibians (53), mammals (50), and humans
(5). Furthermore, GPR147 is present in the pituitary (43) and in
gonadotrophs of various non-mammalian and mammalian
vertebrates. Furthermore, the expression of GPR147 has been
shown in the testes (54) and ovaries (55) of many vertebrate
species. These studies suggest that GnIH has a significant role
in reproduction.

3.2 GnIH Mechanism of Action
GnIH receptors (GPR147) inhibit adenylate cyclase (AC) activity
by coupling to Gai protein (7), which has been shown in COS-7
cells transfected with GPR147. A decrease in Gai mRNA levels
follows RFRP exposure, suggesting that GPR147 might be
coupled to Gai (56). In another study, ovine RFRP treatment
inhibited the increase in calcium levels generated by GnRH,
which is essential for LH secretion (2). On the other hand,
chicken GnIH treatment of GH3 cells transfected with GPR147
Frontiers in Endocrinology | www.frontiersin.org 3
did not increase inositol phosphate and cAMP production,
which are the main indicators for Gas or Gaq coupling. This
indicates that GPR147 does not couple to either Gas or Gaq.
Co-stimulation of GH3 cells with GnIH and forskolin (FSK)
significantly reduced cAMP CRE-luciferase activity in GH3 cells,
revealing that GPR147 mainly couples with Gai to inhibit GnRH
activity (57).

Son et al. (58) determined the GnIH/RFRP intracellular cell
signaling pathway using a mouse gonadotrope (LbT2) cell line
that exhibits all the characteristics of fully differentiated
gonadotropes. FSK and GnRH-induced CRE-luciferase activity
is significantly reduced by the adenylate cyclase inhibitor MDL
(58). As mouse RFRP inhibits GnRH-induced increase in CRE-
luciferase activity in a similar manner, this suggests that GnIH/
RFRP directly inhibits GnRH-induced cAMP production (58).
RFRP can also inhibit GnRH-stimulated extracellular signal-
regulated kinase (ERK) phosphorylation elicited by GnRH in a
mouse LBT2 cell line (58) and a mouse GnRH neuronal cell line
(59). These experiments show that RFRP/GnIH specifically
inhibits GnRH via the AC/cAMP/PKA pathway by coupling to
Gai, preventing the activation of ERK1/2 signaling, that is
important in the transcription of gonadotropins such as LHb
(Figure 1). While GnIH has also been shown to inhibit GnRH-
induced increase in intracellular calcium (2), a process associated
with the exocytotic release of the gonadotropins (60, 61) from the
pituitary gland, the mechanism behind this action is
yet undetermined.
5 PHYSIOLOGICAL ROLES

A large body of data in non-mammalian and mammalian studies
suggests that GnIH is involved in reproduction, reproductive
rhythms, reproductive behaviors, social behaviors, circadian
rhythms, and other physiological roles like nociception (47, 62,
63), learning (64), and cardiac activity (65) (Figure 2).

5.1 Reproduction
The involvement of GnIH in reproduction has been well
conserved across vertebrate species even when mammalian
species are administered with avian GnIH (66). There are
TABLE 1 | Distribution of GnIH, GnIH-ir fibers, and GPR147 in various central and peripheral tissues.

Tissue GnIH GnIH-ir fibers GPR147 Species References

Central tissues
Amygdala - + + Mammals (14, 29, 30)
Hippocampus - + + Mammals (14, 29, 30)
Nucleus posterioris periventricularis + + + Fish (30)
Dorsomedial hypothalamus + + + Mammals (14, 29, 30)
Paraventricular nucleus + + + Avian, mammals (14, 29, 30)
Median eminence - + + Avian, mammals (14, 29, 30)
Pituitary + + + Fish, avian, mammals (14, 29, 30)
Olfactory bulb – + + Fish (30)
Spinal cord + + + Fish, avian, mammals (14, 29, 41)
Peripheral tissues
Heart + – + Mammals (42)
Gonads + – + Fish, Avian, Mammals (43, 44)
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various conditions such as sex, the process of gonadectomy,
pubertal status, and duration of photoperiods that can lead to
different effects of GnIH on LH/FSH secretion. Conflicting
results have been shown across different experimental designs
and animal models, which are summarized in Table 2.

The expression of RFRP-1 is different between adult female
and male rats. While RFRP-1 neurons and immunoreactive
fibers remain unchanged in male rats during puberty, an
increase is seen in post-pubertal female rats, suggesting a role
for RFRP-1 in the regulation of the estrous cycle (84). RFRP-1
injections to mice induce estradiol release in a dose-dependent
manner, which stimulates increased steroidogenesis in the
ovaries (85). However, proliferating cell nuclear antigen
(PCNA), caspase-3, and cleaved poly (ADP-ribose) polymerase
(PARP) expression are significantly reduced, suggesting that
RFRP-1 directly acts to inhibit folliculogenesis in the ovary (85).

5.2 Biological Rhythms
5.2.1 Reproductive Rhythms
Fish: A clear example of reproductive rhythms in fish can be seen
in the grass puffer fish, Takifugu niphobles. In particular, GnIH
levels within the diencephalon vary, and the expression peak
shifts depending on whether the fish were placed in a natural
Frontiers in Endocrinology | www.frontiersin.org 4
light/dark condition or in a constant dark condition (86).
Melatonin has circadian expression in the diencephalon; when
administered intraperitoneally to the grass puffer fish, melatonin
increases the expression of GnIH, which shows the regulation of
GnIH by melatonin and the circadian clock (86). A recent study
observed the effect of various spectra of LED lights on
reproductive hormones in goldfish brain cells including GnIH
neurons (87). In this in vitro study, goldfish brain cells were
exposed to red, green, and blue LED light with white fluorescent
light used as control; it was found that GnIH expression was
significantly lower in the cells exposed to green and blue LED
light and in groups treated with melatonin (87). Furthermore,
while melatonin receptors and melatonin levels were elevated at
night and decreased during the day, they were expressed at
relatively higher levels in groups exposed to white fluorescent
and red LED light compared to groups exposed to green and blue
LED light (87). Choi et al. (87) hypothesized that circadian
expression of melatonin interacted with RFRP and kisspeptin,
which in turn control reproductive hormone levels that induce
sexual maturation in fish.

In the European sea bass (Dicentrarchus labrax),
pinealectomy on males resulted in lowered expression of GnIH
in the mid-hindbrain (88). GnIH and GnIH receptor expression
FIGURE 1 | Signaling pathway of gonadotropin-inhibitory hormone (GnIH)/RFamide-related protein (RFRP)-3 upon binding to the GPR147 GnIH receptor. Protein
kinase A (PKA), extracellular signal-regulated kinase (ERK). Gonadotropin-releasing hormone (GnRH) binds to the GnRH receptor, activating Gas protein, which
induces cAMP production. Upon binding to the GnIH receptor, Gai protein acts to inhibit GnRH-induced cAMP production, leading to a decrease in ERK activation.
As phosphorylated ERK is involved in the transcription of the gonadotropin subunits LHb, FSHb, and common a, this ultimately results in downregulation of the
gonadotropins that are formed, luteinizing hormone (LH) and follicle-stimulating hormone (FSH).
September 2021 | Volume 12 | Article 728862
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was also significantly reduced during reproductive seasons when
compared to resting seasons (88). A long-term study on the effect
of temperature on sea bass development over a period of a year
demonstrated the presence of circadian rhythms in the daily
expression of GnIH and GnIH receptors; at early developmental
stages, GnIH and GnIH receptors were more highly expressed in
the day, while more mature sea bass expressed a shift to higher
nocturnal levels (88).

In the cinnamon clownfish, intraperitoneal injections of
GnIH increased melatonin levels in the fish, confirming that
GnIH, besides its role in suppressing GnRH and sexual maturity
of the clownfish, also affects melatonin production (89). This
suggests that melatonin and GnIH may interact by reciprocally
stimulating each other.

Avian: Photoperiod-dependent expression of GnRH and
GnIH has been shown to regulate seasonal reproduction in the
Eurasian tree sparrow. GnIH mRNA and GnIH-immunoreactive
neurons increased significantly during the non-breeding season,
and exposure to short days (SDs) induced higher GnIH
expression compared to long day (LD) exposure, a change that
happened regardless of the sampling month (90). In another
study, sparrows were entrained to resonate with light–dark
cycles, where a constant 6-h light phase was combined with a
dark phase that served to vary the period of the light–dark cycles
by 12-h increments (91). It was found that specific increments
were interpreted by the birds’ circadian system as SD or LD.
Resonance cycles that were read as LD would see testicular
Frontiers in Endocrinology | www.frontiersin.org 5
growth and reduction of GnIH, while resonance cycles read as
SD would see significant increase in GnIH expression (91). This
suggests the presence of an endogenous circadian rhythm
regulating photoperiodic expression of GnIH. In other words,
constant 6 h of light meant that the resonance cycle was read as
SD or LD depending on whether the light was present on the
photoinducible or non-photoinducible phase of the endogenous
circadian cycle (91).

Mammals:Mason et al. (92) found that Syrian male hamsters
that were exposed to SD photoperiods exhibited decreased GnIH
immunoreactivity and mRNA expression in comparison to those
exposed to LD photoperiods. DMH containing GnIH neurons
may serve as a mediator for melatonin action to control
gonadotropic release (93). Conversely, since the suprachiasmatic
nucleus (SCN) itself is a major target for melatonin action (94), its
projections to GnIH neurons in the DMH may be another possible
pathway of GnIH regulation through a photoperiod-related
circadian system. Ubuka et al. (95) showed lower GnIH mRNA
expression in Siberian hamsters exposed to SD photoperiods
compared to hamsters exposed to LD photoperiods. While GnIH
has inhibitory effect in mammalian species such as rodents and
humans (66), it can play a different role in seasonal reproduction.
Elevated GnIH expression in LD breeders such as hamsters (96)
appears to have a stimulatory effect on the reproductive axis,
increasing the secretion of LH (77, 79). Increased GnIH
expression during LD photoperiods is conserved across multiple
mammalian species, as SD breeders such as sheep (97) and goats
FIGURE 2 | Physiological actions of gonadotropin-inhibitory hormone (GnIH)/RFamide-related protein (RFRP) in vertebrates. Studies of RFRP in vertebrates have
determined that RFRP is involved in various physiological actions centering mainly around the hypothalamus, but not limited to that region.
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TABLE 2 | Summary of in vivo effects of GnIH/RFRP-3 injection on LH and FSH secretion.

Species Condition Injection Effect Reference

Tilapia Female, adult IP Increases LH and FSH release (37)
Sea
bass

Female, adult ICV Decrease in plasma LH level (67)

Goldfish Female and male, adult IP Increase in LHb and FSHb mRNA during early to late gonadal
recrudescence, reduced serum LH at early to mid-
recrudescence

(68)

Sparrow Female, adult ICV Decrease in plasma LH level (69)
Quail Male, adult IV Decrease in LHb, FSHb mRNA expression and serum LH level (70)
Rat Female, adult, OVX IV Gradual decrease in plasma LH level (71)
Rat Female, adult, OVX Acute

ICV
No significant suppressive effect on the mean concentration and
pulsatile secretion of LH

(71)

Rat Female, adult, OVX, low dose of estradiol Acute
ICV

No significant suppressive effect on the mean concentration and
pulsatile secretion of LH

(72)

Rat Female, adult, OVX, high dose of estradiol Chronic
ICV

Slight but insignificant decrease in LH concentration (72)

Rat Female, adult, GNX Acute
ICV

Decrease in circulating LH level but no changes to the
circulating FSH level

(73)

Rat Male, adult, GNX and Intact Acute
ICV

Decrease in circulating LH and FSH level (73)

Rat Male, adult, GNX IV Moderate decrease in circulating LH and FSH level (73)
Mouse Prepubescent, female, intact; prepubescent, female, OVX, E2

replacement; Adult, female, OVX; Adult, female, OVX, E2
replacement

Acute
ICV

Decrease in LH concentration with no changes to FSH
concentration

(74)

Mouse Prepubescent, female, OVX Acute
ICV

No changes in LH concentration (74)

Mouse Male, adult, GNX and intact Acute
ICV

Stimulates secretion of LH (75)

Mouse Female, adult, E2-negative feedback conditions Acute
ICV

No effect on LH secretion (75)

Mouse Female, adult, preovulatory-like surge Acute
ICV

Decrease in LH secretion (75)

Mouse Adult, intact, male or female, diestrus or proestrus IP No changes in LH concentration (75)
Bovine Male, 5 months old, castrated IV Decrease in LH pulse frequency with no changes to the

concentration
(76)

Syrian
hamsters

Male, adult, LP and SP Acute
ICV

Increase in plasma LH and FSH levels (77)

syrian
hamsters

Female, adult, OVX, LP Acute
ICV

No changes in LH concentration (77)

syrian
hamsters

Male, adult IP Insignificant inhibition of basal LH levels (78)

syrian
hamsters

Female, adult, LP Acute
ICV

Decrease in basal LH concentration on the day of proestrus (79)

syrian
hamsters

Female, adult, SP Acute
ICV

No effect on the basal LH concentration (79)

syrian
hamsters

Female, adult LP Chronic
ICV

Decrease in LH concentration (79)

syrian
hamsters

Female, adult, SP Chronic
ICV

Increase in LH concentration (79)

LVG
hamsters

Female, adult, OVX Acute
ICV and
IP

Decrease in LH concentration (22)

Ovine Female, adult OVX IV Decrease in LH pulse amplitude but no effect on FSH secretion (2)
Ovine Intact; OVX, estrogen induced LH surge IV Decrease in pulse amplitude as well as concentration (80)
Ovine Female, adult, OVX, estrogen-induced LH surge; Female, adult,

Intact, acyclic
IV No changes in LH secretion or plasma LH concentration (81)

Mare Intact, mature, breeding season IV No changes to the LH pulse amplitude, frequency, and
concentration

(82)

Human Female, adult, postmenopause IV Significant decrease in LH secretion (83)
Human Male, adult IV No changes in LH secretion (83)
Frontiers in
 Endocrinology | www.frontiersin.org
 6
 September 2021 | Volume 12 | Art
GnIH, gonadotropin-inhibitory hormone; RFRP, RFamide-related protein; LH, luteinizing hormone; FSH, follicle-stimulating hormone; OVX, ovariectomized; GNX, gonadectomized;
IV, intravenous injection; ICV, intracerebroventricular injection; IP, intraperitoneal injection; LP, long photoperiod; SP, short photoperiod.
icle 728862

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Teo et al. GnIH in Rhythms and Behavior
also exhibit elevated GnIH during LD (98). As GnIH plays an
inhibitory role in SD breeders (97), this shows that while
photoperiod-dependant expression of GnIH is conserved, its
regulatory effect downstream has evolved differently to induce
reproductive axis stimulation in LD breeders and inhibition in
SD breeders.

5.2.2 Feeding Rhythms
Avian: Intracerebroventricular (ICV) injection of GnIH into
Peking duck resulted in a decrease in the plasma LH
concentration and an increase in the food intake in Peking
duck (80, 99). Feeding behaviors were also regulated by
orexigenic peptides in the hypothalamus. Neuropeptide Y
(NPY) is an orixegenic peptide produced by appetite-
regulating cells and is known to stimulate food intake while
pro-opiomelanocortin (POMC) is a precursor protein that gives
rise to peptide derivatives that are associated with satiety (100–
102). Red-headed buntings demonstrate a seasonal increase in
cell optical density in NPY neurons in the DMH (103). As NPY
fibers have been shown to be structurally associated with GnIH
neurons in the Indian weaver bird (104), any change in NPYmay
in turn affect GnIH expression. An example may be found in a
study where adult male Albert’s Towhees songbirds were food
restricted during the photo-induced reproductive development
phase (105). A 4-week food restriction significantly increased
NPY cell number and, at the same time, decreased GnIH
perikarya area (105). The decrease in GnIH perikarya area
coincided with a decrease in plasma LH (105), suggesting that
the heightened activity of the NPY system increased secretion of
GnIH and, subsequently, inhibition of LH. In chickens (Gallus
gallus), ICV injections of GnIH elevates food intake and
increases neuronal activity in the lateral hypothalamic area,
along with an increase in melanin-concentrating hormone and
NPY expression and a decrease in POMC expression (102). In
contrast to appetite stimulation by GnIH, ICV injection of
RFRP-1 in chicks reduces food and water intake (106).

Mammals: Studies on the effect of RFRP-3 infusion in
mammals, particularly in mice and sheep, also saw an increase
in food intake that was consistent with the results observed in
birds (80). The study by Clarke et al. (80) observed the role of
RFRP-3 in acting as a switch for preference between feeding and
reproductive activity in sheep and rats. The clear opposition
between feeding and reproductive function appears to suggest
that high levels of RFRP-3 activity favors feeding over
reproduction. It is possible that seasonal breeders such as
sheep may exhibit reduced feeding behavior during mating
seasons due to RFRP-3. On the other hand, injection of RFRP-
1 into the central nucleus of the rat amygdala caused a decrease
in food intake (107). As an NPFF receptor selective antagonist
eliminated the effect in that same study, this demonstrated that
the reduction in food intake was due to a receptor-linked effect in
the amygdala (107).

Since feeding can be rhythmic in nature and is associated with
GnIH regulation (80, 102) (Figure 2), the circadian nature of
GnIH in the hypothalamus needs further investigation.
Furthermore, as RFRP-1 inhibits appetite in contrast to RFRP-
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3’s stimulation of feeding behavior (80, 99, 106, 107), further
differences in their other physiological activities may exist.
5.3 Reproductive Behavior
Fish: Although GnIH has been shown to play a role in
reproductive function in fish (88), its influence on fish mating
behavior remains unclear. While a recent study has
demonstrated that the Nile tilapia experiences upregulation of
GnIH due to defeat in territorial fights (108), the role of GnIH in
reproductive behavior such as courting and brooding is
yet unknown.

Avians: GnIH is directly responsible for the regulation of
mating behavior in avians. In birds, GnIH neurons extend their
projections to the periaqueductal central gray (PAG) and POA,
signifying their possible role in the regulation of socio-sexual
behaviors (109). Central administration of GnIH inhibits
copulation in white-crowned sparrows (69). When infused
directly into the brain, GnIH binds specifically to areas in the
diencephalon and the midbrain where cGnRH-II-
immunoreactive neurons reside (69). Since GPR147 is
expressed in GnRH-II neurons, it can be speculated that GnIH
suppresses sexual behaviors in birds by suppressing the activity
of GnRH-II neurons (110). Silencing the GnIH-encoding npvf
gene using RNA interference reduces the rest-time and increases
spontaneous production of complex vocalizations and agonistic
vocalizations in male and female white-crowned sparrows, which
are part of mating behavior (111). Heightened vocalization (song
production) in male birds in response to novel male songs is
associated with an increase in locomotor activity, which suggests
a greater degree of central nervous system (CNS) arousal when
GnIH is inhibited (111). Furthermore, the activity of the male
birds is positively correlated to the numbers of GnRH-I and
GnRH-II neurons, which are in close proximity to GnIH-
immunoreactive neuronal fiber terminals. This provides further
evidence of inhibition of sexual arousal in white-crowned
sparrows through the decrease in GnRH-I and GnRH-II
neuronal activities (111). The intense RFRP-immunoreactive
fiber density in the ventral tegmental area (VTA) of the female
sparrows also suggests that the inhibitory role for GnIH in
arousal of the CNS is not sex-limited (111).

Mammals: ICV injections of RFRP-3 induced a decrease in
plasma LH and a significant inhibition of sexual behavior (39).
Female Syrian hamsters treated with RFRP-3 show decreased
sexual motivation and vaginal scent marking but had no effect on
copulatory behaviors. An increased expression of c-Fos was
induced by RFRP-3 in the medial POA, bed nucleus of the
stria terminalis, and the medial amygdala, all of which are part of
the circuitry for female sexual behavior (112). Chronic
immobilization stress-induced elevation of GnIH in rats
decreases sexual behavior (42), pregnancy rate, and embryo
resorption. These negative reproductive effects can be
effectively reversed by silencing RFRP-3 using sh-RNA during
stress (42). The effect can also be replicated in males, as a
decrease in male sexual behavior in rats was reported upon
central administration of RFRP (39).
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6 SOCIAL BEHAVIOR

6.1 Aggression
Avians: While there is no study directly linking GnIH to
aggression in piscine species, GnIH is known to influence
aggressive behavior in birds. Central administration of GnIH
into male quails significantly inhibits their aggressive behavior,
and GnIH RNA interference significantly increases aggression in
quails (113).

Mammals: In mice, RFRP-3 neurons project to neural loci
regulating aggression in addition to neuroendocrine cells
controlling the production of testosterone (114). Aggressive
encounters between male mice reduce RFRP/c-Fos co-
localization in anteroventral periventricular kisspeptin neurons
(114). As RFRP acts as a negative regulator of the reproductive
axis in mice by inhibiting GnRH, lowered RFRP-3 activity results
in increased reproductive axis function, which facilitates an
increase in testosterone and aggressive behavior (114).
Furthermore, it has been shown that consumption of a large
amount of soya bean leads to the suppression of GnIH and
reduces aromatase activity, which is responsible for converting
testosterone into neuroestrogen, leading to increased aggression
in mice (115).

6.2 Stress and Anxiety
It is known that dysfunction of the hypothalamic–pituitary–
adrenal (HPA) axis dysregulates the serotonergic system (116).
GnIH is closely linked to the HPA axis since GnIH neurons
express glucocorticoid receptors (117), and in vitro experiments
show that glucocorticoids stimulate GnIH mRNA expression
(24). Stress can lead to anxiety through GnIH’s action on the
serotonergic system.

Fish: In the cinnamon clownfish, cortisol treatment simulated
an increase in GnIH mRNA but decreased GnRH as well as
lowered circulating levels of LH and FSH (118), which suggests
that glucocorticoids directly increase GnIH expression. In
addition, a recent experiment on the male Nile tilapia showed
that acute stress inflicted by social defeat increased GnIH mRNA
levels in the NPPv and hypothalamus, as well as GPR147 mRNA
in the pituitary. However, corticotropin-releasing hormone
(CRH) and adrenocorticotropic hormone (ACTH) were not
elevated, which suggests that GnIH may be directly affected by
glucocorticoid signaling without an increase in CRH and ACTH
levels (108).

Avians: Capture–handling was used to examine the role of
stress in manipulating the number of GnIH neurons in the
hypothalamus of adult male and female house sparrows (119).
More GnIH-positive neurons were seen in the fall as opposed to
during the spring, where it is the start of the breeding season. A
significant increase in GnIH-positive neurons was detected in
stressed birds during the spring compared to those during the fall
season (119). These observations suggest that the regulation of
GnIH by stress changes over the annual reproduction cycle
(119). Whether the regulation of GnIH during stress is
through glucocorticoid receptors expressed in GnIH neurons
or indirectly through other neuropeptides remains unknown.
Frontiers in Endocrinology | www.frontiersin.org 8
Mammals: Administration of RFRP-1 induces ACTH and
oxytocin release in rats, facilitating an anxiogenic effect. The
same effect is observed with RFRP-3, suggesting a similar
function for both RFamide peptides (120). These anxiogenic
effects of RFRP-1 and RFRP-3 are in stark contrast with the
antidepressive effects of RFRP-1 reported in a mouse forced
swim test (121). Selective serotonin reuptake inhibitor (SSRI)
citalopram, an antidepressant, increases GnIH neuronal
numbers in the DMH and fiber projections to the POA (122).
As these brain regions are involved in reproduction, there are
clear links between GnIH, the reproductive axis, and the
serotonergic system (122).

In adult rodents, immobilization stress or treatment with
glucocorticoid receptor agonist, dexamethasone, increases
RFRP-3 protein and inhibits hypothalamic-pituitary-gonadal
(HPG) activity (117, 123). On the other hand, adrenalectomy
blocks the increase in RFRP-3 expression brought about by
stress. Stress exposure increases c-Fos expression in GnIH
neurons of the DMH, and direct administration of RFRP-3
induces anxiety-like behavior in rats (120). More recently,
social isolation in rats has been shown to disrupt the
expression of circadian locomotor output cycles kaput
(CLOCK) protein and beta-catenin, a protein known to control
the circadian system and implicated in social isolation-induced
depression (124). Furthermore, responsiveness of GnIH neurons
to serotonin differs in relation to beta-catenin expression levels
(125). Thus, chronic stress-induced RFRP-3 expression may
disrupt circadian rhythmicity via beta-catenin and the
serotonergic system (Figure 3). Under chronic stress, clock
genes may experience disruption (124), inducing an increase in
beta-catenin while lowering neuronal activity (125). Beta-catenin
is a vital part of the Wnt signaling pathway—activation of this
pathway elevates phospholipase-D1 (126), which is connected
with elevated inositol trisphosphate and calcium release (127,
128). This could leave the cell more sensitive to acute stress.
Hypothalamic RFRP-3 cells express glucocorticoid receptors
(117, 119), and glucocorticoid response elements are present in
the promoter region of the rat RFRP-3 gene (24). This could
contribute, in part, to the mechanism of regulation of GnIH
under stressful situations.
7 SLEEP

Fish: Circadian influence on GnIH has been suggested for sleep.
The npvf gene encoding for RFRP-1 and RFRP-3 has been
associated with sleep in larval zebrafish. Overexpression of
RFRP via a heat shock-inducible promoter drastically increases
sleep duration for the zebrafish (129). However, when RFRP is
overexpressed in the middle of the day, the sleeping pattern of
the night is unchanged, suggesting that there are other circadian
components that prevent sleep from occurring early (129).

In larval zebrafish, increasing the expression of either RFRP-1
or RFRP-3 via a transgene reduced locomotor activity but did not
increase sleep, while overexpression of RFRP-2 significantly
reduced locomotor activity and increased sleep (129).
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However, the greatest impact on inducing sleep was observed with
the overexpression of a combination of any two of the three RFRPs,
demonstrating results similar to those of the wild type (129).
Furthermore, stimulation of GnIH neurons produced activity
levels similar to that normally observed at night and suppressed
neuronal activity throughout the brain. Lastly, suppression of
GnIH neurons also promoted wakefulness in the larvae (129).

The control of sleep by GnIH functions through the serotonergic
raphe nuclei, since GnIH neurons are densely innervated by
serotonergic projections from the raphe nuclei in zebrafish larvae
(130). Optogenetic stimulation of RFRP neurons activated
serotonergic neurons in the inferior raphe, and ablations of the
serotonergic neurons of the raphe nuclei caused sleep time to
remain unchanged even when GnIH neurons were stimulated
(130). Larval zebrafish with intact raphe nuclei continued to
exhibit the increased sleep time observed in the previous study
(129), which suggests that GnIH acts upstream of serotonin to
modulate sleep levels and wakefulness (130).
8 CONCLUSION

GnIH has been isolated and sequenced in a wide range of
mammalian and non-mammalian vertebrate species. RFRP-1,
RFRP-2, and RFRP-3 in the mammalian brain have been
identified as orthologous to the avian GnIH. In the brain, the
hypothalamus is the main region where GnIH neurons are located
in all vertebrate species. However, GnIH neurons are also located
Frontiers in Endocrinology | www.frontiersin.org 9
outside the hypothalamus in some species. GnIH binds to its GPCR,
GPR147, which has a widespread distribution in the brain including
GnRH neurons. GnIH regulates reproduction by inhibiting GnRH
and pituitary LH and FSH levels. In addition, in most vertebrate
species, GnIH also regulates aggression, sleep, mating behavior,
anxiety-like behavior, feeding behavior, non-reproductive social
behavior, as well as stress-related infertility. Photoperiod-
dependent fluctuation in GnIH has an important role in the
circadian biology of reproduction. The majority of the published
studies focus on RFRP-3 and its avian ortholog GnIH. On the other
hand, functions of RFRP-1 have been less explored. As there are
indications of possible functional dissimilarities between RFRP-1
and RFRP-3, elucidating the functions of RFRP-1 can be a
promising avenue for future studies.
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FIGURE 3 | The effect of social isolation and serotonin on CLOCK expression and neuronal activity of gonadotropin-inhibitory hormone (GnIH) neurons. IP3, inositol
trisphosphate; PLD1, phospholipase D1. Blue arrows indicate an increase, while red arrows indicate a decrease. Chronic stress may disrupt the expression of clock
genes, inducing an increase in beta-catenin while lowering neuronal activity. The heightened levels of beta-catenin activate the Wnt pathway, which can upregulate
PLD1 levels. This results in increased IP3 production, triggering a heightened calcium response under acute stress and subsequently elevating neuronal activity.
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