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ABSTRACT Newborns are particularly susceptible to severe forms of herpes simplex
virus 1 (HSV-1) infection, including encephalitis and multisystemic disseminated dis-
ease. The underlying age-dependent differences in the immune response that explain
this increased susceptibility relative to the adult population remain largely understudied.
Using a murine model of HSV-1 infection, we found that newborn mice are largely sus-
ceptible to intracranial and intraperitoneal challenge while adult mice are highly resis-
tant. This age-dependent difference correlated with differential basal-level expression of
components of innate immune signaling pathways, which resulted in dampened inter-
feron (IFN) signaling in the newborn brain. To explore the possibility of modulating the
IFN response in the newborn brain to recapitulate the adult phenotype, we adminis-
tered exogenous IFN-� in the context of disseminated HSV-1 infection. IFN-� treatment
resulted in significantly increased survival and delayed viral neuroinvasion in the new-
born. These effects were associated with changes in the type I IFN response in the brain,
reduced viral replication in the periphery, and the stabilization of the blood-brain barrier
(BBB). Our study reveals important age-dependent differences in the innate immune re-
sponse to HSV-1 infection and suggests a contribution of the BBB and the brain paren-
chyma in mediating the increased susceptibility to HSV-1 infection observed in the new-
born. These results could provide the basis for potential new therapeutic strategies for
life-threatening HSV-1 infection in newborns.

IMPORTANCE Herpes simplex virus (HSV) is a ubiquitous human pathogen affecting
50 to 80% of the population in North America and Europe. HSV infection is com-
monly asymptomatic in the adult population but can result in fatal encephalitis in the
newborn. Current treatment with acyclovir has improved mortality in the newborn; how-
ever, severe neurologic sequelae are still a major concern following HSV encephalitis. For
this reason, there is a critical need to better understand the underlying differences in
the immune response between the two age groups that could be used to develop
more effective treatments. In this study, we investigated differences in the innate im-
mune response to viral infection in the brains of newborn and adult mice. We found
that, similar to humans, newborn mice are more susceptible to HSV infection than the
adult. Increased susceptibility was associated with dampened innate immune responses
in the newborn brain that could be rescued by administering interferon beta.
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Herpes simplex virus (HSV) is a ubiquitous human pathogen affecting 50 to 80% of
the population in North America and Europe (1, 2). HSV establishes a lifelong

infection by remaining latent in the trigeminal ganglia and periodically reactivating (3,
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4). Disease outcomes of HSV infection can range from asymptomatic viral shedding to
life-threatening conditions, including herpes simplex encephalitis (HSE) and multiorgan
infection through hematogenous spread affecting multiple organs, resulting in dissem-
inated disease (5). Despite the high seroprevalence of HSV in the adult population,
these more severe forms of disease are rare. Conversely, newborns are particularly
susceptible to severe disease, with 50% of those infected developing HSE or dissemi-
nated disease (6). HSV-1 is the most common etiological agent of sporadic viral
encephalitis (7) and has a higher risk of transmission in the newborn than HSV-2 (5). The
striking difference in disease outcomes between newborns and adults suggests an
age-dependent susceptibility to infection associated with the host immune response.

Several in vitro and in vivo studies have pointed to the type I interferon (IFN)
response as a critical pathway involved in the early immune response to infection
(8–10). Multiple pattern recognition receptors, such as toll-like receptor 3 (TLR-3) (11)
and TLR-9 (12), as well as their downstream effectors, have been shown to be involved
in controlling viral replication in the central nervous system in murine models of
infection (13). Importantly, human genetic studies have linked multiple mutations in
the type I IFN pathway to the high incidence of HSE in children and adults (14–16).
However, the high rates of severe disease observed in the newborn likely cannot be
entirely attributed to inborn errors.

Here, we show that interferon �/� receptor (IFNAR) signaling provides protection
against infection in the adult but is insufficient to protect the newborn. Increased
susceptibility in the newborn was associated with differential basal levels of type I IFN
response components in the brain. These differences did not reflect a global down-
regulation of this pathway in the brain. While certain components, such as IFNAR, were
found to be downregulated in the newborn, other components of this pathway showed
no difference or were actually higher in the newborn. Most interestingly, we found that
treatment with exogenous interferon beta (IFN-�) completely protected the newborn
from infection. Increased survival was associated with the upregulation of cGAS in the
brain parenchyma, delayed spread to the central nervous system (CNS), and stabiliza-
tion of the blood-brain barrier during disseminated disease.

RESULTS
IFNAR signaling protects the adult brain from HSV infection but is insufficient

for protection in the newborn. To determine the role of IFNAR signaling during HSV-1
infection of the CNS in the newborn and the adult, we inoculated wild-type (WT) and
IFNAR knockout (IFNARKO) newborn and adult mice with 104 PFU of WT HSV-1 strain
KOS intracranially (i.c.). WT adult mice were highly resistant to infection, with only one
mouse succumbing to infection, whereas all IFNARKO adults died, on average, 5 days
postinfection (Fig. 1A). IFNARKO adult mice had high viral loads at mortality, while WT
adult mice had undetectable viral loads in the brain at day 14. The single WT adult
mouse that died prior to the experimental endpoint at day 14 had viral titers 6-fold
lower than those of IFNARKO mice (Fig. 1B). Conversely, the survival of WT mice
decreased to 17% in the WT newborn, while IFNARKO newborn mice displayed 100%
mortality (Fig. 1C). Interestingly, there was a significant difference in survival between
WT and IFNARKO newborn mice, with a median difference of 1.75 days, suggesting that
IFNAR signaling prolongs survival in the newborn but is insufficient to provide protec-
tion from mortality. Viral titers were not significantly different at mortality between WT
and IFNARKO newborn mice (Fig. 1D).

The type I IFN response is differentially regulated throughout development.
We next investigated the possibility that increased susceptibility to HSV-1 in the
newborn was the result of differences in the basal levels of cellular proteins in the type
I IFN response pathway in the newborn brain compared to that of the adult. Notably,
IFNAR levels were 7-fold lower in the 7-day-old brain than in the adult (Fig. 2A),
consistent with prior reports (17). Interestingly, IFNAR steadily increased during the first
weeks of life and was already 4-fold higher in the 14-day-old-brain and not significantly
different from the adult at weaning age (20 days old [P20]) (Fig. 2A). We observed a
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similar pattern of expression for protein kinase R (PKR), a major IFN-stimulated gene
(ISG) known to play a crucial role in controlling HSV replication, with a 4-fold increase
between the newborn and the adult brain (Fig. 2A). Importantly, our results did not
suggest a global downregulation of the type I IFN response components in the
newborn brain. The protein level of TLR-3, which recognizes double-stranded RNA and
is upstream of IFNAR, was 2-fold higher in the newborn brain than in the adult (Fig. 2A).
This finding is in agreement with previous reports showing the important role of TLR-3
during neurodevelopment (18). STAT1, the transcription factor directly downstream of
IFNAR, was present in P7 newborns at levels 3-fold higher than that in the adult brain
(Fig. 2A). STAT1 is expressed as two active splicing variants, STAT1� and STAT1�,
involved in type I IFN signaling (19). Finally, cGAS, a major nucleic DNA sensor, did not
display differences in levels across the four age groups (Fig. 2A).

The type I IFN response to HSV-1 infection is diminished in the newborn
compared to that in the adult. We next explored whether the differential regulation
of the basal levels of the type I IFN response components in the newborn brain
correlated with an impaired response to HSV-1 infection. We monitored IFN-� mRNA
levels in the brains of mock- and HSV-1-infected newborn and adult mice following
intracranial challenge by quantitative reverse transcription-PCR (qRT-PCR). IFN-� mRNA
levels were unchanged 6 h postinfection (hpi) but were 6-fold higher in the adult brain
24 hpi and continued to increase 30-fold by 72 hpi (Fig. 2B). Interestingly, newborn
mice failed to upregulate IFN-� mRNA expression following intracranial challenge early
during infection but displayed surprisingly high levels of IFN-� mRNA with an average
186-fold increase in the brain 72 hpi (Fig. 2C). This time point corresponds with the
onset of mortality in the newborn, where viral titers in the brain can be as high as 108

PFU/g of tissue (Fig. 1D), which suggests the newborn brain is capable of inducing high
levels of type I IFN in response to a strong stimulus.

A B

C D

Adult

7-day-old newborn

FIG 1 IFNAR protects against mortality and decreases viral replication during HSV-1 CNS infection in the adult but
only prolongs survival in the newborn. (A and B) Survival (A) and viral titer of brains at mortality or experimental
endpoint at day 14 (B) of adult WT or IFNARKO mice inoculated i.c. with 104 PFU of HSV-1 KOS. d.p.i, days
postinfection. (C and D) Survival (C) and viral titer of brains at mortality or day 14 (D) of 7-day-old (P7) WT or
IFNARKO mice inoculated i.c. with 104 PFU of HSV-1 KOS. (*, P � 0.05; **, P � 0.01; ***, P � 0.001; ****, P � 0.0001;
ns, not significant. All error bars represent SEM.)
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A major feature of the type I IFN response is the upregulation of its different
components in response to viral infection. We investigated whether increased suscep-
tibility to HSV-1 infection in the newborn was also associated with differential regula-
tion of the type I IFN pathway in response to infection. We collected brain tissue from
newborn and adult mice at different time points following intracranial infection and
determined protein levels of relevant components of this pathway by Western blotting.
We found that IFNAR1 levels doubled in the adult brain after only six 6 h postinfection
but did not significantly change in the newborn brain (Fig. 3A and B). IFNAR1 levels
decreased 24 h postinfection in the adult and the newborn, consistent with a previously
described negative feedback loop that prevents sustained IFNAR signaling (20, 21)
(Fig. 3A and B). STAT1 levels also increased 2-fold in the adult brain 6 h postinfection
but remained the same in the newborn brain (Fig. 3C and D). Interestingly, no
significant changes were detected in PKR or cGAS expression throughout infection in
the newborn and adult brain besides a decrease in PKR levels at 24 h (Fig. 3E to H).

Exogenous IFN-� treatment completely protects the newborn from dissemi-
nated disease. Our findings suggested that increased susceptibility in the newborn
was associated with decreased basal levels of IFNAR1 and PKR in the brain, a failure to
induce IFN-� production, and the inability to mount an effective type I IFN response in
the brain. From the observation that IFNAR signaling prolonged survival in the newborn
but failed to provide protection, we hypothesized that the administration of exogenous
IFN-� could be used to modulate the innate immune response in the newborn and
provide protection against HSV-1 infection.

To test this hypothesis, we switched to a more physiologically relevant model of
infection that better models HSV-1 dissemination to the brain in a natural infection.
Although HSV-1 infection in the adult brain is thought to occur through transneural
spread from peripheral ganglia, data from neonatal HSV-1 infections suggest that

P7 P14 P20 Ad
IFNAR1

cGAS

PKR

TLR-3

STAT1

GAPDH

A

B C

FIG 2 Type I IFN response components are differentially expressed in the brain throughout develop-
ment. (A) Representative immunoblots (left) and densitometry (right) of whole-brain homogenates from
uninfected 7-day-old (P7), 14-day-old (P14), 20-day-old (P20), and adult (Ad; 8- to 10-week-old) mice.
Protein levels of IFNAR1 and PKR were significantly lower in 7-day-old mice and gradually increased
during the first weeks after birth to adult levels. TLR-3 and STAT1 (STAT1� [91 kDa] and STAT1� [84 kDa])
protein levels were higher in 7-day-old mice than in other age groups. (B and C) IFN-� mRNA levels
quantified by qPCR following i.c. inoculation with 104 PFU HSV-1 (KOS) of P7 newborn (B) and adult (C)
mice at different time points. Samples were normalized to GAPDH gene expression for each age group.
(N � 3 to 6 for each experiment. *, P � 0.05; **, P � 0.01; ***, P � 0.001; ****, P � 0.0001. All error bars
represent SEM.)
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hematogenous spread during primary infection is the main route of infection in the
newborn (22, 23). We used intraperitoneal (i.p.) inoculation to replicate hematogenous
spread in the newborn (22). WT and IFNARKO newborn mice were infected i.p., and,
similar to IC inoculation, IFNAR1 signaling prolonged survival but failed to protect the
newborn. Newborn mice lacking IFNAR1 had a 100% mortality rate with a median
survival of 2.75 days, while newborn WT mice had an 83% mortality rate with a median
survival of 7.75 days (Fig. 4A). Interestingly, although viral titers in peripheral organs
were around 5 orders of magnitude higher in IFNARKO mice, there was no difference
in viral titers in the brain between WT and IFNARKO mice at mortality (Fig. 4B).

Type I IFNs (IFN-� and IFN-�) are the main cytokines induced by the type I IFN
response and the cognate ligands of IFNAR (24). IFN-� is one of the most bioactive
members of this family and is encoded by a single gene, compared to 14 and 13 for all
the IFN-� variants in mice and humans, respectively (25, 26). IFN-� previously was used
to treat several different diseases, including multiple sclerosis (MS) (27, 28), chronic
hepatitis C infection (29–31), and some forms of cancer (32). We hypothesized that
since insufficient IFNAR signaling correlated with decreased survival in the newborn,
administering exogenous IFN-� provides protection against HSV-1 infection in the
newborn. To test this, we administered daily doses of 10,000 IU IFN-� or vehicle i.p. to
newborn WT mice starting the day before infection. We then challenged these mice
with 10,000 PFU HSV-1 (KOS) i.p. IFN-� treatment provided complete protection from
HSV-1 infection in the newborn (Fig. 4C). Phosphate-buffered saline (PBS)-treated WT
newborns displayed increased survival compared to that of untreated WT newborns
(Fig. 4A), which in part could be due to decreased dehydration from the administration
of fluids (PBS) during infection. With the exception of one spleen, viral loads were
undetectable in all peripheral organs and the brain 14 days postinfection in newborn
mice treated with IFN-� (Fig. 4D). To ensure IFN-� was acting through the canonical
type I IFN pathway, we repeated the same experiment using newborn IFNARKO mice.
IFN-� treatment did not provide any survival advantage to IFNARKO compared to
vehicle-treated mice (Fig. 4E) and did not affect replication in the periphery or the brain

A B C D

E F G H

FIG 3 Type I IFN response components are rapidly upregulated in the adult but not in the newborn brain following HSV-1 infection. (A to H) Representative
immunoblots (left) and densitometry (right) of IFNAR1 (A and B), STAT1 (C and D), cGAS (E and F), and PKR (G and H) in the brains of newborn and adult mice
following i.c. inoculation with 104 PFU HSV-1 analyzed by Western blotting at different time points. Samples were normalized to GAPDH levels for each age
group at each time point. Significance denotes comparison of normalized values to the corresponding mock infection for each time point and age group.
(N � 3 to 4 for each experimental condition. *, P � 0.05; **, P � 0.01; ***, P � 0.001; ****, P � 0.0001. All error bars represent SEM.)
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at the time of mortality (Fig. 4F), confirming an IFNAR1-dependent role for increased
survival in mice treated with IFN-�.

IFN-� treatment alters the type I IFN response pathway in the brain paren-
chyma and reduces peripheral viral replication. We wanted to determine the extent
to which exogenous IFN treatment controls peripheral viral replication and induces
changes in the type I IFN pathway in the brain. To test this, we treated naive newborn
WT mice with IFN-� or vehicle for 3 days and then collected brain tissue to analyze
changes in type I IFN component levels. We found that peripheral IFN-� treatment
induced a significant upregulation of cGAS in the newborn brain (Fig. 5A). We observed
a trending increase in the levels of IFNAR1 and STAT1 following IFN-� treatment, similar
to our findings in the adult brain following infection (Fig. 3B and D). These results
suggest that IFN-� treatment has an effect on the brain parenchyma and is modulating
the type I IFN response in the newborn brain. We repeated the same experiment using
IFNARKO mice and found no difference in any of the type I IFN components analyzed,
indicating these changes are IFNAR1 dependent (Fig. 5B).

Our results suggest that IFN-� treatment provides protection in the newborn by
modulating the type I IFN response in the brain. To determine whether IFN-� treatment
blocked viral replication in the brain or was preventing the spread of HSV-1 to the CNS
by reducing viral replication in the periphery, we tracked viral replication in the
periphery and the brain following i.p. inoculation of newborn WT mice. IFN-� treatment
significantly reduced viral loads in the liver, lungs, and spleen at days one and three
postinfection (Fig. 5C and D and E). Interestingly, viral loads in the periphery decreased
over time in both vehicle- and IFN-�-treated mice but increased over time in the brain
of vehicle-treated mice (Fig. 5F). Even though we were able to detect HSV-1 in the CNS
of vehicle-treated mice as early as day one postinfection, we could not consistently
detect HSV-1 in the CNS of IFN-�-treated mice until day five postinfection, with the
exception of one mouse with detectable levels 1 day postinfection (Fig. 5F). Although

IP inoculation IP inoculation

IP inoculation

A B C

D E F

FIG 4 Recombinant murine IFN-� treatment protects the newborn from disseminated HSV-1 infection in an IFNAR-dependent manner. (A and B) Survival (A)
and titer at mortality (B) of newborn WT or IFNARKO mice inoculated i.p. with 105 PFU of HSV-1 KOS. IFNAR expression prolonged survival of newborn mice
but failed to protect against mortality or control viral replication in the CNS. (C and D) Survival (C) and titer at mortality (D) of newborn WT mice inoculated
i.p. with 105 PFU of HSV-1 KOS and given daily doses of 104 IU of recombinant murine IFN-� or vehicle control (PBS). (E and F) Survival (E) and titer at mortality
(F) of newborn IFNARKO mice inoculated i.p. with 105 PFU of HSV-1 KOS and given daily doses of 104 IU of recombinant murine IFN-� or vehicle control (PBS).
(*, P � 0.05; **, P � 0.01; ***, P � 0.001; ****, P � 0.0001. All error bars represent SEM.)

Giraldo et al. ®

May/June 2020 Volume 11 Issue 3 e00921-20 mbio.asm.org 6

https://mbio.asm.org


viral replication was decreased in the periphery following IFN-� treatment com-
pared to that of mock treatment, viral loads overall remained high in peripheral
organs, particularly during the early stages of infection. However, we observed
significantly decreased CNS invasion of the virus relative to that of vehicle-treated
mice. Importantly, active viral replication in the brains of IFN-�-treated mice later in
infection suggests that changes previously observed in the IFN pathway (Fig. 5A) in
response to IFN treatment play a role in controlling viral replication in the brain and
improving overall survival.

IFN-� treatment stabilizes the blood-brain barrier during HSV-1 disseminated
disease in the newborn. The delay in HSV-1 spreading to the newborn CNS during
disseminated disease led us to investigate how IFN-� treatment affects the blood-brain
barrier (BBB). Although IFN-� is used in MS for its effects as an immunomodulator,
mounting evidence suggests that the stabilization of the BBB is also crucial for IFN-�
effectiveness in controlling MS symptoms (33, 34). IFN-� also was shown to play an
important role in BBB modulation during infection of West Nile virus infection of the
CNS after hematogenous dissemination (35–37). We first studied whether disseminated
HSV-1 infection led to increased permeability of the BBB in the newborn. To study BBB
permeability, we used an assay based on the infiltration of sodium fluorescein (NaF)
from the periphery to the CNS and determined a BBB permeability index by normalizing
fluorescein intensity in the brain parenchyma to fluorescein intensity in the serum. We
found that disseminated HSV-1 infection significantly increases BBB permeability 1 day
postinfection and continues to increase as infection progresses (Fig. 6A).

We next determined whether IFN-� treatment alters BBB permeability in the context
of disseminated HSV-1 infection. There was no significant difference in BBB permea-
bility during the early stages of infection, although we saw a trend at day three
postinfection. By 5 days postinfection, IFN-� treatment significantly stabilized the BBB
(Fig. 6B). These results suggest that peripheral IFN-� treatment prevents the breakdown

A CB

D FE

FIG 5 IFN-� treatment increases levels of cGAS in the newborn brain in an IFNAR-dependent manner and delays neuroinvasion during disseminated HSV-1
infection. Representative immunoblots (left) and densitometry (right) of whole-brain homogenates from uninfected WT (A) or IFNARKO (B) newborn mice
treated for 3 days with either 104 IU of mouse IFN or PBS (vehicle-only) control (N � 4 to 8 in each group). Newborn WT mice were inoculated i.p. with 105 PFU
of HSV-1 (KOS) and given daily doses of 104 IU of recombinant murine IFN or vehicle control (PBS). (C to F) Liver (C), lungs (D), spleen (E), and brain (F) were
collected on days 1, 3, and 5 postinfection, and viral loads were determined by standard plaque assay. (*, P � 0.05; **, P � 0.01; ***, P � 0.001; ****, P � 0.0001.
All error bars represent SEM.)
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of the blood-brain barrier during disseminated HSV-1 infection in the newborn and may
explain, in part, the neuroprotective effects of IFN-� treatment in newborns.

DISCUSSION

Neonatal HSV-1 infections commonly result in life-threatening encephalitis or dis-
seminated disease (5). This is in stark contrast to adult HSV-1 infections, which are
largely asymptomatic or result in benign mucocutaneous disease. Several studies have
aimed at studying age-dependent differences in the immune response to HSV-1
between newborns and adults (17, 38–43), but our understanding of the significant
difference in disease outcomes in this population remains limited. Several promising
candidates for an effective HSV vaccine have failed to show efficacy in clinical trials (44,
45). For this reason, alternative strategies focusing on modulating the immune re-
sponse to neonatal HSV-1 infection have been proposed (42, 46, 47). The development
of effective immunomodulatory therapies for neonatal HSV-1 infection requires a
deeper understanding of the mechanisms involved in mediating the distinct immune
responses found in the newborn.

In our study, we used a murine model to study age-dependent differences in the
type I IFN response to HSV-1 infection. Our model replicated the age-dependent
susceptibility to HSV-1 infection observed in humans, as we previously demonstrated,
showing a clear survival advantage in the adult relative to newborns (39). Importantly,
these previous studies done with 129s mice suggested no survival advantage in WT
newborns compared to newborns lacking IFNAR1. However, our results suggest that in
C57BL/6j mice IFNAR1 signaling prolongs survival but still fails to protect the newborn

Astrocyte
BBB 

permeabilization

Astrocyte
BBB 

permeabilization

Low IFN levels High IFN levels

Endothelium

Pericyte

Low IFN levels High IFN levels

Endothelium

Pericyte

A B

C

FIG 6 HSV-1-induced breakdown of the blood-brain barrier during disseminated disease in the newborn is prevented by
IFN-� treatment. (A) Newborn WT mice were inoculated i.p. with 105 PFU of HSV-1 (KOS) or mock infected. Serum and brain
were collected 1 h after 2 mM NaF i.p. injection at the indicated time points, and the blood-brain barrier permeability index
was determined as the normalized ratio of brain fluorescence and serum fluorescence. (B) Newborn WT mice were
inoculated i.p. with 105 PFU of HSV-1 (KOS) and given daily doses of 104 IU of recombinant murine IFN-� or vehicle control
(PBS) starting the day before infection. The blood-brain barrier permeability index was determined using the same
procedure. (C) Model for IFN-dependent increased susceptibility to HSV-1 infection in the newborn. (*, P � 0.05; **,
P � 0.01; ***, P � 0.001; ****, P � 0.0001. All error bars represent SEM.)
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from HSV-1 CNS infection. This highlights important, previously described differences in
the immune response between commonly used laboratory mouse strains (48).

TLR levels are tightly regulated in the brain during development, as they have been
shown to regulate neurogenesis (18, 49), which can have important implications in the
immune response to viral infection of the CNS during the early stages of life, making
newborns particularly susceptible to pathogens that infect the CNS. Our results suggest
that the levels of several other components of the type I IFN response are differentially
modulated in the newborn brain throughout development, suggesting an immuno-
logically distinct environment. These differences do not necessarily reflect a global
downregulation of this pathway, as some components, such as TLR-3 and STAT1, were
found to be higher in the newborn brain, while IFNAR1 and PKR were downregulated.
Notably, our findings showing TLR-3 being upregulated in the newborn brain corre-
spond with previous studies indicating the critical role for TLR-3 in neurodevelopment
(18, 50, 51). Our data also demonstrate that the transition from the newborn to the
adult innate immune signaling profile does not switch over immediately after the
newborn period but rather follows a progressive development until around weaning
age.

Intrinsic and cell-mediated innate immune responses (52, 53), as well as the adaptive
immune response (54, 55), have been shown to be involved in controlling initial HSV
replication during acute infection, regulating the establishment of latency and, later,
virus reactivation. The apparent immunodeficiency observed in the newborn has
largely been attributed to the lack of antigenic exposure resulting in ineffective B and
T cell-mediated immunity, as well as their reliance on passive immunity (56, 57).
However, more data are accumulating to suggest several distinct differences in the
newborn immune response to HSV infection that lead to increased severity and
susceptibility to disease compared to that of adults (42). Although many of these
studies have investigated the mechanisms involved in modulating the distinct adaptive
immune responses observed in the newborn, little is known about the regulation of the
innate immune response during the early stages of development. Studies looking at
the distinct bias for Th2 over Th1 responses in the newborn have shown that these loci
are epigenetically regulated during development and favor the expression of Th2-
associated genes (58–61). These findings provide an interesting hypothesis for the
regulation of the type I IFN response at the transcription level that could account for
the protein-level differences we found in our studies. Importantly, all of these findings
seem to reflect a careful balance in the regulation of the immune response during the
early stages of development. These differences may be crucial for proper neurodevel-
opment (62–65) and, as more recent studies have suggested, the establishment of the
microbiome by regulating the colonization of multiple commensal organisms (66–68).

Early work focusing on the increased susceptibility of newborn mice to HSV infec-
tion suggested that the transfer of interferon-stimulated cells had protective effects on
the newborn (69, 70). However, there was insufficient understanding of the effects
these cells or the increased interferon levels have beyond a survival advantage in
infected newborn mice. Here, we show that supplementing the low IFN-� production
in newborns by treatment with recombinant murine IFN-� resulted in both reduced
replication in the periphery and direct effects on immune signaling in the CNS of
treated mice (Fig. 5). IFN-� treatment induced the upregulation of cGAS, an important
interferon-stimulated gene in the immune response to HSV-1 (8), in the newborn brain
parenchyma. While changes in IFNAR1 and STAT1 were not statistically significant, the
trending increase could be a reflection of the complex dynamics governing the
regulation of these innate immune sensors when IFNAR signaling is initiated (20, 21).
These results suggest that peripheral IFN-� treatment has a direct effect modulating
the type I IFN response in the brain and induces an antiviral state. These data suggest
that while decreased replication in the periphery could contribute to increased survival,
the observed changes in the type I IFN response in the brain parenchyma also likely
contribute to controlling viral replication in the CNS and increased survival.

HSV entry into the CNS during neonatal infection has been shown to be most
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commonly the result of hematogenous spread, which suggests a direct involvement of
the BBB in neonatal HSV pathogenesis (22). The BBB is composed mainly of endothelial
cells that express multiple tight-junction proteins as well as other supporting cells, such
as pericytes and the end-feet of astrocytes (71). It plays an important role during viral
infection both in preventing neuroinvasion and regulating the infiltration of immune
cells into the brain (72, 73). Previous studies have shown that the BBB is compromised
during HSE following active viral replication in the brain parenchyma, but little was
known about the dynamics of this process (74–77). Here, we demonstrate that BBB
permeability increases as early as 1 day postinfection in the newborn during dissem-
inated disease, as evidenced by our sodium fluorescein assay. Furthermore, our results
suggest that beyond its role in regulating the type IFN response in the brain paren-
chyma, IFN-� treatment has a direct effect in stabilizing the BBB during disseminated
infection in the newborn, resulting in delayed neuroinvasion. While the baseline
permeability of the BBB is similar between newborns and adults, our data suggest that
the increased susceptibility of the newborn brain to viral neuroinvasion is due to the
dynamic immune regulation of the BBB during infection.

Previous studies have shown that the choroid plexus, a specialized epithelium in the
brain ventricles responsible for producing the cerebrospinal fluid (CSF), has an age-
dependent susceptibility to HSV-1 infection (17). Adult choroid plexus is resistant
to HSV-1 infection, while the newborn is highly susceptible. Importantly, this age-
dependent tissue-specific susceptibility to infection was found to be dependent on
IFNAR1 expression. These findings suggest that the blood-CSF barrier also is involved
in regulating the entry of HSV-1 into the brain. In this case, direct infection of choroid
plexus epithelial cells also could be a mechanism for entry into the brain. The reliance
on IFNAR signaling for resistance to HSV-1 suggests that IFN-� treatment in our study
is also protecting other specific tissues, such as the choroid plexus, from becoming
infected in the newborn. While our study demonstrates dynamic changes to the BBB
during IFN treatment, it is likely that IFN is also influencing viral replication in other
tissues.

Overall, our studies reveal important differences in the type I IFN response in the
brains of newborn and adult mice. However, more rigorous and high-throughput
approaches are necessary to understand the complexity of the differences in the
immune response between these two age groups. Importantly, although our model
seems to reflect the age-dependent susceptibility to HSV observed in humans, mouse
models have significant limitations when it comes to translating findings for human
applications (78).

Finally, our results suggest a model (Fig. 6C) in which increased susceptibility to
HSV-1 infection in newborns is associated with insufficient type I IFN signaling. Low
levels of IFN-� production in response to infection combined with lower basal levels of
IFNAR1 in the newborn lead to impaired type I IFN signaling, resulting in the break-
down of the BBB, rapid spread of HSV-1 to the CNS, and uncontrolled viral replication
in the brain parenchyma. In the case of the adult, where IFN-� production is rapidly
induced, or when IFN-� is supplemented to the newborn, HSV-1 neuroinvasion is
prevented by the stabilization of the BBB, and increased type I IFN signaling in the CNS
results in the clearance of the virus from the brain. The protective adult phenotype is
recapitulated in the newborn with IFN-� supplementation in our model. Work from
others has shown that the T-cell response in newborns can be stimulated to
produce a more Th1-weighted response, as seen in the adult (79, 80). Our data
suggest that innate immune signaling pathways can be similarly modulated to drive
an adult immune phenotype in the newborn brain. As a result, our studies denote
a potential new strategy for the treatment of neonatal HSV-1 infection by modu-
lation of the innate immune response and also serve as a basis to further our
understanding of the intrinsic differences in the innate immune response between
the newborn and the adult.
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MATERIALS AND METHODS
Viruses and cells. The HSV-1 strain KOS was obtained from laboratory stocks compiled by Patricia

Spear (Northwestern University, Chicago, IL). Vero cells (CCL-81; ATCC) were used to propagate and titer
the virus. Cells were tested for mycoplasma using the MycoAlert mycoplasma detection kit (LT07-118;
Lonza). Vero cells were cultured in Dulbecco’s modified Eagle medium (DMEM) plus 10% (vol/vol) fetal
bovine serum and 1% penicillin-streptomycin. Plaque titrations were performed using standard serial
dilution methods. Viral stocks were diluted to the appropriate concentration in PBS containing 1%
glucose and 1% heat-inactivated serum.

Murine model of HSV infection. C57BL/6J (WT; 000664) and B6(Cg)-Ifnar1tm1.2Ees/J (IFNARKO;
028288) mice were purchased from Jackson Laboratories and subsequently bred at Northwestern
University. Adult male mice were inoculated at 8 to 10 weeks of age, and newborn mice were inoculated
at 7 days of age, which immunologically corresponds most closely to humans at birth (58). Only adult
males were used for survival experiments to preserve female breeders needed to obtain newborn mice
used in experiments. Sex was not determined for newborn mice due to their young age.

For intracranial (i.c.) inoculations, either adult or newborn mice were inoculated with 104 PFU in a
total volume of 10 �l using a 25-�l positive displacement syringe (80401; Hamilton Company) and a
26-gauge needle. The same dose of virus was used based on the similar brain size between newborns
and adults. The needle was placed in the approximate region of the hippocampus, equidistant between
the lambda and bregma, through the left parietal bone lateral to the sagittal suture. Infected mice were
monitored daily for signs of disease and their weight recorded. Those displaying severe symptoms, or
30% weight loss, were immediately euthanized. Brain tissue was collected at the indicated time points
or experimental endpoint (14 days postinfection).

For intraperitoneal (i.p.) inoculations, newborn mice were inoculated with 105 PFU of HSV-1 in a total
volume of 100 �l using a 1-ml U-100 syringe (28 gauge by 1/2 inch). Infected mice were monitored daily
for signs of disease and their weight recorded. Those displaying severe symptoms, or 30% weight loss,
were immediately euthanized. Lung, liver, spleen, and brain tissues were collected at the indicated time
points or experimental endpoint (14 days postinfection). Tissues were weighed and homogenized in
DMEM with 1% penicillin-streptomycin and sonicated.

Immunoblots. Brain tissue was collected from newborn and adult mice and homogenized in T-PER
tissue protein extraction reagent (78510; ThermoFisher) supplemented with Halt protease and phospha-
tase inhibitor cocktail (78440; ThermoFisher). Western blot analyses were performed on tissue lysates
using antibodies against IFNAR1 (ab124764; Abcam), PKR (ab45427; Abcam), cGAS (ABF124; Millipore),
TLR-3 (6961; Cell Signaling), STAT1 (9172; Cell Signaling), and an anti-glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) antibody (ab8245; Abcam) as a loading control. A 1:1,000 dilution was used for
all primary antibodies. Blots were visualized using the LI-COR Odyssey system, and densitometric analysis
was performed using LI-COR Image Studio Lite 5.2.5.

Quantitative RT-PCR. Total brain RNA was extracted using TRIzol reagent (15596026; ThermoFisher)
according to the manufacturer’s specifications. cDNA was made using a high-capacity cDNA reverse
transcription kit (4368814; Applied Biosystems). Quantitative PCR was performed using PowerUp SYBR
green master mix (A25742; ThermoFisher) and the Step One Plus real-time PCR system (Applied
Biosystems) by following the manufacturer’s specifications. Transcript levels were normalized to those of
gadph. The following primers were used: ifnb sense, 5=-AAGAGTTACACTGCCTTTGCCATC-3=; ifnb anti-
sense, 5=-CACTGTCTGCTGGTGGAGTTCATC-3=; gapdh sense, 5=-TGGTATCGTGGAAGGACTCATGAC-3=; and
gapdh antisense, 5=-ATGCCAGTGAGCTTCCCGTTCAGC-3=.

Recombinant IFN-� treatment. Recombinant mouse IFN-beta protein (8234-MB-010; R&D Systems)
was reconstituted in endotoxin-free Dulbecco’s PBS (TMS-012-A; Millipore) plus 0.1% bovine serum
albumin. Newborn mice were treated daily with 10,000 IU IFN-� starting at 6 days of age and i.p. infected
with HSV-1 at 7 days of age. IFN-� was administered intraperitoneally in a volume of 100 �l using a 1-ml
U-100 syringe (28 gauge by 1/2 inch).

Blood-brain barrier permeability assay. The protocol used to assess blood-brain barrier permea-
bility was adapted from the protocol previously described by Devraj et al. (81). Briefly, 100 �l 2 mM
sodium fluorescein (F6377-100G; Sigma) was administered intraperitoneally to newborn mice at the
indicated time points using a 1-ml U-100 syringe (28 gauge by 1/2 inch). After 1 h, blood was collected
using heparinized capillaries, and brain tissue was collected following perfusion with cold PBS. Blood
samples were centrifuged, and serum was collected for fluorescein intensity measurement. Brain tissue
was flash frozen and then thawed and homogenized in sterile PBS. Homogenized brain samples were
centrifuged, and the supernatant was collected for fluorescein intensity measurement. Fluorescein
intensity was measured in a VICTOR Nivo multimode microplate reader (Perkin Elmer) at an excitation
wavelength of 480 nm and an emission wavelength of 530 nm. Serum and brain samples from sham-
treated newborn mice were used as blanks for all samples. The blood-brain barrier permeability index
was calculated, using raw fluorescence units (RFUs), as permeability index (ml/g) � (tissue RFUs/g tissue
weight)/(serum RFUs/ml serum).

Statistics. All statistical analyses were performed using GraphPad Prism 7. Survival curves were
analyzed using log rank (Mantel-Cox) test. Densitometry data were analyzed using a one-way analysis of
variance and the Holman-Sidak multiple-comparison test. All other data were analyzed using two-tailed
unpaired Student’s t test. Log-transformed values were used to analyze viral titers. *, P � 0.05; **,
P � 0.01; ***, P � 0.001; ****, P � 0.0001. All error bars represent standard errors of the means (SEM).

Study approval. Animal care and use in this study were in accordance with institutional and NIH
guidelines, and all studies were approved by the Northwestern University Animal Care and Use
Committee.
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