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Most studies using knockout technologies to examine protein function have

relied either on shutting off transcription (conventional conditional knock-

outs with tetracycline-regulated gene expression or gene disruption) or

destroying the mature mRNA (RNAi technology). In both cases, the target

protein is lost at a rate determined by its intrinsic half-life. Thus, protein

levels typically fall over at least 1–3 days, and cells continue to cycle

while exposed to a decreasing concentration of the protein. Here we charac-

terise the kinetochore proteome of mitotic chromosomes isolated from a cell

line in which the essential kinetochore protein CENP-T is present as an

auxin-inducible degron (AID) fusion protein that is fully functional and

able to support the viability of the cells. Stripping of the protein from

chromosomes in early mitosis via targeted proteasomal degradation reveals

the dependency of other proteins on CENP-T for their maintenance in kine-

tochores. We compare these results with the kinetochore proteome of

conventional CENP-T/W knockouts. As the cell cycle is mostly formed

from G1, S and G2 phases a gradual loss of CENP-T/W levels is more

likely to reflect dependencies associated with kinetochore assembly pre-

mitosis and upon entry into mitosis. Interestingly, a putative super-complex

involving Rod-Zw10-zwilch (RZZ complex), Spindly, Mad1/Mad2 and

CENP-E requires the function of CENP-T/W during kinetochore assembly

for its stable association with the outer kinetochore, but once assembled

remains associated with chromosomes after stripping of CENP-T during

mitosis. This study highlights the different roles core kinetochore

components may play in the assembly of kinetochores (upon entry into

mitosis) versus the maintenance of specific components (during mitosis).
1. Introduction
The kinetochore acts as a docking site for microtubules emanating from the two

spindle poles, detects improper attachments and ensures that sister chromatids

are only separated after all chromosomes are bi-orientated at the metaphase

plate [1–3]. The site of kinetochore assembly is specified by CENP-A, a histone

H3 variant that marks the site for assembly of the constitutive centromere-

associated network (CCAN), a group of 16 proteins that remains constitutively

bound to centromeric chromatin throughout the cell cycle [1,4]. The

CCAN links the underlying chromatin with outer kinetochore components

including the KMN (KNL-1/Mis12/Ndc80) network, which can directly bind

microtubules [1,5].
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A complex assembled from CENP-T, CENP-W, CENP-S

and CENP-X (CENP-T/W/S/X complex) forms part of the

CCAN [6,7]. CENP-T/W is required for viability [6], but

CENP-S/X is dispensable [8]. Despite this difference,

CENP-T/W/S/X heterotetramers formed in vitro function

together and can bind 100 bp DNA segments and induce

positive supercoiling [7,9]. Close proximity of CENP-T to

CENP-S has also been shown using fluorescence resonance

energy transfer at centromeres [10], and supports the associ-

ation of CENP-T/W and CENP-S/X heterodimers seen in

structural studies [7]. Whole-chromosome proteomic studies

from our laboratory indicate that kinetochores probably

contain both CENP-T/W heterodimers and CENP-T/W/S/X

heterotetramers [11].

In conventional silencing techniques (which include both

RNAi studies and conditional gene knockouts), the speed of

depletion depends on the stability of the pre-existing poly-

peptide. This can be problematic when trying to study

proteins that function in highly dynamic cell processes such

as mitosis, because cells will continue to cycle with progress-

ively decreasing concentrations of the target protein. This can

potentially select for the emergence of alternative adaptive

assembly and functional pathways.

To overcome disadvantages of conventional silencing

techniques the AID (auxin-inducible degron) system was

developed to create a specific, rapid and reversible method

for reducing protein levels [12,13]. This system uses a plant

protein degradation system in which an SCF complex con-

taining TIR1/AFB (an auxin signalling F-box protein)

promotes the degradation of Auxin/Indole-3-Acetic Acid

(Aux/IAA) transcriptional repressors that regulate gene

expression during development. Auxin-binding to TIR1/

AFB promotes substrate-TIR1-SCF interactions, leading to

substrate polyubiquitination and degradation by the protea-

some (figure 1c) [14–16]. The core SCF components are

highly conserved, but TIR1/AFB and AID-substrate ortholo-

gues do not exist in animal cells. In order to induce protein

destruction, the auxin-binding region of transcriptional

repressor IAA17 cloned as an AID tag was used to render

target proteins sensitive to auxin addition [12].

Conditional knockouts of essential genes in chicken DT40

cells can be readily combined with the AID system [12,17,18].

Rapid degradation of CENP-H led to immediate cessation of pro-

liferation and accumulation of DT40 cells in G2/M phase of the

cell cycle [12]. Auxin-induced CENP-T degradation revealed

that the Ndc80 complex is partly dependent on CENP-T for its

kinetochore localization, but is also recruited by another pathway

mediated by Mis12 subunits [19]. The AID system was also used

in human cells, combined with siRNA-based depletion of

endogenous target proteins. Using this combination, rapid

removal of AID-tagged BubR1 resulted in premature mitotic

exit in nocodazole-treated human cells [13].

Here, we employ quantitative mass spectrometry methods

to compare the proteome of mitotic chromosomes following

CENP-T depletion either by rapid auxin-induced degradation

or as a consequence of normal turnover in a conditional

tetracycline-repressive conditional knockout (KO) system. We

confirm CENP-T’s role in the recruitment of outer kinetochore

proteins of the KMN. We also show that the RZZ complex,

Spindly, Mad1/Mad2, CENP-E and members of the CCAN

are dependent on CENP-T for their association with mitotic

chromosomes only when CENP-T/W is depleted during kine-

tochore assembly. Our data reveal that rapid protein
degradation using the AID system can distinguish dependency

relationships during macromolecular complex assembly from

those involved in maintaining the structure of assembled

complexes in early mitosis.
2. Results
2.1. AID-CENP-T supports viability in DT40 cells
In order to test the effect of rapid CENP-T depletion on cell

viability and kinetochore protein composition, we transfected

CENP-TON/OFF DT40 cells [6] with a construct expressing the

OsTIR1 receptor and full-length CENP-T N-terminally fused

to an AID tag [12] (the cell lines used in this study are

diagrammed in figure 1). In the construct used here, OsTIR1

and AID-CENP-T are encoded as one open reading frame by

a single mRNA, with the two coding sequences linked by a

viral T2A sequence.

CENP-T is essential for cell viability. When exogenous

CENP-T expression is shut off in CENP-TON/OFF cells by dox-

ycycline addition [6], levels of the protein fall due to natural

turnover and the cells lose viability within 48–72 h

(figure 2a,c) [6]. By contrast, clones expressing AID-CENP-T

(AID-CENP-T:CENP-TON/OFF cells) remained viable even

after 96 h of doxycycline treatment (figure 2c). These cells

could be maintained in doxycycline for several weeks with-

out detectable growth defects. AID-CENP-T:CENP-TOFF cell

growth was unaffected by doxycycline, but the cells ceased

proliferating immediately upon auxin addition (figure 2c).

AID-tagged CENP-T localized correctly to kinetochores

(marked by transient expression of GFP-CENP-A) in AID-

CENP-T:CENP-TOFF cells maintained in doxycycline to silence

expression of the wild-type rescuing cDNA (figure 2b, panel 3).

CENP-T signals co-localizing with GFP-CENP-A were also

clearly visible in untreated wild-type and CENP-TON cell lines

(figure 2b, panels 1 and 2). We conclude that AID-CENP-T is

functional and is able to support viability in DT40 cells.

2.2. AID-CENP-T is rapidly degraded during mitosis
In the CENP-T tetracycline conditional KO (CENP-TON/OFF)

cell line, residual levels of CENP-T were observed even

after 72 h of doxycycline treatment (figure 2a, left panel).

By contrast, after 24 h of doxycycline treatment, tetra-

cycline-regulated CENP-T was significantly depleted in

whole extracts from AID-CENP-T:CENP-TOFF cells. At the

same time, the levels of AID-CENP-T polypeptide rose to

levels comparable with endogenous CENP-T in wild-type

(WT) cells (figure 2a, right panel). This suggests that excess

AID-CENP-T may be unstable in DT40 cells.

AID-CENP-T fusion protein levels fell rapidly within min-

utes of auxin addition, and no protein was detected in

immunoblots after 1 h (figure 2a, right panel). This depletion

of AID-CENP-T at mitotic kinetochores was confirmed by

measuring the fluorescence intensity of CENP-T co-localizing

with GFP-CENP-A. Centromeric CENP-T levels decreased by

approximately 80% after 1 h of auxin treatment (figure 2d,

panels 3 and 4; figure 2e). In control experiments, levels of

kinetochore-associated CENP-T remained unaffected when

AID-CENP-T:CENP-TOFF cells were treated with ethanol

(figure 2d, panels 1 and 2; figure 2e; þEtOH—auxin is

dissolved in 100% ethanol).
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Figure 1. Schematic of the conditional knockout strategy and its adaption for the AID-CENP-T cell line. (a) Doxycycline regulated shut-down of CENP-T or CENP-W
gene expression. (b) Combining the doxycycline regulated shut-down of gene expression with the auxin-inducible degron (AID) system. (c) A schematic of the auxin-
induced degradation system applied in eukaryotes. The SCF E3 ubiquitin ligase consists of 4 units: Rbx1, Cul-1, Skp1 and F-box containing protein, TIR1. Auxin
hormone (such as IAA) binding to the ectopically expressed TIR1 receptor promotes contacts with target proteins fused to an AID tag. The SCF-TIR1 E3 ligase can
then polyubiquitinate the AID tag, promoting degradation of the substrate by the 26S proteasome.
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Rapid degradation of CENP-T using the AID system led

to a cell cycle arrest with 76% of cells blocked in mitosis fol-

lowing 12 h of auxin treatment (figure 3a). After 24 h of auxin

addition the mitotic population of AID-CENP-T:CENP-TOFF
cells fell to 37% (figure 3a). This was explained by an increase

in apoptotic index observed using the annexin V assay

(figure 3b). These observations suggest that cells initially

arrest in mitosis and ultimately progress to cell death.
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AID-CENP-T:CENP-TOFF cells initially accumulated in

prometaphase upon treatment with auxin (figure 3c). When

compared with typical prometaphase cells (figure 3d, panel

1) auxin-treated cell populations often exhibited a large cluster
of chromosomes displaced to one side of the cell (figure 3d,

panels 2 and 3). Hypercondensed chromosomes were seen in

approximately 62% of the mitotic population after 24 h of

auxin treatment (figure 3d,e—‘Hypercondensed’). This
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phenotype was more severe than that observed in

conventional CENP-TOFF cells [6].

To complete prometaphase chromosome alignment, kine-

tochores must form bipolar attachments with opposing
spindle microtubules. In untreated wild-type populations

(figure 4a) and CENP-TON cells (figure 4b) bioriented attach-

ments were readily observed (arrowheads). AID-CENP-

T:CENP-TOFF cells treated with auxin displayed problems in
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forming bioriented kinetochore-microtubule attachments follow-

ing CENP-T degradation when compared with the ethanol-

treated controls (figure 4c,d). After 6.5 h of auxin treatment

only a few CENP-A signals appeared to form end-on associations

with spindle microtubules (figure 4d, arrowheads, lower panel).

This loss of end-on microtubule attachments was con-

firmed by correlative light and electron microscopy (CLEM)

(figure 4e). In wild-type cells, we could find kinetochores

attached end-on to spindle microtubules emanating from

opposite poles of the cell (figure 4e, panel 1). No such attach-

ments were detected in cells treated with auxin for 6.5 h.

More commonly, chromosomes in CENP-T-depleted prometa-

phase arrested cells appeared to remain unattached or possibly

formed lateral associations with the microtubules (figure 4e,
panels 2 and 3).

We conclude that AID-CENP-T incorporation at centro-

meres does not affect its ability to be rapidly degraded by

the ubiquitin ligase system and rapid destruction of CENP-

T compromises the ability of chromosomes to form normal

end-on attachments to microtubules.
2.3. Chromosomal AID-CENP-T levels do not recover
following degradation in mitotic cells

We next wished to confirm the extent to which the rapid

degradation of CENP-T from AID-CENP-T:CENP-TON/OFF

cells was reversible upon the removal of auxin. In order to

measure CENP-T levels on mitotic chromosomes, cells

blocked in mitosis using a 12 h treatment with nocodazole

(þNoc) were exposed to either auxin (þAux) or ethanol

(þEtOH) according to the protocol diagrammed in

figure 5a, and CENP-T levels were measured by quantitative

immunoblotting. Levels of AID-CENP-T on mitotic chromo-

somes fell to 15% and 7% of the starting levels in cells

treated with auxin for 1 or 2 h, respectively (figure 5a). In con-

trols, DNA topoisomerase IIalpha and INCENP levels did

not change significantly upon CENP-T degradation, although

Ndc80 levels appeared to be reduced.

AID-CENP-T degradation is reversible in asynchronous

populations of AID-CENP-T:CENP-TOFF cells. AID-CENP-T

levels were restored within 30 min after washing out the

auxin (figure 5b). To ask whether a similar recovery could

be observed in mitotic populations, CENP-T levels in nocoda-

zole-arrested auxin-treated AID-CENP-T:CENP-TOFF cells

were examined in whole-cell extracts (figure 5d ) and isolated

chromosomes (figure 5e) before and after a 1–2 h washout of

the auxin as outlined in figure 5c. In total lysates, AID-CENP-

T signals were absent after 1 h of auxin treatment, but par-

tially recovered following auxin removal (figure 5d ). Levels

of mitotic chromosome-associated AID-CENP-T were also

significantly reduced after 1 h of auxin treatment, but failed

to return even 2 h after an auxin washout (figure 5e).

These experiments show that the AID system works

efficiently in both mitotic cells and asynchronous cultures.

CLIP-tagged CENP-T, CENP-W, CENP-S and CENP-X have

been shown to load onto centromeres in late S phase and

G2 [10,20], and the lack of CENP-T recovery on chromosomes

could be explained if AID-CENP-T is unable to reload onto

chromosomes in mitosis. However, live cell imaging has

shown that GFP-CENP-T levels at kinetochores significantly

increase immediately following NEBD [21] and we thus

believe it to be more likely that AID-CENP-T levels do not
recover in mitotic cells due to the inhibition of CENP-T

protein synthesis. The rapid recovery of CENP-T levels in

asynchronous cells following auxin removal is likely to be

confined to the interphase population.
2.4. Quantitative proteomics reveals different
dependencies associated with rapid CENP-T
depletion versus slow CENP-T or CENP-W depletion

Mass spectrometry was used to analyse differences in the

abundance of the total kinetochore proteome on isolated

mitotic chromosomes, comparing rapid degradation of

AID-CENP-T from auxin-treated AID-CENP-T: CENP-TOFF

cells with CENP-T (or CENP-W) loss over multiple cell

cycles in conventional CENP-TOFF or CENP-WOFF con-

ditional knockouts. SILAC-based proteomics was performed

according to the protocol shown in figure 6a. Auxin was

used to deplete AID-CENP-T, while doxycycline was added

to turn off expression of the rescuing cDNA in CENP-TOFF

or CENP-WOFF cells.

In this analysis, we were able to reproducibly quantify

86–96 kinetochore-associated proteins with highly correlative

H/L SILAC ratios between biological replicates (R ¼ 0.839–

0.920; electronic supplementary material, figure S1). Outliers

were excluded if the fold difference in SILAC ratios between

biological replicates for a given protein was greater than +2

s.d. away from the mean. For example, CENP-M, APC8 and

CENP-F were not considered in AID-CENP-T:CENP-TOFF,

CENP-TOFF and CENP-WOFF proteomics analysis, respect-

ively (electronic supplementary material, figure S1). A list

of all identified kinetochore proteins and their assigned

SILAC ratios after normalization to Histone H4 ratios can

be found in the electronic supplementary material, table S1.

CENP-X is a small (80 aa) protein formed mostly from a

histone-fold like domain [7,8] that has a low number of

unique peptide sequences available for quantitation. Because

MaxQuant assigned CENP-X a SILAC ratio in only a single

AID-CENP-T:CENP-TOFF proteomics experiment special pro-

cedures were used to quantitate this protein. To validate H/L

SILAC ratios, we identified a unique CENP-X peptide that

could be successfully used for quantitation across both

AID-CENP-T proteomics samples using Skyline (for details

see Material and methods, and electronic supplementary

material, figure S2a–c) [22,23].

In our proteomics experiments downward bars in figure 6b
show depleted proteins, whereas upwards bars show proteins

whose levels on chromosomes increased. All proteins depicted

have been shown to bind centromeres, form core kinetochore

complexes or closely associate with kinetochore-fibres

(K-fibres). We found that CENP-T levels were only two- to

threefold reduced in chromosomes isolated from CENP-TOFF

cells at 42–43 h after doxycycline addition (figure 6b; elec-

tronic supplementary material, table S1, figure S3a). This

time point was chosen as the longest doxycycline treatment

compatible with cultures achieving a sufficient mitotic index

to allow efficient mitotic chromosome isolation. Within the

same time frame a more complete depletion of CENP-T on

chromosomes isolated from CENP-WOFF cells was shown by

proteomics analysis (figure 6b; electronic supplementary

material, table S1) and immunoblotting (electronic supplemen-

tary material, figure S3a); for this reason statistical analysis of
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downstream dependencies using the inducible KO system was

performed using CENP-WOFF cells only (figure 7).

To identify proteins whose associations with mitotic

chromosomes showed statistically significant differences after
loss of CENP-T, p-values and adjusted p-values were calculated

using the limma package in BIOCONDUCTOR [24–27], producing

the ‘volcano’ plots shown in figure 7. Proteins within the

upper right quadrant and upper left quadrant represent
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proteins that have H/L SILAC ratios representing a greater

than 1.5-fold-change (and adjusted p , 0.05). Those to the left

are increased, whereas those to the right are decreased. All pro-

teins significantly depleted from AID-CENP-T:CENP-TOFF or

CENP-WOFF chromosomes are highlighted in the electronic

supplementary material, table S2.

As expected, rapid degradation of AID-CENP-T led to a

substantial depletion of CENP-W, CENP-S and CENP-X

from isolated mitotic chromosomes, confirming that these

proteins form a highly inter-dependent complex [7]

(figure 7). A similar result was seen in conditional KO cell

lines, although depletion of the CENP-T/W/S/X complex

was only partial in CENP-TOFF chromosomes (described ear-

lier) and less effective in CENP-WOFF cells (figure 6b).

This difference in the loss of CENP-T levels could also be seen

in chromosome spreads comparing wild-type, CENP-WOFF and

AID-CENP-T:CENP-TOFF cells subjected to the same drug treat-

ments as outlined in figure 6a (electronic supplementary

material, figure S3b,c). Although CENP-T signals at the primary

constriction sites were reduced in both cell lines when compared

with wild-type controls, AID-CENP-T depletion was more exten-

sive. By contrast, CENP-A levels at the primary constriction sites
remained the same across all cell lines (electronic supplementary

material, figure S3b,c).

In addition to members of the CENP-T/W/S/X complex,

several outer kinetochore complexes were also affected.

Levels of chromosome associated KMN and Ska complex

were significantly reduced in AID-CENP-T:CENP-TOFF

chromosomes (figure 7; Ska2 lies just outside this boundary).

Although Ndc80 complex components were also depleted

from chromosomes isolated from CENP-TOFF and CENP-

WOFF cells, in comparison a smaller reduction of Mis12 and

Ska complex components was observed (figure 6b). Only

Mis12, KNL-1 and Ska2 are significantly depleted in CENP-

WOFF chromosomes (figure 7). The more effective depletion

of CENP-T/W/S/X in AID-CENP-T proteomics experiments

may account for this difference. Interestingly, loss of the

CENP-T/W/S/X complex leads to only a partial loss

of KMN components. CENP-C is unaffected by CENP-T

depletion (figure 6b; electronic supplementary material

table S1) and, as suggested by other studies, may support a

separate path for KMN recruitment [19,28–33]. However,

there is abundant evidence also supporting a single pathway

where CENP-C can be found upstream of CENP-H and



rsob.royalsocietypublishing.org
Open

Biol.6:150230

11
CENP-T assemblies [34–40]. In this case, CENP-T/W forms

associations with CENP-H/I/K/M, which are both depen-

dent on CENP-C for their kinetochore localization [36,40].

These differences could reflect different experimental

approaches, but it is also possible that DT40 chicken cells

may exhibit differences in their ability to recruit outer

kinetochore components when compared with other systems.

Reproducible differences in the kinetochore-associated

proteome were also observed when we compared rapid AID-

CENP-T degradation with the more gradual loss of CENP-T/

W in the conventional CENP-TOFF and CENP-WOFF KO cells.

A number of kinetochore proteins were reduced on chromo-

somes isolated from conventional CENP-TOFF and CENP-

WOFF cells. These included components of the RZZ complex,

Spindly, Mad1/Mad2, CENP-E and SKAP (figure 6b). SKAP

is an interactor of CENP-E that is required for chromosome

alignment on the metaphase plate [41]. These reductions

were statistically significant for CENP-WOFF chromosomes,

but not for chromosomes isolated from the AID-CENP-

T:CENP-TOFF cells (figure 7). In CENP-WOFF cells members

of the CCAN, including CENP-I, -K, -N, -Q, -R and -P, were

also reduced. By contrast, components of the proteasome

degradation machinery were significantly increased on mitotic

chromosomes isolated from the AID-CENP-T:CENP-TOFF cells

(figure 7, white circles in the upper left quadrant). This was not

seen for the two conventional KO cell lines.

Interestingly, CENP-O/P/Q/R were not depleted from con-

ventional CENP-TOFF chromosomes, but they were partially

depleted from CENP-WOFF chromosomes (figure 6b). This differ-

ence may reflect the fact that chromosomes isolated from CENP-

TOFF cells still had approximately 50% of CENP-T/W/S/X

remaining, whereas levels of the complex were much lower in

chromosomes isolated from CENP-WOFF cells. It is possible

that CENP-O/P/Q/R association with chromosomes might

require a threshold level of CENP-T/W/S/X.

Together, these results suggest that the time scale of

removal of CENP-T/W from kinetochores may influence

the composition of the resulting kinetochores.
3. Discussion
Here, we have used two different conditional knockout proto-

cols to distinguish the roles of CENP-T/W in kinetochore

assembly during the cell cycle from its roles in the maintenance

of kinetochore structure during mitosis.

In conventional conditional knockouts, doxycycline

addition silences transcription of the rescuing cDNA in

CENP-TON/OFF and CENP-WON/OFF cells and target protein

levels fall gradually over the subsequent 2–3 days. During

this time, cells traverse several cell cycles (the doubling

time of DT40 cells is approx. 9 h). Thus the proteome of mito-

tic chromosomes isolated at the end of the experiment reflects

the results of assembling kinetochores in the presence of

decreasing levels of CENP-T/W.

By contrast, using the auxin degron system [12] AID-

CENP-T is depleted from mitotic cultures in an hour or

less. In this experiment, cells enter mitosis with normal kine-

tochores, but then lose CENP-T over a 2 h period. Changes in

the proteome thus reflect the loss of components from

pre-assembled kinetochores when CENP-T/W is removed.

The fact that CENP-T is a core component of a macromol-

ecular complex does not affect its ability to be degraded from
kinetochores using the AID system. AID-CENP-T degra-

dation is fast and efficient, particularly during mitosis,

when the protein pool is not replenished by translation.

This rapid stripping of CENP-T/W inactivates the

kinetochore and greater than 70% of cells halt in mitosis

after only 12 h using the AID system. Our data reveal a

progression from a ‘normal’ prometaphase arrest into pheno-

types characterized by hypercondensed chromosomes

displaced from abnormal spindles. Interestingly, some appar-

ent lateral associations of chromosomes with microtubules

were observed by CLEM. Similar observations were also

reported following rapid kinetochore disruption following

the microinjection of anti-centromere antibodies [42], and

through live cell imaging of CENP-WOFF and Ndc80OFF

conditional KO cells [6,43].

Following gradual depletion of CENP-T/W, the levels of

chromosome-associated CENP-A and CENP-C remain

unchanged. This supports the viewpoint that CENP-A and

CENP-C assembly at centromeres is independent of CENP-

T/W [1,6,28,31]. By contrast, there was a slight decrease in

chromosomal levels of several other CCAN members, includ-

ing CENP-I, CENP-K, CENP-N, CENP-Q, CENP-P and

CENP-R. Loss of CENP-T/W during kinetochore assembly

also resulted in lower levels of the KMN network, the RZZ

complex, Spindly, Mad1/Mad2, CENP-E and SKAP on mito-

tic chromosomes. BubR1 and the Ndc80 complex have been

previously associated with CENP-E kinetochore localization

[44–47] and Mad1 depletion does not abolish CENP-E in

human cells [48] or Mad1 immunodepleted egg extracts

[49]. More recently, CENP-E recruitment to unattached kine-

tochores has been shown to be dependent on Mad1. In fission

yeast, Mad1 can bind Cut7 (Kinesin motor) to unattached

kinetochores. An equivalent interaction between human

Mad1 and CENP-E was also shown [50].

Recent studies in budding yeast have revealed an associ-

ation between KNL-1 and Mad1 that is mediated by Bub1

[51]. A Mad1:Bub1 interaction in C. elegans is important for

targeting Mad1/Mad2 to kinetochores [52]. It has also been

suggested that Bub1-RZZ complex-Mad1/2 is docked to

KNL-1 via Bub1–Bub3 interactions [53]. Under all conditions

tested here, Bub1 levels on chromosomes did not change in

CENP-T/W/S/X depleted cells, even when KNL-1 was

significantly depleted. This suggests an alternative pathway

independent of Bub1 for the recruitment/maintenance of

Mad1 at kinetochores in nocodazole-treated DT40 cells.

Mad1 kinetochore localization is also dependent on the

RZZ complex [54–56], and interactions between these com-

ponents in Drosophila embryos has recently been shown

through co-immunoprecipitation experiments [57]. This com-

plex in turn requires KNL-1 for kinetochore targeting [56,58],

although loss of KNL-1 (or Bub1) in mitotically arrested

human cells does not completely abolish Mad1 or RZZ kine-

tochore localization and implicates an additional mechanism

for complete recruitment [59]. Interestingly, the CENP-T

stripping from chromosomes during mitosis led to a signifi-

cant downstream depletion of KNL-1, but changes in RZZ/

Spindly/Mad1/Mad2/CENP-E abundance on chromosomes

were not observed. Possibly, once they are assembled, other

interactions/pathways may be involved in the association

of this complex with mitotic kinetochores.

An independent proteomic study of conventional knockouts

of eleven kinetochore proteins and assembly factors has strongly

suggested the existence of a super-complex that we refer to as the
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RZZ-MES (Rod, Zw10, zwilch, Mad1, CENP-E and Spindly

[11]). The present data support the hypothesis that CENP-E exhi-

bits functional links with RZZ/Spindly/Mad1/Mad2 in mitotic

chromosomes. It is interesting that this putative super-complex

requires CENP-T/W association with chromosomes during

kinetochore assembly in order for optimal stable association

with mitotic chromosomes, but is independent of CENP-T/W

once kinetochores have been assembled.

Stripping of CENP-T/W from mitotic kinetochores had no

effect on the levels of CENP-A, CENP-C or any other CCAN

components on isolated chromosomes. It did, however,

result in a partial loss of KMN components, confirming a pre-

vious study looking at Ndc80 levels after CENP-T degradation

by the AID system [19]. It is possible that the KMN proteins

remaining after CENP-T stripping are retained via interactions

with CENP-C. The N terminus of CENP-C is important for

outer kinetochore assembly as established by ectopic localiz-

ation experiments [28,29,31,32,39] and interacts with Mis12

components [28–30], possibly providing a second platform

for Ndc80 assembly [19,32]. In budding yeast, the Mtw1

complex (Mis12 complex) has been shown to associate with

Ndc80 components and this interaction is mutually exclusive

of Cnn1 (CENP-T homolog)-Ndc80 direct binding [60–62].

3.1. Perspectives
Most strategies for conditional knockouts of essential genes

involve either blocking transcription of the target gene or inacti-

vating the mature mRNA, with the result that the target protein

is depleted from cells over the course of several cell cycles [63].

The availability of the AID system allows us to direct the destruc-

tion of a target protein within an hour or two—certainly within

the normal span of a single vertebrate cell cycle. This allows us to

examine the differences between (i) gradually inactivating a

protein and thus interfering with the assembly of downstream

complexes, and (ii) allowing the assembly of those complexes,

and then rapidly stripping them of the target protein. For

CENP-T/W both strategies inactivate the kinetochore. Interest-

ingly, interfering with kinetochore assembly inhibits the ability

of the putative RZZ-MES super-complex (as well as Mad2) to

stably associate with mitotic chromosomes, whereas this associ-

ation, once formed, is stable to CENP-T/W-dependent stripping

of the complex. Rapid removal of CENP-T/W also appears to

selectively inhibit the ability of kinetochores to make end-on

attachments with microtubules. In the future, it will be interest-

ing to use this approach to differentiate the roles of other

subcomplexes in kinetochore assembly versus structural

maintenance during mitosis.
4. Material and methods
4.1. Cell culture, drug treatments and transfections
DT40 cell lines were cultured in RPMI media (Invitrogen) with

10% (v/v) heat inactivated FBS, 1% chicken serum (Gibco) and

1% penicillin/streptomycin at 398C. CENP-TON/OFF and

CENP-WON/OFF conditional tetracycline-repressive KO cell

lines [6] were treated with 0.2 mg ml21 doxycycline (BD Bio-

sciences) to silence the transgene. A 12-h treatment with

0.5 mg ml21 nocodazole (Sigma) was used to block DT40 cells

in mitosis. The AID-CENP-T:CENP-TON/OFF cell line was

maintained in 0.5 mg ml21 doxycycline at all times. One
hundred and twenty-five microlitres of auxin (3-indolylacetic

acid; Fluka analytical) was diluted in chemical grade ethanol

and used at 125mm to promote the degradation of AID-tagged

CENP-T by the proteasome.

The AID-CENP-T stable cell line was generated using elec-

troporation. Cells were resuspended in ice-cold Optimem at a

dilution of 1–2 � 107 cells ml21. Approximately 0.5 � 107 cells

were distributed into a cuvette (BioRad; 0.4 cm) with 8–10 mg

of the plasmid DNA and placed on ice for 5–10 min. To gener-

ate the OsTIR1-T2A-AID-GgCENP-T vector, the OsTIR1-T2A-

AID sequence was digested from a pUC57 vector and inserted

N-terminal to the GgCENP-T ORF sequence within a pN1

plasmid [6]. T2A sequences differ from internal ribosome

entry site (IRES) sequences in that the two polypeptides arise

due to ribosomal skipping rather than translation re-initiation

[64–66]. As a result, they are produced in nearly equal

amounts [67–69]. Cells were electroporated at 300 mA and

950 mF (Gene Pulser Xcell Electroporation System, BioRad)

and maintained on ice for a further 5 min. Transfected cells

were selected with Geneticin (1.5 mg ml21; Gibco) and Zeocin

(400 mg ml21; Invitrogen), and positive clones identified by

Western blot analysis.

The GFP-GgCENP-A construct was generated by cloning

GgCENP-A into the pEGFPC1 vector (Clontech) with a

17-amino acid linker [70]. The Neon transfection system (100 ml

kit; Invitrogen) was used to transiently transfect GFP-CENP-A

into DT40 cells according to the manufacturer’s instructions.

Electroporation protocol was set to a voltage of 1700 V, width

20 ms and pulse 1. After electroporation, cells were resuspended

in pre-warmed medium (without antibiotics). For experiments

with the AID-CENP-T:CENP-TON/OFF cell line doxycycline

was added 2–3 h after electroporation.

4.2. Cell assays
Viable cells were scored using trypan blue (Sigma). The

Annexin V-PE-Cy5 Apoptosis detection kit (Biovision) was

used according to the manufacturer’s instructions. Flow cyto-

metry was used to detect positive cells using a FACsCalibur

flow cytometer and CELLQUEST Software (BD Biosciences).

4.3. SILAC labelling, chromosome isolation and LC-MS/
MS analysis

DT40 cells were cultured in RPMI media (Invitrogen) with

10% (v/v) dialyzed FBS (Sigma), 100 mg ml21 U-13C6
15N2-L-

lysine:2HCl and 30 mg ml21 U-13C6
15N4-L-arginine:HCl

(Sigma) for five to six cell cycles. To block in mitosis, cells

were treated with 0.5 mg ml21 nocodazole (Sigma) for 12–

13 h giving a mitotic index between 80 and 95%. Equal num-

bers of differentially labelled cells blocked in mitosis were

mixed and the chromosomes isolated [71,72]. An average of

three chromosome isolates were combined for each single

biological replicate.

Denaturing protein gel electrophoresis was carried out

using NuPAGE Bis-Tris 3–12% gels and MOPS SDS running

buffer (Invitrogen). The gel was stained with Imperial protein

stain (Thermo Scientific) and In-gel digestion with trypsin

performed as described previously [73]. Peptides were separ-

ated into 28–48 different fractions (depending on the original

protein concentration of the sample) using an Ultimate

3000 HPLC system (Dionex) using a PolySULFOETHYL A
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SCX column (200 � 2.1 mm, 5 mm particles, 200 A pores,

PolyLC Inc). Salt gradients of Buffer A (5 mM dipotassium

hydrogen phosphate, 10% ACN adjusted to pH 3 using phos-

phoric acid) and Buffer B (5 mM dipotassium hydrogen

phosphate, 10% ACN, 1 M potassium chloride adjusted to

pH 3 using phosphoric acid) were used to separate peptides

at a flow rate of 200 ml min21. After SCX fractionation the

peptide solutions were mixed 1 : 1 with 0.1% trifluoroacetic

acid. Desalting was performed using C18-StageTips [74,75].

The LC-MS/MS analysis was performed on an LTQ-Orbi-

trap Velos (Thermo Fisher Scientific) using a Waters nano

Acuity HPLC system with a nanoelectrospray ion source.

Depending on the amount of peptides for each fraction, gradi-

ents were run for between 2 and 5 h before analysis. The LTQ-

Orbitrap Velos was operated in the data-dependent mode with

up to 20 MS MS21 scans recorded for each precursor ion scan.

Quantitation of SILAC Pairs was performed using MAX-

QUANT v. 1.3.0.5 [76] and the peptide search engine

Andromeda [77] using a Chicken UniProtKB database with

reviewed and unreviewed sequences (downloaded July

2013). Additional kinetochore sequences that needed to be

input separately included Aurora B, Ska1, Spc24, HP1alpha,

predicted CASC5: gill363734068 and predicted: E3 SUMO

protein ligase RanBP2-like: gill363729033. For analysis, the

enzyme was set to Trypsin/P with a maximum of two

missed cleavages. The mass tolerance for the first search

and main search were set to 20 and 6 ppm, respectively.

Carbamidomethylation of cysteine was set as a fixed

modification, while oxidation of methionine and protein

N-acetylation were defined as variable modifications. A mini-

mum of 1 razor or unique peptide and a false-discovery rate

(FDR) of 1% were required for protein identification.

For a protein to have quantifiable readings, SILAC ratios

must have been generated using at least 1 unique peptide

pair and represented in both biological replicates. SILAC out-

puts from MAXQUANT were normalized to Histone H4 ratios.

Histone H4 is highly abundant on chromosomes and can be

used to account for unequal mixing of cells in the early stages

of each experiment [72].

Special procedures were used for CENP-X, which was not

detected in one repeat and only quantitated with 1 H/L ratio

count under AID-CENP-T SILAC conditions using MAX-

QUANT. Because CENP-X is a small protein (80 amino acids)

formed mostly from a histone-fold like domain [7,8], it has

a low number of unique peptide sequences available for

quantitation. To validate H/L ratios in AID-CENP-T SILAC

conditions, we identified a unique CENP-X peptide that

was successfully used for quantitation across all other

samples. We then manually determined peak areas of an

extracted chromatogram from the heavy and light precursor

ion measured using SKYLINE software (electronic supplemen-

tary material, figure S2a–c ) [22,23]. Thus, we were able to

reliably quantify CENP-X in all samples.

4.4. Statistical analysis of SILAC data
R (www.r-project.org) and RStudio (www.rstudio.com) were

applied for analysis and the generation of graphical figures.

Statistical analysis was performed using the limma package

in R/BIOCONDUCTOR [24–27]. Proteins with an adjusted

p , 0.05 (representing an FDR of 5%) and that had H/L

SILAC ratios greater than 1.5-fold-change were considered

to be differentially abundant on chromosomes.
4.5. SDS-PAGE, gel staining and immunoblotting
Proteins were sonicated, boiled in sample buffer (1% SDS,

16.7 mM Tris–HCl pH 6.8, 5% sucrose, 0.67 mM EDTA,

10% B-Mercaptoethanol (v/v)) and resolved using SDS-

PAGE [78] with 10–15% polyacrylamide gels and 8 M urea

in the stacking gel for better resolution of chromosomal pro-

teins (electrophoresis apparatus; BioRad). For gel staining,

protein bands were visualized using InstantBlue (Expedeon).

For immunoblotting, proteins were transferred to nitrocellulose

membranes and blocked with 5% non-fat milk in PBS-0.1%

Tween for 1–2 h.

Primary antibodies used for immunoblotting included

rabbit anti-GgCENP-T (1 : 2000) [6], rabbit anti-GgNdc80 (1 :

2000) [43], mouse anti-GgINCENP (1 : 3) [79], mouse anti-

Histone H3 (1 : 500; Abcam), rabbit anti-GgTopo IIalpha (1 :

500) [80], mouse anti-alpha Tubulin (1 : 2000; B512 Sigma) and

anti-GgCyclin B2 [81]. When using the LI-COR Odyssey

system, membranes probed with secondary antibodies (IRDye

800 CW/IRDye 680; LI-COR Biosciences) were washed for at

least 45 min with 0.1% Tween in PBS and a final wash performed

with PBS for 5 min. Median fluorescence intensities for individ-

ual protein bands were subsequently determined using a CCD

scanner (Odyssey; LI-COR Biosciences).

4.6. Immunofluorescence microscopy
DT40 cells adhered to coverslips using 0.1% poly-L-lysine

(PLL; Sigma) solution were washed for 2 min with pre-

warmed PBS and fixed for 8 min with 4% paraformaldehyde

at room temperature. This was followed by PBS washes, incu-

bation with 0.15% Triton X-100/PBS for 2 min and a final

wash with PBS. A block using 1% bovine serum albumin

(BSA) diluted in PBS for 30 min at 378C was performed.

Rabbit anti-GgCENP-T (1 : 1000) [6] in blocking solution

was incubated for 1 h and washed three times with 0.15%

Tween/PBS. This was followed by incubation for 1 h with

fluorophore-conjugated secondary antibodies (Alexa Flour

594; Jackson ImmunoResearch Laboratories, Inc.) and

additional wash steps. Coverslips were mounted on slides

using VectorShield containing DAPI (Vector Labs).

Images were taken with a Wide Field Deconvolution

Microscope (DeltaVision Core system, Applied Precision),

based on an Inverted Olympus IX-71 microscope stand

with Olympus UPlanSApo 100 � oil immersion objective

(NA 1.4), a 250 W Xenon light source and camera (CoolSnap

HQ, Photometrix). Shutter and stage were controlled through

SOFTWORX (Applied Precision). Z sections were deconvolved

using the constrained iterative algorithm on SOFTWORX

[82,83]. Max intensity projections were created either using

SOFTWORX or IMAGEJ. To make comparisons and quantitative

measurements images were processed in IMAGEJ by threshold-

ing the maximum and minimum intensities for three-

dimensional projections. The default setting for CRAQCODE

v. 1.06 [84] were modified and used to generate quantifiable

measurements. GFP-CENP-A signals were used to locate

kinetochores and the intensity of the Gg-CENP-T signal

measured at these points.

4.7. Chromosome spreads
After drug treatments (concentrations described previously

and outlined in the electronic supplementary material,

http://www.r-project.org
http://www.rstudio.com
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figure S3b), mitotic cells were counted and resuspended in

warm 75 mM KCl to a concentration of 60 � 104 cells ml21.

After a 7 min incubation, 100 ml of cell suspension was

loaded into a cytofunnel and centrifuged at 1800 r.p.m. for

10 min onto a glass slide (Shandon Cytospin 4). Slides were

immersed in KCM buffer (10 mM Tris–HCl pH 8.0,

120 mM KCl, 20 mM NaCl, 0.5 mM EDTA, 0.1% v/v Triton

X-100) for 10 min at room temperature and then carefully

dried. Samples were blocked using 100 ml of 1% BSA in

KCM buffer for 1 h and incubated for a further hour with

primary antibodies (anti-GgCENP-A; 1 : 500, anti-GgCENP-

T; 1 : 1000). After washing the slide with KCM buffer a

secondary antibody incubation was performed for 45 min

(anti-chicken Alexafluor488; 1 : 500). This was followed by

additional washes, fixation with 4% formaldehyde (diluted

in KCM buffer) for 10 min and a final incubation with

DAPI in PBS for 5 min. Washes with ddH2O were performed

before mounting with a coverslip.

Images were taken as described in the above section and

analysed in IMAGEJ. For quantitative measurements, chromo-

somes with clear constriction sites were identified via DAPI

channel images. From here, a circle with a defined area was

used to find the mean fluorescence intensity of CENP-T or

CENP-A signals at constriction sites/centromeric regions.

The minimum signal value was used as local background

and subtracted from each chromosomal reading.

4.8. Electron microscopy
Cell suspension containing 1.6 � 105 DT40 cells were seeded

onto PLL coated gridded dishes (MatTek, USA) and left to

adhere for 30 min before fixation. The CLEM processing

method was adapted from an established protocol [85].

Briefly, cells fixed for 1 h with 3% glutaraldehyde and 0.5%

paraformaldehyde in 0.2 M cacodylate buffer containing

5 mg ml21 Hoechst were washed with PBS, mitotic cells of
interest were identified using the DeltaVision Core system

(Applied Precision) and the cell positions mapped using the

etched coordinates on the gridded dishes. Samples were

then processed as described previously [85]. Micrographs

were acquired using a Philips CM120 transmission electron

microscope (FEI) and Gatan Orius CCD camera (Gatan).
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