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Abstract: In this work, a novel approach, termed GNN-tCNN, is presented for the construction and
training of Remaining Useful Life (RUL) models. The method exploits Graph Neural Networks
(GNNs) and deals with the problem of efficiently learning from time series with non-equidistant
observations, which may span multiple temporal scales. The efficacy of the method is demonstrated
on a simulated stochastic degradation dataset and on a real-world accelerated life testing dataset
for ball-bearings. The proposed method learns a model that describes the evolution of the system
implicitly rather than at the raw observation level and is based on message-passing neural networks,
which encode the irregularly sampled causal structure. The proposed approach is compared to a
recurrent network with a temporal convolutional feature extractor head (LSTM-tCNN), which forms
a viable alternative for the problem considered. Finally, by taking advantage of recent advances in
the computation of reparametrization gradients for learning probability distributions, a simple, yet
efficient, technique is employed for representing prediction uncertainty as a gamma distribution over
RUL predictions.

Keywords: ball bearings; condition monitoring; forecast uncertainty; Graph Neural Networks
(GNNs); Recurrent Neural Networks (RNNs); non-uniform sampling; Remaining Useful Life (RUL)

1. Introduction

Predictive tasks relying on time series data are encountered in diverse technological
and scientific fields. A prominent application in this respect lies in the assessment of the
remaining useful life of structural components and industrial assets, such as bearings [1–3].
For a number of these predictive tasks, observations are available only in non-equidistant
and sparse intervals. In these problems, additional assumptions on the evolution of
these time series are necessary for facilitating prognostic tasks [4]. Physics-based models
that are able to simulate the evolution of the underlying systems can offer a solution to
the problem of missing and non-equidistant timeseries data, by completing knowledge
through simulation. However, these are typically either unavailable, of lower precision, or
associated with prohibitively expensive numerical computations and/or modeling effort.
On the other hand, large volumes of measurement data that correlate with Quantities of
Interest (QoIs) in a non-trivial manner are often readily available. Moreover, when the
evolution of the system at hand is non-deterministic, even if a perfect knowledge of the
instantaneous system state (condition) is somehow achieved, a deterministic estimate of the
long-term evolution of the system is still non-trivial due to the accumulating uncertainty for
future predictions. Therefore, in the case of stochastically evolving systems, it is important
to account for the uncertainty that is inherently present. The problem of Remaining Useful
Life (RUL) prediction, which is tackled in this work, falls in the class of stochastically
evolving systems, where data at hand are often missing or non-equidistant.

In many real-world applications, as in the case-studies examined herein, a model of
degradation and final failure is not available or not reliable enough. At this point, a clear
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distinction should be made between the (long-term) model of degradation of a component
and the (short-term) model of the time series of the dynamic response of the component. We
consider settings where none of these models are available but where raw measurements
of the time-series response data over shorter intervals are available, along with logged
failure times. This work proposes fully data-driven methods, where a model is to be
implicitly learned directly from field or experimental observations. Note that the physics
of mechanical systems, such as ball bearings, are relatively well understood [5]. However,
the uncertainty which characterizes the various parameters that are involved in a detailed
physics-based analysis, makes the rigorous assessment of the stochastic RUL problem
harder. Such uncertainties are manufacturing imperfections, the effects of environmental
conditions on frictional properties, material and manufacturing imperfections, as well as
the noisy, often lacking logging of loading conditions. In the same context, it is expected
that features related to the damage of the components evolve stochastically and that the
progression of damage state has an indirect effect on the observed raw time series.

The method proposed herein is inspired by the recent advances in GraphNets (GNs) [6],
a framework for unification of certain classes of Graph Neural Networks (GNNs), and the
flexibility these allow for in terms of defining relational inductive biases. Relational induc-
tive biases are implemented by arranging data in an attributed graph. The most relevant
architecture related to GNs are Message-Passing Neural Networks [7] but other proposed
variants such as Non-local Neural Networks [8] can be cast into the GN framework. An
inductive bias (or learning bias) is any belief or assumption that, when incorporated in the
training procedure, can facilitate a machine learning algorithm to learn with fewer data or
better generalize in unseen settings. In practice, for the problem of RUL estimation, due to
interruptions in transmission or storage limitations, monitored time series (e.g., accelera-
tions or strain measurements) contain gaps [9]. The non-regular sampling of the time series
data is routinely treated as a missing data problem—a task most commonly referred to as
time series imputation [10–12]. This often requires to impose an explicit evolution model
that reproduces the raw time series itself in regular intervals, so that algorithms designed
to work with data observed in regular intervals can be used. This approach biases the
subsequent treatment of the data with predictive algorithms. The present work, in addition
to providing a solution to long time series, proposes a radically different yet more natural
approach to the problem of irregular observations for RUL predictive models. Instead
of completing the missing data and subsequently employing a time series technique that
operates on equidistant data, a model is directly learned from the available non-regularly
spaced data. Instead of imposing an explicit model of the time series, the temporal ordering
of the observations is incorporated in the learning algorithm as an inductive bias.

Incorporation of inductive biases is useful in constructing machine learning models
that need to be trained on relatively small datasets and for building smaller and more
computationally efficient models [6]. Recurrent Neural Networks (RNNs) impose a chain-
structure of dependence, which constrains them to sequential computations. When con-
sidering long time-series, this becomes a significant computational disadvantage both in
training and evaluation of RNNs. Furthermore, owing to their chain-structured sequential
computation, it is difficult for RNNs to transfer information from distant past states to
current or future estimates. Namely, for propagating information N steps ahead, N steps of
sequential computation need to be performed. A highly effective remedy for the sequential
computation of RNNs was delivered via the introduction of attention mechanisms [13],
which led to great advances in speech transcription [14] and neural machine translation [15].
Attention mechanisms allow the model to attend to a large finite window of observations,
therefore relieving the burden of propagating information forward sequentially. Moreover,
RNNs rely on the feeding of discrete-time and equidistant data. Recent approaches to se-
quence modeling for non-equidistant data such as NeuralODEs [16] and Legendre Memory
Units [17] offer solutions to the problem of irregular data, but do not facilitate the easier
propagation of information from arbitrary past steps, since they retain the chain structure
of RNNs. In contrast to RNNs, the architecture proposed in this work, termed Graph
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Network with Temporal CNN feature extractors GNN-tCNN, does not assume a chain
graph for processing the past time-steps, but instead adopts a more general causal graph.

It is noted that the non-sequential processing of ordered data has further prompted
several important advancements in the field of Natural Language Processing (NLP), which
led to the complete removal of RNN components from NLP architectures and their replace-
ment with the transformer architecture [18]. In addition to their success in NLP domain,
transformers have been extended to general multivariate time series representation learn-
ing [19]. Similarly to the transformer architecture, the proposed GNN-based architecture
operates in a parallelized manner with a constant (and adjustable) number of sequential
computational steps, as will be detailed in Section 3. Owing to the GNN-based processing,
the proposed model naturally allows for arbitrarily spaced data which is a feature that
separates this work from other transformer-based RUL architectures.

Machine Learning for Time Series and RUL

Classical machine learning techniques for time series datasets consist of separate
feature extraction and selection and predictive model selection pipelines. The most widely
used feature extraction techniques, naturally fitting to time series models, are (1) discrete
fourier transforms, due to the intuitive decomposition of the signal to coefficients (2),
wavelet transforms [20,21], and (3) dynamic time-warping, when the main source of vari-
ation among signals is due to some temporal distortion (i.e., non-stationarity), such as
different heart-rates in EEG classification [22] or different rotational speeds in machin-
ery [23]. In several applications of machine learning for predictive time series models,
simple statistical moments of the signals are used, such as kurtosis and standard devia-
tion of time series segments [24]. For some special applications, expert-guided feature
extraction techniques have been proposed to facilitate downstream tasks. One successful
representative example of this class of models, within the context of time series analysis,
are Mel-frequency cepstral features (MFCCs) [25] which are special to human auditory
processing tasks (e.g., speech and music processing). In most typical applications found in
the context of Structural Health Monitoring (SHM) the classical machine learning work-
flow is followed, where a large set of features are pre-computed and, in a second stage,
features are selected by inspecting the generalization performance of the model (for in-
stance with cross-validation). When physical intuition is not easy to draw from for the
problem at hand, features are extracted by unsupervised learning techniques [26], such as
autoencoders, or special negative-sampling based losses, such as time-contrastive learn-
ing [27]. Combinations of unsupervised learning techniques (such as autoencoders and
deep Boltzmann machines) and hand-crafted pre-processing with discrete cosine transform
are also used [28]. This classical ML workflow has been followed in several works related
to condition monitoring and RUL estimation for bearings ([29–31]).

A number of recent works on RUL estimation for bearings adopt deep learning for the
RUL prediction problem from time series data [32–34]. In [35], two CNN-based predictors
are trained. One classifier predicts the point in time where a sudden increase in the
amplitude of accelerations occurs, and which typically lies close to failure, and subsequently
a second classifier predicts the time-to-failure after that point. The same approach is
followed in [36], where Random Forests and XGBoost are used as predictive models.
In [37], a recurrent convolutional network is adopted [38] and Monte-Carlo Dropout [39]
is used as a simple and effective way of representing the uncertainty in the predictions.
In [40], instead of recurrent connections, as applied in [38], attention layers are used to
enhance the performance of CNNs. Chen et al. [41] propose an RNN-based architecture
comprising an encoder–decoder structure with attention mechanism. The network is
trained on band-passed energy values inferred from the frequency spectrum of vertical and
horizontal vibration signals. Similarly, Hinchi and Tkiouat [1] propose an RUL estimation
framework relying on convolutional and Long Short-Term Memory (LSTM) recurrent
units. Li et al. [42] apply multi-scale feature extraction on time-frequency information
collected from a short-time Fourier transform, while Ren et al. [43] employ collaborative
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prediction on both time and frequency domain features. All aforementioned approaches
are not appropriate for non-equidistant data, as there is no explicit representation of the
time between the observations. In the present work, a uniform treatment of the different
stages of degradation is proposed without attempting to classify these stages since these
are not clearly defined and this approach could unfavorably bias the results. In summary,
the contributions of this work are as follows:

• A learnable state evolution model is proposed in order to account for the evolution of
the deterioration process without explicitly forcing an underlying deterioration law.

• The non-stationary nature of the deterioration phenomenon is taken on by a latent
state-space, which better capture the underlying non-linearity effects and is able to
operate on non-equidistant observations.

• The function relating observations of segments of the time series to the (implicit) state-
space and the function describing the long-term evolution of the time series is learned
in an end-to-end differentiable manner, allowing for mini-batched training with
stochastic gradient descent which scales favorably when dealing with large datasets.

2. Materials and Methods
2.1. A Simulated Degradation Process Dataset

In order to verify the efficacy of the method for RUL prediction tasks over long time
series, a synthetic non-stationary degradation process was firstly simulated.

The purpose of generating such a controlled dataset is to verify the efficacy of the
approach on a case study where the ground truth is known. The underlying process gov-
erning the degradation is assumed to follow a non-stationary Markov process with Gamma
distributed increments [44]. This is of course not an exclusive assumption; further models
have been shown to be suited for the simulating the RUL problem, including nonlinear
Wiener Process models [45]. The parameters of the Gamma distributions producing the
increments, which correspond to the deterioration of condition, are assumed to depend
on the previous steps, as required by the physics of the deterioration phenomenon. In
physical terms, this simulates the path dependence of irreversible processes. The random
process presented herein does not have a direct physical analog and is only designed to
demonstrate the ingredients of the proposed algorithm and verify its performance. The
process generating the latent space is defined as follows

δη
(α,β)
ti
∼ Gamma(α(ti, c), β), α(t, c) = 0.02 + tc

z(α,β)
tk

=
tk

∑
i=0

δη
(α,β)
ti

, z(α,β)
tk

< z f (1)

where {t0, t1, · · · tN} are consecutive, discrete time steps, η
(α,β)
t is a random variable with a

non-linear dependence on time, and c is a random variable, which is assumed different for
each experiment in order to reflect variability. The parameters α > 0 and β > 0 are termed
the concentration or shape and rate parameters of the Gamma distribution. The probability
density function of a Gamma distribution is defined as f (x; α, β) = β

Γ(α) xα−1e−xβ, where
Γ(·) denotes the Gamma function. Failure occurs when the latent accumulating damage
variable ztk reaches a threshold value z f , which is assumed identical for all experiments.
It is assumed that the different experiments feature slightly different damage evolution
paths, which in practice reflects the variability induced due to manufacturing imprecision
or errors. This is simulated by sampling c from a Gaussian distribution. The non-linear
dependence is realized through the shape parameter α(t, c) of the Gamma distribution
which controls the size of the increments. It should be noted that the non-linear dependence
on time is adopted in order to simulate the non-stationarity of the process, arising due to
dependence of “α” on the accumulated ztk . The high-frequency instantaneous measurement
of the signal is denoted as xtk . The observations of the process consist of 1000 samples
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that contain randomly placed spikes with an amplitude that non-linearly depends on ztk ; a
process denoted via G(·) in what follows:

z̃tk = ztk + ε

xtk = G(z̃tk ) + ζ

ε ∼ N (0, σz
2)

ζ ∼ N (0, σx
2)

(2)

Gaussian noise is added both to the raw signal observation xtk , as well as directly
onto the latent variable ztk . ζ reflects the observation noise which is normally distributed
with a zero mean and variance σz

2. The observation noise reflects the error that may be
present due to measurement imprecission. ε, also follows a Gaussian with variance σ2

x
and is added to the instantaneous latent damage state ztk in order to model the fact that
ztk may not be accurately determinable from xtk even in the absence of ζ. Note that since
G(·), R→ R1000 is a non-linear vector function the noise ε and ζ cannot be combined.

Each process underlying the observations of each experiment, evolves in the long-term
in a similar yet sufficiently varied manner as shown in Figure 1. A set of xtk signals (raw
observations) are shown in Figure 2. The different colors correspond to different RULs.
Although this process does not correspond directly to some actual physical problem, it is
argued that it possesses all the necessary characteristics of a prototypical RUL problem and
thus serves as a useful numerical case study that can aid verification.

0 500 1000 1500 2000 2500

Discrete time tk

0

50

100

150

200

250

300

La
te

nt
va

lu
e

z t
k

Failure threshold z f

Realizations of ztk = z̃tk + ε

Figure 1. Simulated latent variable ztk . The blue points are ztk whereas the orange line is z̃tk .

Figure 2. Raw high-frequency time series realizations xtk corresponding to 100%, 72.82% and 45.64%
for RUL. The process G(·) adds high frequency “spikes” of random magnitude which depend on z̃tk .
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2.2. An Experimental Dataset on Accelerated Fatigue of Ball Bearings

The PRONOSTIA dataset that is introduced in [46] consists of run-to-failure exper-
iments for a total of 17 bearings, which have been loaded in 3 different rotational and
lateral loading conditions which are summarized in Table 1. Only 2-axis acceleration mea-
surements are used in the present work. Temperature measurements are further available
but are not utilized in this work. Importantly, no artificial damage is introduced to the
components for accelerating failure, thus rendering the accelerated testing scenario a better
representation of real-world setting, where the failure mode is not known a priori.

In order to test generalization on un-seen experiments, a test-set containing whole
experiments is used. A different train/test split is adopted from the standard cofiguration
of the PRONOSTIA platform [46], as detailed in Table 2, in order to have a larger number of
training experiments. Moreover, in the proposed split the distribution of total experiment
durations between train and test set is more similar than in the original split and the three
different loading conditions (A, B, and C) are represented in the train set. These properties
are important for the employment of data-driven methods, since the statistics of predicted
quantities and input quantities between train and test data should be similar.

Table 1. Available experiments and loading conditions.

Conditions i φ̇i [rpm] Fi [kN] Number of Experiments

A 1800 4.0 7
B 1650 4.2 7
C 1500 5.0 3

Table 2. FEMTO bearings dataset, training/test split

Set Experiment Conditions Failure Time [s] Num. Obs.

Training 1_2 A 8700 871
1_3 A 23,740 2375
1_4 A 14,270 1428
1_5 A 24,620 2463
2_1 B 9100 911
2_5 B 23,100 2311
2_6 B 7000 701
3_3 C 4330 434

Testing 1_1 A 28,072 2803
1_6 A 24,470 2448
1_7 A 22,580 2259
2_2 B 7960 797
2_3 B 19,540 1955
2_4 B 7500 751
2_7 B 2290 230
3_1 C 5140 515
3_2 C 16,360 1637

Fatigue damage on ball bearings manifests as frictional wear of the bearings and/or the
surrounding ring. Empirically, higher lateral loads Fi and rotational speeds φ̇i are associated
with faster wear. The üx and üy accelerometer data are available in 0.1 s segments, sampled
at 25.6 kHz (2560 samples per segment). Temporal convolutional networks are used, in
order to automatically learn features that are potentially useful for tracking degradation.

3. Model Architectures
3.1. GraphNets for Arbitrary Inductive Biases

GraphNets (GNs) are a class of machine learning algorithms operating with (typically
predefined) attributed graph data, which generalize several graph neural network architec-
tures. An attributed graph, in essence, is a set of nodes (vertices) V : {v1, · · · vk} and edges
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E : {(e1, r1, s1) · · · (ek, rk, sk)}, with ek ∈ RNe
and vi ∈ RNv

. Each edge is a triplet (ej, rj, sj)
(or equivalently (ej, vrj , vsj)) and contains a reference to a receiver node vrj , a sender node
vsj as well as a (vector) attribute ej. Self-edges, i.e., when ri := si are allowed. See Figure 3
for an example of an attributed graph.

Figure 3. An attributed directed graph. Self-edges and multiple edges are allowed. Bi-directional
edges are also allowed.

In [6], a more general class of GraphNets is presented, where global variables which
affect all nodes and edges are allowed. A GN with no global variables consists of a node-
function φv, an edge function φe, and an edge aggregation function ρe→v. The function
ρe→v should be (1) invariant to the permutation of its inputs and (2) able to accept a variable
number of inputs. In what follows this will be referred to as the edge aggregation function.
Simple valid aggregation functions are Min(·), Max(·), Sum(·) and Mean(·). Inventing
more general aggregation functions (for instance by combining them) and investigating
how these affect the approximation properties of GNs currently forms an active research
topic [47].

Ignoring global graph attributes, the GraphNet computation procedure is as detailed
in Algorithm 1. First, the new edge states are evaluated using the sender and receiver
vertex attributes (vsi and vri correspondingly) and the previous edge state ei as arguments
to the edge function φe. The arguments of the edge function may contain any combination
of the source and target node attributes and the edge attribute. Afterwards, the nodes
of the graph are iterated and the incoming edges for each node are used to compute an
aggregated incoming edge message ē′i. The aggregated edge message together with the
node attributes are used to compute an updated node state. Typically, small Multi-Layer
Perceptrons (MLPs) are used for the edge and node GraphNet functions φe and φv. It is
possible to compose GN blocks by using the output of a GN as the input to another GN
block. Since a single GN block allows only first order neighbors to exchange messages, GN
blocks are composed as

GNK(GNK−1(· · · (GN0(G) · · · ))) =
GNK ◦ GNK−1 ◦ · · · ◦ GN0(G)

where “◦” denotes composition. The first GN block may cast the input graph data to a
lower dimension so as to allow for more efficient computation. The first GN block may
comprise edge functions that depend only on edge states φe0(e) and correspondingly
node functions that depend only on node states φu0(v). This is referred to as a Graph
Independent GN block and it is used as the type of layer for the first and the last GN block.
The inner GN steps (i.e., GN1 to GNK−1) are full GN blocks, where message passing takes
place. This general computational pattern is referred to as encode-process-decode [6]. The
inner GN blocks have shared weights, yielding a lower memory footprint for the whole
model, or can comprise different weights, which amount to different GN functions that
need to be trained for each level. Sharing weights and repeatedly applying the same GN
block helps propagate and combine information from more connected nodes in the graph.
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A message passing GN block which does not contain the global variable, as the ones used
in this work, is shown in Figure 4.

Figure 4. A single GN block with message passing. The block updates the set of edges E→ E′ and
nodes V → V′ according to Algorithm 1.

Algorithm 1 GN block without global variables [6].
function GRAPHNETWORK(E, V)

for k ∈ {1 . . . Ne} do
e′k ← φe(ek, vrk , vsk

)
. 1. Compute updated edges

end for
for i ∈ {1 . . . Nn} do

let E′i =
{(

e′k, rk, sk
)}

rk=i, k=1:Ne

ē′i ← ρe→v(E′i) . 2. Aggregate edges per node
v′i ← φv(ē′i , vi,

)
. 3. Compute updated nodes

end for
let V′ = {v′}i=1:Nv

let E′ =
{(

e′k, rk, sk
)}

k=1:Ne

return (E′, V′)
end function

In the present work, as is the case with RNNs [48] and causal CNNs [49], the causal
structure of time series is exploited, which serves as a good inductive bias for the problem
at hand, although without requiring that the data is processed as a chain-graph or that the
data are equidistant. Instead, an arbitrary causal graph for the underlying state is built,
together with functions to infer the quantity of interest which is the remaining useful life of
a component given a set of non-consecutive short-term observations.

3.2. Incorporation of Temporal Causal Structure with GNs and Temporal CNNs (GNN-tCNN)

The variable dependencies of the proposed model are depicted in Figure 5 for three
observations. The computational architecture is depicted in detail in Figure 6. The variable
ZK represents the current estimate for the latent state of the system. This corresponds
to the node states V. The variable TK→L, which represents the propagated latent state
from past observations, depends on the latent state ZK, an exogenous input FK→L that
controls the propagation of state ZK to ZL and potentially other propagated latent state
estimates from instants before tL. The variable TK→L corresponds to an updated edge
state E′ and the exogenous inputs FL→L can be the edge state before the edge step E. The
exogenous input FK→L to the state propagation function can be as simple as the elapsed
time between two time instants, i.e., FK→L = tK→L = tL − tK or encode more complex
inductive biases, such as the values representing different operating conditions during the
interval between observations. An arbitrary number of past states can be propagated from
past observations and aggregated in order to yield better estimates for a latent state ZL. In
addition to propagated latent states, instantaneous observations of raw data XK inform
the latent state ZK. For instance, in Figure 5, ZC depends on TB→C but at the same time on
TA→C and potentially more propagated states from past observations (other yellow nodes
in the graph) and at the same time to an instantaneous observation XC. Each inferred
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latent state Zi can be transformed to a distribution for the quantity of interest Yi. The
value of the propagated state variable from state s to state d, Ts→t, depends jointly on the
edge attributes and on the latent state of the source node. In a conventional RNN model,
FK→L corresponds to an exogenous input for the RNN cell. In contrast to an RNN model,
in this work the dependence of the estimate of each state depends on multiple states by
introducing a propagated state that is modulated by the exogenous input. In this manner,
an arbitrary and variable number of past states can be used directly for refining the estimate
of the current latent state, instead of the estimate summarized in the latent cell state of
the RNN. In the proposed model, the parameters of the functions relating the variables of
the model are learned directly from the data and essentially define the inductive biases
following naturally from the temporal ordering of the observations. This approach allows
for uniform treatment of all observations from the past and allows for the consideration of
an arbitrary number of such observations to yield an estimate of current latent state.

The connections from all observable past states and the ultimate one, where prediction
(read-out) is performed, are implemented as a node-to-edge transformation and subsequent
aggregations. Aggregation corresponds to the edge-aggregation function ρe→u(·) of the
GraphNet. In this manner, it is possible to propagate information from all distant past
states on a single computation step. As mentioned also in the introduction, this is one of
the computational advantages of the transformer architecture [18], which is related to GNs.
In contrast to using a causal transformer architecture, the causal GNN approach proposed
herein allows for parametrizing the edges between different states. This key difference is
what allows the proposed model to work on arbitrarily spaced data. The different steps of
the causal GN computation and how they relate to the general GN, are further detailed in
Figure 7.

As is the case when using transformer layers, the computational burden increases
quadratically with the context window. Therefore, the computation of all available past
states would be inefficient. To remedy this, it is possible to randomly sample past observa-
tions in order to perform predictions for the current step. Similarly, during training, it is
possible to yield unbiased estimates of gradients for the propagation and feature extraction
model by randomly sampling the past states. It was found that for the presented use-cases
this was an effective strategy for training.

In GN terms, the “encode” GraphNet block (GNenc : {φu0 , φe0}) is a graph-independent
block consisting of the node function φu0 and edge function φe0 . The node function is a
temporal convolutional neural network (temporal CNNs), with architecture detailed in
Table 3.

The edge update function is a feed-forward neural network. The input of the edge
function is the temporal difference between observations. Both networks cast their inputs
to vectors of the same size. The GNcore : {φuc , φec , ρe→u} network consists of small feed-
forward neural networks for the node MLP φuc and the edge MLP φec . The input of the edge
MLP is the sender and receiver state and the previous edge state. The MLP is implemented
with a residual connection to allow for better propagation of gradients through multiple
steps [50].

e′i ← φec(ei, usi , uri ) = φ̄ec(ei, usi , uri ) + ei

In this work, the Mean(·) aggregation function was chosen, which does not depend
strongly on the in-degree of the state nodes Zi (i.e., number of incoming messages) which
corresponds to step 2 in Algorithm 1. The node MLP of the core network is also imple-
mented as a residual MLP.

u′ i ← φuc(ui, ēi) = φ̄uc(ui, ēi) + ui
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Table 3. Details on temporal CNN which acts as the node-function φu0 of the graph independent
GNenc GraphNet. nk, ns, n f corresponds to kernel size, stride and number of filters. For dense layers
n f corresponds to the layer width.

Layer Type (nk, ns, n f ) Activation

Conv1D (1× 1, 1, 50) -
Conv1D (1× 3, 2, 18) -
Conv1D (1× 3, 2, 18) Dropout 20% ReLU
Conv1D (1× 3, 2, 50)
Average Pool (1× 2, 2, 1) -

Conv1D (1× 1, 1, 50) -
Conv1D (1× 3, 2, 18) -
Conv1D (1× 3, 2, 18) Dropout 20% ReLU
Conv1D (1× 3, 2, 50) -
Avg. Pool (1× 2, 2, 1) -

Conv1D (1× 1, 1, 50) -
Conv1D (1× 3, 2, 18) -
Conv1D (1× 3, 2, 18) Dropout 20% ReLU
Conv1D (1× 3, 2, 50) -
Global Avg. Pool (1× 2, 2, 1) -
Feed-forward (−,−, 15) Leaky ReLU

The GNcore network is applied multiple times to the output of GNenc. This ammounts
to the shared weights variant of GNs, which allows for propagation of information from
multiple steps while costing a small memory footprint. After the last GNcore step is applied,
a final graph-independent layer is employed. At this point, only the final state of the last
node is needed for further computation, i.e., the state corresponding to the last observation.
The state of the last node is passed through two MLPs that terminate with So f tplus
activation functions

So f tplus(x) = log(exp(x) + 1). (3)

The So f tplus activation is needed for forcing the outputs to be positive, since they are
used as parameters for a Gamma distribution which in turn is used to represent the RUL
estimates. The GraphNet computation procedure detailed above is denoted as

gout = GNtot(g) = GNdec ◦ GN(Nc)
core ◦ GNenc(gin) (4)

where GN(Nc)
core denotes Nc compositions of the GNcore GraphNet and “gin, gout” are the

input and output graphs. The vertex attribute of the final node as mentioned before is in
turn used as the rate (α(GNtot(gin))) and concentration (β(GNtot(gin))) parameters of a
Gamma(α, β) distribution. For ease of notation, the parameters (weights) of all the functions
involved are denoted by “θ” and the functions that return the rate and concentration are
denoted as fα;θ and fβ;θ correspondingly to denote explicitly their dependence on “θ”. The
Gamma distribution was chosen for the output values since they correspond to remaining
time and they are necessarily positive. The GN described above is trained so as to directly
maximize the expected likelihood of the remaining useful life estimates. For numerical
reasons, equivalently, the negative log-likelihood (NLL) is maximized. The optimization
problem reads,

arg max
θ

E(P ,S)[p(y|g)] ∝ arg max
θ

Ns,p

∏
i=1

p(yi|gi) ≡

= arg min
θ

Ns,p

∑
i=1

(
− log p(yi| fα;θ(gi), fβ;θ(gi))

)
(5)
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where g corresponds to the sets of input causal graphs, and y corresponds to the estimate
of RUL for the last observation of each graph. The input graphs in our case consist of
nodes, which correspond to observations and edges with time-difference as their features.
Correspondingly gi and yi are single samples from the aforementioned set of causal graphs
and remaining useful life estimates and Ns,p denotes the number of sampled causal graphs
from experiment p that are used for computing the loss (i.e., the batch size). The expectation
symbol is approximated by an expectation over the set of available training experiments
denoted as P and the random causal graphs created for training S . The gradients of
Equation (5) are computable through implicit re-parametrization gradients [51]. This
technique allows for low-variance estimates for the gradient of the NLL loss with respect
to the parameters of the distribution, which in turn allows for a complete end-to-end
differentiable training procedure for the proposed architecture.

3.3. Recurrent Neural Network with Temporal CNN Feature Extractors (LSTM-tCNN)

The Causal GNN component of the architecture detailed in Section 3.2 is used to
satisfy the following desiderata: (1) to allow for computationally efficient and parallelized
propagation of information from time-instants in the distant past with respect to the current
time step and (2) to allow for learning a state-propagation function and hence dealing with
arbitrarily spaced points in a consistent manner. In order to offer a comparison to a further
viable alternative, we here put forth a comparison of our proposed algorithm against an
RNN-based approach. Although gated RNNs, such as GRUs and LSTMs, rely on sequential
computation between time steps, and therefore are less parallelizeable, they are known to
efficiently handle long dependencies. Moreover, by appending the time difference between
observations in the RNN input gate the RNN allows the RNN to learn how to condition the
predictions for the propagated state not only on the previous state and the CNN feature
extractor input, but also to the time-difference between different RNN steps [52]. One such
model, using an LSTM cell, is depicted in Figure 8.

Figure 5. Dependency graph for the variables associated with the proposed model. XA represents
the raw observed variable at time tA. Variable ZA represents the (unobserved) state that can be
translated to the quantity of interest YC or a probabilistic estimate.



Sensors 2021, 21, 6325 12 of 23

shape rate

Prev. 
"edge" 
states

tCNN tCNNtCNN tCNNtCNN

tCNN

Edge block

Node block Updated node

Updated edges

Figure 6. Detail of the GNN-tCNN. Nodes vA, vB, v∗ correspond to sender nodes for the respec-
tive edges. The updated edge states (light blue) are the same as the messages (yellow). See also
Algorithm 1 and Figure 7.
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Figure 7. The Causal GN computation step. As detailed in Algorithm 1 the procedure can be summarized in edge update,
aggregation and node update steps. The output graph contains E′ and V′. Several steps of this computation can be applied.

LSTM

shape rate

LSTM LSTM

tCNNtCNN tCNN 

Figure 8. Model architecture of LSTM-tCNN.

3.4. Simple MLP Employed on Time Series Features

For completeness, and in order to provide a further benchmark comparison against
baseline naive implementation, a simple three-layer ReLU MLP (100-units ReLU, Dropout,
100-units ReLU, 1-unit ReLU) with dropout rate 0.2 is used, and trained using the Mean
Absolute Percentage Error (MAPE) loss, and using the features derived for each segment
of the time series, separately. The derived features are summarized in Table 4. The MAPE
loss reads,

MAPE =
100
N

N

∑
t

| ˆRULt − RULt|
RULt

(6)

where RULt corresponds to the actual remaining useful life for time series segment at time
t and ˆRULt refers to the MLP prediction and N is the number of time instants we use for
the computation.
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Table 4. Time series features used in the simple MLP approach. The features are computed separately
for each accelerometer channel.

Feature Formula

Root Mean Square
√
Et[(xt − µ)2]

Kurtosis Et[(
xt−µ

σ )4]
Min min(xt)
Max max(xt)
Max/Min min(xt)/ max xt

4. Results
4.1. Preliminary Architecture Selection for GNN-tCNN

As typically carried out for the case of recurrent neural network models [48,49,53],
a gated-tanh activation function was used for the edge update and node update core
networks.

h(y) = sigmoid(Wgy)� tanh(Way)

In preliminary results on the real dataset, GNs using this activation strongly outperformed
the ones using tanh, but showed similar performance to the ones using ReLU activation.
Networks for the edge and node MLPs were tested with widths 30, 50, and 100. The smaller
networks tested (size 30) consistently outperformed networks with size 50 and exhibited
performance on par with networks with size 100 for some cases. Thus, the 30-unit networks
were selected for the presented results for both simulated and real data.

4.2. Simulated Dataset

Although it is easy to create a large number of training and test set experiments from
the simulated dataset, in order to keep the simulated use-case realistic and equivalent
to the bearing experiment, only 12 experiments were used for training and a set of three
experiments was used as the test set. Representative prediction results for the test-set
experiments are shown in Figure 9a for the GNN-tCNN and Figure 9b for the Long Short-
Term Memory network with CNN feature extractor (LSTM-tCNN). The accuracy of the
model is inspected in terms of the expected negative log likelihood (smaller is better).
When more observations are used, the estimates for the RUL of the fictitious processes are
more accurate for a larger portion of the observations, for both models. When a single
observation is used, which completely neglects the long-term evolution of damage, but
uses short-term features that are extracted by the learned graph-independent φu0 (which
corresponds to a temporal CNN), the RUL estimates for both methods are inaccurate and
fluctuate at the beginning of the experiment (top-left side of Figure 9a,b). Moreover, the
estimated probability distributions of the RUL are narrower when approaching failure.
This observation aligns with the intuition that it is not possible to have sharp estimates at
initiation of the experiments.

Despite the sparsity of the observations, the degradation trend seems to be implicitly
captured, when a sufficient number of observations is available. For the GNN-tCNN
architecture, it may be speculated that the architecture allows for accurately capturing
both the features of the high-frequency time series through the CNNs of the first graph-
independent processing step, and the long-term evolution of the time series through the
GraphNet processing steps.

For the simulated dataset, both methods perform on par. This supports that the
GNN-tCNN approach can yield results that are competitive with the more classical RNN-
based approach. The differences between the RNN-based and GNN-based approaches
are mainly computational, with the GNN-model sacrificing memory efficiency due to the
model’s quadradic memory cost on nodes, for circumventing the sequential computational
bottleneck of RNN-based models. In this sense, the proposed GNN-tCNN scheme is more
easily parallelizeable provided sufficient memory availability.



Sensors 2021, 21, 6325 15 of 23

(a) GNN-tCNN, Simulated

(b) LSTM-tCNN, Simulated

Figure 9. Results on the simulated dataset using (a) GNN-tCNN (top) and (b) LSTM-tCNN (bottom). The blue line
corresponds to the correct prediction assuming constant linear degradation. The orange lines correspond to the 10% and
90% quantiles of the predictions.
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4.3. Bearings Dataset

Results for representative experiments from the test-set of the PRONOSTIA bearing
dataset are shown in Figure 10a,b and Table 5. Similarly to the simulated experiments, for
both methods, predictions are characterized by smaller uncertainty closer to failure and a
mostly monotonic, yet a non-linear degradation trend towards failure is predicted. The
degradation trend is significantly different for each experiment. Predictions employing
up to 30 arbitrarily spaced observations from the past 2000 s are shown. In both cases,
the use of more observations (more than 30) did not significantly improve the accuracy or
the uncertainty bounds of the predictions. This may be due to the fact that the damage
phenomenon is slowly evolving, thus using a larger number of points does not offer more
information on the evolution of the phenomenon.

The GNN-tCNN predictions are better overall in MAPE, but worse in NLL. The
performance in the two metrics is very different and this may be attributed to the fact that
MAPE divides the absolute error for a prediction with the actual RUL, hence weighing
more correct predictions closer to failure, whereas the NLL metric does not take into
account the magnitude of errors relative to the actual RUL. The predictions from the simple
MLP model are highly inaccurate, as observed from Table 5. This inaccuracy is due to
the possible inefficiency of the hand-engineered features to accurately capture damage,
combined with disregarding long-term effects since the simple MLP prediction uses only a
single segment.

(a) GNN-tCNN, Bearings

Figure 10. Cont.
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(b) LSTM-tCNN, Bearings

Figure 10. Results on the bearing dataset using (a) LSTM-tCNN (top) and (b) LSTM-tCNN (bottom). The blue line
corresponds to the correct RUL assuming constant linear degradation. The orange lines correspond to the 10% and 90%
quantiles of the predictions.

Table 5. MAPE and Negative Log Likelihood (NLL) errors for test-set experiments for the bearings
dataset. For both GNN-tCNN and LSTM-tCNN 15 observations over a sequence of 2000 s (or 200
segments) were used. For the simple MLP method only a single observation was used for prediction.
Best values for each metric are marked in bold. Please refer to the main text for further comments.
Note that in contrast to other works, the metrics reported are average for whole experiments and not
for only one instant.

#exp
MAPE NLL

GNN-tCNN LSTM-tCNN Simple MLP GNN-tCNN LSTM-tCNN

1_1(0) 43.95 353.74 393.51 3.06 2.67
1_6(5) 27.96 75.78 1326.32 0.74 1.21
1_7(6) 74.14 1701.559 202.48 5.43 3.72

2_2(8) 65.37 1717.82 3780.37 0.02 1.58
2_3(9) 206.56 57.33 1209.45 6.56 3.31
2_4(10) 563.05 75.69 436.29 14.90 8.37
2_7(13) 6606.83 96.89 101.04 76.49 23.48

3_2(15) 394.71 82.57 1179.95 11.13 10.89
3_1(14) 115.18 53.21 5478.92 4.67 2.24

Weighted
average 235.11 632.61 1501.47 5.79 3.55

However, if we factor in the length of the experiments and take the weighted average
of those metrics, the GNN-tCNN clearly outperforms the LSTM-tCNN for this case of
implementation on actual experimental data. MAPE results are reported in Table 5 for
each experiment of the dataset separately, and on average, over a large number of points.
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The two main approaches (GNN and LSTM-based) seem to perform well in different
experiments. The feature extraction and simple dropout regularized MLP-based approach
did not yield good performance in all metrics.

The average MAPE over a fixed number of sub-segments of the whole time series was
chosen as a stricter and more stable evaluation metric than the error in RUL estimation
for a single specific point in the time series as proposed in [31]. This is the reason the
reported values are larger than the ones reported in other works. Moreover, the MAPE
estimate depends on deviations of the mode of the prediction and cannot take into account
possible model uncertainty in a prediction, which is evidently large (as it should be) for
observations that are not close to failure. The NLL performance takes uncertainty into
account and therefore it is argued that it is a more appropriate evaluation metric of model
accuracy. Finally, it is noted that the models with low NLL do not necessarily have low
MAPE error, since MAPE is symmetric around the mode of the prediction whereas NLL
takes into account the skewness of the Gamma distribution.

4.4. Interpretability: t-SNE Feature Visualizations

In this section, the t-distributed Stochastic Neighborhood Embedding (t-SNE) di-
mensionality reduction technique [54] is employed to inspect the properties of feature
representations of both the trained GNN-tCNN and LSTM-tCNN networks on the bearings
dataset. The intermediate layer used for inspection is the output of the global pooling of
the convolutional input block. The analysis is focused on features close to failure. Ideally,
we want the feature representations for similar conditions of loading and degradation to
lie close to each other. The t-SNE technique provides a low-dimensional representation
(typically of dimension 2 or 3) of a set of higher-dimensional vectors, given some mea-
sure of similarity between these vectors. As shown in Figure 11a, discernible clusters of
data are formed. These clusters correspond to experiments that produce similar sets of
features for the subsequent processing with the causal GNN or LSTM. As shown in the
left-most plot, embeddings from the same experiment form clusters, which is something
to be expected. However, it is also observed that a number of experiments form together
super-clusters, which hints to similar signals and therefore similar degradation modes
for these experiments. Interestingly, the different loading conditions do not form these
super-clusters in the t-SNE space, which hints to commonalities due to other underlying
factors. It is possible that discrete clusters correspond to different failure modes, yet this
cannot be confirmed since the failure modes of the bearings are not reported for this dataset.
Interestingly the t-SNE representations of features that correspond to readings from the
test-set overlap with the corresponding representations from the training set as shown in
the right-most plot. This result supports the hypothesis that the tCNN features learned
during the GNN-tCNN training indeed generalize well to the test-set. Furthermore, note
that the clusters containing points from the experiments 2_3, 2_4, 2_7 and 3_1 (9,10,13,14)
for the GNN-tCNN embedding does not have training data but only testing data (top left).
When we do not have corresponding representations in the testing set, as it is the case for
this cluster, the network is not expected to perform well. Indeed the performance for these
experiments is bad for the GNN-tCNN network. Indeed, as reported in Table 5, these are 4
out of the 5 experiments in the test-set that the GNN-tCNN underperforms.
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(test) 9,10,13,14
(train) -

(test) 0,15
(train) 1,2,3,4

(test) 5,15
(train) 1,4,11,12,16

(test) 6,8,15
(train) 7,16

(c) GNN-tCNN t-SNE visualization of tCNN features

(test) 0
(train) 2

(test) 5,9,10,13,14,15
(train) 4,11,12,16

(train) 3

(test) 6,8,
(train) 1,2,7,16

(d) LSTM-tCNN t-SNE visualization of tCNN features

Figure 11. t-SNE visualization of tCNN features for segments close to failure.

In the feature visualization of the LSTM-tCNN, the grouping of embeddings appears
to be different. Firstly, two of the training experiments 1_1 and 1_4 (correspondingly 0 and
3) seem to create separate clusters from the others and this may be a sign of over-fitting.
The t-SNE of 1_1 (0) overlaps with 1_3 (2) as it is the case in the GNN-tCNN embeddings.
It is worth noting that the winning entry of PHM 2012 challenge [31] specifically mentions
the similarity of degradation trends between experiments 1_1 and 1_3 for their hand-
engineered features. In the fully data-driven models proposed herein, this similarity is
learned implicitly and directly from the data, which is an approach that would scale better
if more experiments and volumes of data were to be considered. The embeddings of test set
experiments 6 and 8 (correspondingly 1_7 and 2_2) and training 7 and 16 (correspondingly
2_1 and 3_3) are also close for the GNN-tCNN and LSTM-tCNN features. Therefore the
features used for prediction may be similar. Further evidence towards this is the similar
trend predicted between the two models for the 2_2 experiment (see Figure 10), where,
however, the LSTM-tCNN under-performs in the MAPE metric. The rest of the distances
between the t-SNE embeddings do not agree between the two methods. The GNN-tCNN
embeddings and the similarity these imply for the different models are considered more
accurate, since on average in the MAPE metric the GNN-tCNN performs better.

5. Discussion

Two neural network architectures, the proposed GNN-tCNN scheme and a viable
alternative option RNN-tCNN (LSTM-tCNN), were applied to the problem of remaining
life assessment for degradation processes from both synthetically generated, as well as
actual experimental data (PRONOSTIA dataset). The two methods seem to perform well
in disjoint subsets of the experiments as shown in Table 5 with the LSTM-based model
performing better for the experiments that have shorter duration. The advantage of
the GNN-based architecture compared against the LSTM-based architecture is that it is
more efficiently exploiting distant measurements, whereas the LSTM-based method more
effectively employs measurements closer to the last observation. It is thus suggested that
the mechanisms of failure for the experiments where the GNN-based model performs
well are gradual, whereas the cases where it underperforms are more abrupt. Assuming
that gradual deterioration correlates with longer experiment times, we would expect the



Sensors 2021, 21, 6325 20 of 23

GNN-tCNN to perform better in longer experiments. Indeed, as shown in Figure 12 the
GNN-tCNN method seems to outperform the LSTM-tCNN in experiments which result in
a higher overall bearing life. This is also supported by the visualizations of the embeddings
for different experiments close to failure in Section 4.4. It is not possible to completely
confirm or reject this hypothesis since the accompanying documents for the PRONOSTIA
dataset do not provide further details for mechanisms of failure.

GNN-tCNN better LSTM-tCNN better
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 [s

]

Time-to-failure for experiments grouped
by which algorithm performs better

Figure 12. The total experiment times grouped by which RUL method performs better according to
the MAE metric. The GNN-tCNN performs better for longer experiments.

The complementarity between the experiments where each of the GNN-tCNN and
LSTM-tCNN methods perform well hints to further possible improvements to predictive
capability of data-driven models. Such improvements may be derived through deep
neural network architecture design. Both of the presented deep neural network variants
are end-to-end differentiable and hence trainable with gradient-based techniques and
are trained using maximum likelihood. In order to represent prediction uncertainty, a
reparametrization-based technique for estimating gradients of Gamma distributions was
employed. Gamma distributed outputs and a straight-forward likelihood objective are
a more natural than scalar outputs and the least-squares objective commonly used in
engineering, since RUL values are positive. Moreover, the predictions naturally contain
uncertainty bounds, which—as expected—become narrower as the model predicts lower
RUL values. Although only RUL estimation problems were considered in this work, the
non-sequential causal approach to dealing with long-term dependencies may be useful for
other problems where non-regularly sampled time series arise (e.g., analysis of electronic
health records).
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Abbreviations
The following abbreviations are used in this manuscript:

ML Machine Learning
RUL Remaining Useful Life
CNN Convolutional Neural Network
tCNN Temporal Convolutional Neural Network
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
MLP Multi-Layer Perceptron
GNN Graph Neural Network

GNN-tCNN
Graph Network with Causal Connectivity and Temporal Convolutional Neural
Network feature extractor

LSTM-tCNN
Long Short-Term Memory Network with Causal Connectivity and Temporal
Convolutional Neural Network feature extractor

GN Graph Network
t-SNE t-distributed Stochastic Neighborhood Embedding
MAPE Mean absolute prediction error
NLL Negative Log Likelihood
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