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Abstract: Selaginella doederleinii Hieron. (S. doederleinii) is a traditional herb that is widely used
in China to treat several ailments, but mainly cancer. Studies have been carried out to determine
the phytochemicals ascribed to its pharmacological activity. However, both phytochemical and
pharmacological profiles have not been fully explored as few compounds have been reported. This
study evaluated the flavonoid content of the ethanol extract and its four fractions (petroleum ether,
dichloromethane, ethyl acetate, and n-butanol) together with their antioxidant activity (DPPH and
FRAP assays). Further, the antiproliferative activity was evaluated. Two new secondary metabolites
(1 and 3) were isolated from S. doederleinii, which comprised of an apigenin skeleton with a phenyl
attached at C-8 of ring A and an acetyl group. Additionally, other known metabolites 2 and 4–16
were isolated, whereby compounds 2, 4, 5, 8, 12, 15, and 16 were reported for the first time in this
species. These compounds were evaluated for their antioxidative potentials by both DPPH and FRAP
assays, and for their antiproliferative activities by the MTT assay on three human cancer cell lines:
colon cancer (HT-29), cervical cancer (HeLa), and lung cancer (A549). Compound 7 exhibited the
best activity on the three cancer cell lines (HT-29, HeLa, A549) by inhibiting the rate of growth of the
cancer cells in a dose-dependent manner with IC50 values of 27.97, 35.47, and 20.71 µM, respectively.
The structure–activity relationship of the pure compounds was highlighted in this study. Hence, the
study enriched both the phytochemical and pharmacological profiles of S. doederleinii.

Keywords: Selaginella doederleinii Hieron; antiproliferative; antioxidant; flavonoid; apigenin derivative

1. Introduction

Cancer has persistently remained a global health concern by claiming many human
lives [1]. In some developed countries, cancer incidences and the rate of mortality for
many cancers have been reported to be decreasing. However, in developing countries,
both morbidity and mortality rates are escalating at an alarming rate [2]. Screening and
developing new anticancer chemotherapeutic drugs have remained an urgent approach in
cancer management and mitigation [3]. Additionally, since a number of these phytochemi-
cals’ solubility in water is poor, studies on the administration of plant extracts and pure
isolated compounds to the delivery system are imperative. This would amplify their oral
bioavailability and control the release of the drug payloads [4].

On the other hand, reactive oxygen species (ROS) are implicated in detrimental body
health. They are chemical molecules that enclose oxygen in the form of superoxide hy-
droxyl radicals, peroxides, singlet oxygen, and hydrogen peroxide, which are generated
by biological reactions in humans [5]. The production of ROS is usually in concentrations
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of picomolar and, when produced in excess amounts, they are neutralized in the body by
the antioxidant system [6]. However, sometimes an imbalance between the ROS produc-
tion and antioxidant protection system happens, hence there is oxidative stress [5], which
potentially causes diseases such as diabetes and cancers [7,8]. To mitigate this, the intake
of antioxidants that directly scavenge the free radicals or turn on molecules and enzymes
that stimulate redox homeostasis can protect body cells from ROS-induced damage [9,10].
Natural antioxidants have increasingly attracted research focus as synthetic antioxidants
have been associated with adverse effects on humans [11]. Additionally, anticancer agents
derived from natural resources have been developed and approved to treat various types
of cancer [12]. Therefore, phytochemicals are plant-based chemical constituents that occur
naturally [13]. More than ten thousand phytochemicals have been identified and found
to be of health benefits to humans in treating and reducing the risk of infection from
several diseases [14,15]. Therefore, many researchers are focusing on naturally occurring
phytochemicals for cancer treatment and prevention [3].

Selaginella doederleinii Hieron., commonly referred to as “da ye cai” and “shi shang
bai” [16] in China, belongs to the genus Selaginella and family Selaginellaceae [17,18]. In
China, the herb is distributed in the Guangxi Zhuang Autonomous Region and Yunnan and
Guizhou provinces [19,20]. Traditionally, S. doederleinii has been used to treat cardiovascular
disease [21], cancer [22,23], sore throat, and rheumatoid arthritis [24]. The decoction from
this plant is normally prepared by boiling the whole plant in water. Owing to its traditional
uses, studies evaluating its phytochemical and pharmacological properties have been
carried out. The phytochemical studies of this species have revealed that it is composed
of mainly biflavonoids [18,25], lignans [21], and alkaloids [26]; as well, Zou et al. [19]
reported eight uncommon triflavonoids. Continued phytochemical research has led to the
isolation of compounds with a unique apigenin skeleton structure and a phenyl attached
at C-8 of ring A of the apigenin skeleton and flavonoids [27]. Pharmacological studies
of S. doederleinii have revealed its antiproliferative [28–30], antioxidant [31,32], and anti-
Alzheimer [19] activities. However, both phytochemical and pharmacological profiles of S.
doederleinii have not been fully explored. More studies on the isolation and identification of
novel compounds with significant biological activities are regarded as necessary as only a
few compounds have been reported.

Therefore, this study aimed to explore the phytochemical constituents of S. doederleinii
and evaluate its antioxidant and antiproliferative activities. To this end, the antioxidant po-
tential of the ethanol extract, its fractions, and isolated compounds were evaluated by DPPH
(2,2-diphenyl-1-picrylhydrazyl) and FRAP (ferric reducing antioxidant power) assays. The
antiproliferative activities for both the ethanol extract, its fractions, and isolated compounds
were evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)
assay on three different human cancer cell lines: HT-29, Hela, and A549. Additionally, the
study highlighted the structure–activity relationship of the evaluated compounds.

2. Materials and Methods
2.1. Plant Materials

S. doederleinii plant material was acquired from Bozhou Dianshitang Pharmaceutical
Sales Co., Ltd., which were collected from Zhaotong City (China) and authenticated by Prof.
Guangwan Hu from the Key Laboratory of Plant Germplasm Enhancement and Specialty
Agriculture of Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China. A
botanical specimen (20190710) was deposited at the herbarium of the institute.

2.2. Experimental Reagents and Instruments

Ethanol, petroleum ether, ethyl acetate, dichloromethane, and n-butanol were acquired
from SinoPharm Chemical Reagent Co. Ltd. (Shanghai, China) and the HPLC-grade
solvents (methanol, formic acid, and acetonitrile) were purchased from TEDIA Company
Inc. (Fairfield, CA, USA). Chromatographic gels of ODS (YMC, Tokyo, Japan) and silica
gel (Qingdao Marine Chemical Inc., Qingdao, China) were acquired. YMC-Pack ODS-A
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C18 (YMC, Tokyo, Japan) was used. 1,3,5-tri(2-pyridyl)-2,4,6-triazine (TPTZ), 2,2-diphenyl-
1-picrylhydrazyl (DPPH), and vitamin C were purchased from Sigma-Aldrich Co. (St.
Louis, MO, USA). Human cancer cell lines, human colon adenocarcinoma (HT-29), human
cervical cancer (HeLa), and human lung adenocarcinoma (A549) were procured from
American Type Culture Collection (ATCC, Manassas, VA, USA). HPLC Separation and
purification were done with an Agilent 1100 series system with a YMC-Pack column (ODS-
A, 250 × 10.0 mm I.D). NMR (1D and 2D) analysis were carried out on a Bruker-Avance-600
NMR spectrometer (Bruker, Karlsruhe, Germany). TMS was used as an internal standard.
OD values were obtained on a Tecan Infinite M200 PRO multi-functional microplate reader
(Männedorf, Switzerland). Ultra-pure water for HPLC was obtained from our laboratory
using a Milli-Q system (Millipore, Billerica, MA, USA), Millipore membranes (0.22 µm).

2.3. Extraction and Separation

The dried plant materials (8.0 kg) were extracted by maceration with 75% ethanol
(4 times, 3 days/time) at room temperature. The ethanol extract was evaporated under
reduced pressure to obtain a residue (638.2 g). The obtained ethanol extract was then
suspended in water for liquid–liquid extraction and successively extracted with petroleum
ether (PE), dichloromethane (DCM), ethyl acetate (EA), and n-butanol (n-BuOH) to obtain
their corresponding fractions.

The DCM extract (169.9 g) was subjected to an MCI gel column (MCI gel, 70–150 µm)
to eliminate the dark color by eluting with MeOH-water at a ratio of 50:50, 80:20, and
100:0, and obtained four fractions (Fr. 1–4). Fr. 3 was separated by silica gel column
chromatography (200–300 mesh) and passed with PE: DCM (2:1–1:3), 100% DCM, DCM:
MeOH (20:1–1:1), and MeOH to obtain 13 fractions: A-M. Fr. G was further separated with
MPLC (ODS C18, 5 µm) and eluted with MeOH-water in a ratio from 40:60 to 90:10 for
10.0 mL/min to give 12 subfractions: (Fr. G1-G12). Fr. F4 was separated on RP-HPLC
(71% ACN-H2O, 2.5 mL/min, 280 nm) to obtain compound 14 (0.6 mg) and Fr. F5 (79%
ACN-H2O, 2.5 mL/min, 280 nm) was separated to obtain compound 5 (0.7 mg). Fr. G4
was separated on RP-HPLC (77% MeOH-H2O, 2.5 mL/min, 280 nm) to obtain 9 peaks,
which were further purified (68% ACN-H2O, 2.5 mL/min, 280 nm) to obtain compounds
3 (1.0 mg), 4 (1.0 mg), and 13 (1.4 mg). Fr. G6 was purified by RP-HPLC (72% ACN-H2O,
2.5 mL/min, 280 nm) to give compound 1 (1 mg), 8 (2.1 mg), and 12 (1 mg), and Fr. G7 (70%
ACN-H2O, 2.5 mL/min, 280 nm) gave compounds 6 (1 mg), 15 (1.0 mg) and 16 (1.2 mg). Fr.
G8 was purified by RP-HPLC (85% MeOH-H2O, 2.5 mL/min, 280 nm) to give compounds
7 (0.8 mg) and 9 (1.8 mg). Fr. G10 was purified (80% ACN-H2O, 2.5 mL/min, 280 nm) to
obtain compound 11 (1.9 mg). Fr. H4 was separated (65–70%, MeOH-25 min, 3 mL/min),
obtaining compounds 2 (0.8 mg) and 10 (0.5 mg).

2.4. Determination of the Total Flavonoid Content (TFC)

The TFC analysis was evaluated using the colorimetric method as described [33,34],
with some modifications. Briefly, 80 µL of a diluted sample solution was mixed with
NaNO2 (80 µL 5% w/v) solution and then shaken for 6 min. AlCl3 (80 µL 10% w/v) was
added and allowed to stand for 6 min. Then, NaOH (400 µL 4% w/v) solution was added
and allowed to react for 15 min. Afterward, the absorbance of the reaction mixture was
read at 510 nm with a UV/VIS spectrophotometer (UV-11000, MAPADA, Shanghai, China)
with methanol used as the blank. The TFC of each sample was evaluated in triplicate
and expressed as rutin equivalents, which were determined from a rutin calibration curve
(100–600 µg/mL), and the results were expressed as mg RE/g sample.

2.5. In Vitro Antioxidant Assays
2.5.1. DPPH (2,2-diphenyl-1-picrylhydrazyl) Assay

The DPPH assay of S. doederleinii ethanol extract and four fractions was assessed
as described in [35,36], with some minor modifications. Firstly, the DPPH solution was
prepared with methanol at a concentration of 0.1 mM. Then, 10 µL of prepared samples and
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standards (vitamin C and BHT) of 9.375–250 µg/mL were added to 190 µL of the DPPH
solution in each well of a 96-well plate. The mixture was shaken and incubated in darkness
for 30 min. The absorbance of the reaction mixture was then taken at 517 nm using a
multifunctional microplate reader (Tecan, Infinite M20PRO, Switzerland) with methanol
being used as the blank. The analysis was done in triplicates and the results were expressed
as the inhibition rate (%) and IC50 values. The DPPH radical scavenging activity was then
calculated and expressed as follows:

DPPH radical scavenging activity (%) = [(A0 − A1/A0)] × 100% (1)

where A0 is the control absorbance and A1 is the sample/standard control absorbance.

2.5.2. Ferric Reducing Antioxidant Power (FRAP) Assay

This assay was evaluated on the ethanol extract and its fractions (PE, DCM, EA, and
n-BuOH) of S. doederleinii according to the reported method, with some slight modifica-
tions [37]. Firstly, a working solution, FRAP reagent comprised of 300 mM acetate buffer
of pH 3.6, 20 mM FeCl3·6H2O solution, and 10 mM TPTZ (2,4,6-tri(2-pyridyl)-S-triazine)
solution in a ratio of 10:1:1 (v/v/v), was used. The working solution was then heated to
37 ◦C before use and 190 µL of FRAP working solution was mixed with 10 µL of sample
in a 96-well plate. The mixture was then incubated at 37 ◦C for 10 min. The absorbance
of the mixture was recorded by a microplate reader at a wavelength of 593 nm. The tests
were done in triplicates and a standard curve was established. Eventually, the antioxidant
activities were calculated and expressed as mmol Fe2+/g of the sample.

2.6. Antiproliferative Activity

The antiproliferative activity was performed by the MTT (3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide) method [38], with some modifications. Three human
cancer cell lines, colon cancer (HT-29), cervical cancer (HeLa), and lung cancer (A549), were
tested. The three cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM),
which was supplemented with 10% fetal bovine serum (FBS). The 90 µL cell suspension was
added to each well and then the 96-well cell culture plates were maintained at 37 ◦C in a 5%
CO2 atmosphere for 24 h to culture. Afterwards, 10 µL of samples at different concentrations
(final concentration 6.25, 12.5, 25, 50, and 100 µM) were added to the wells in triplicates and
the positive control was also set up. After incubating for 48 h, 15 µL of MTT (5 mg/mL)
was added to each well and incubated at 37 ◦C for 4 h. Afterwards, 100 mL of DMSO was
then added to each well and shaken for 15 min to dissolve the precipitates formed. The OD
value of each well was measured at 590 nm with a microplate spectrophotometer reader
(Tecan Infinite M200 PRO, TECAN, Männedorf, Switzerland). Then, the IC50 values were
calculated by GraphPad Prism 8.0.1 Software (GraphPad Software Inc., San Diego, CA,
USA).

2.7. Statistical Analysis

All the experiments were performed and data were expressed as mean ± standard
deviation (SD) of triplicate values. Data analysis was performed by SPSS statistics 22 soft-
ware (IBM Corporation, New York, NY, USA) using one-way ANOVA Duncan’s multiple
range test and the significance difference was considered at p < 0.05. The IC50 values were
calculated by GraphPad Prism 8.0 (GraphPad Software Inc, San Diego, CA, USA). Other
software used in this study are: Chemoffice 18.0 (CambridgeSoft Corp, Cambridge, MA,
USA), Origin 2019b (OriginLab Corporation, Northampton, MA, USA), and MestreNova
(Mestrelab Research SL, San Diego, CA, USA).

3. Results and Discussion
3.1. Total Flavonoid Content

With S. doederleinii being used traditionally to treat cancer for decades and flavonoids
having been shown as its main active constituents [25], it was necessary to evaluate its
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total flavonoid content (TFC). The flavonoid content was calculated using the equation,
(y = 0.0013x + 0.0146, R2 = 0.9967), which was obtained by the calibration curve and ranged
from 340.8 ± 1.0 to 72.2 ± 8.7 mg RE/g—with the dichloromethane fraction expressing
the highest content and n-butanol the least, as shown in Figure 1; the order of the other
constituents were: (2) ethyl acetate extract, (3) petroleum ether, and (4) crude extract with
values of 310.3 ± 3.1, 104.2 ± 2.0, and 84.0 ± 3.6 mg RE/g, respectively. As seen from
Figure 1, it could be noted that the TFC values of the DCM and EA fractions were close
in range, with DCM being higher by 1.1 times. On the other hand, ethanolic extracts
of Selaginella tenera and Selaginella inaequalifolia exhibited slightly higher TFC values of
125.6 ± 4.3 and 138.4 ± 2.1 mg RE/g, respectively [39], compared to our ethanol extract
TFC content. The difference in values could be attributed to the extraction methodology
and the geographical locations of the two species [40].
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expressed rutin equivalents (RE) of dry weight sample. EE, ethanol extract; PE, petroleum ether;
DCM, dichloromethane; EA, ethyl acetate; n-BuOH, n-butanol. All the data were expressed as mean
± standard deviation (n = 3). The letters (a–e) denote that the means are significantly different at a
level of p < 0.05 (n = 3) by one-way ANOVA DMRT.

3.2. In-Vitro Antioxidant Potential of S. doederleinii Extracts

The ethanol extract and its fractions were evaluated for their scavenging potential and
expressed different inhibition percentages. From Figure 2, the EA fraction expressed the
highest inhibition percentage (DPPH) at a sample concentration of 250 µg/mL, followed by
n-BuOH, DCM, ethanol extract, and PE with 80.9, 79.7, 69.5, 56.6, and 55.4%, respectively.
The IC50 values for ethanol extract, its fractions, and positive controls were shown in Table 1.
The EA fraction exhibited the best antioxidant activity, followed by DCM according to
their IC50 values, while ethanol extract exhibited the lowest activity. However, the FRAP
assay indicated that the DCM fraction had the highest reducing ability, followed by the
EA fraction with 2.6 ± 0.1 and 1.7 ± 0.0 mmol Fe2+/g, respectively. Our fraction exhibited
a slightly lower antioxidant activity compared to the DPPH assay results reported by
Wang et al. [32]. In both assays, the ethanol extract and PE fraction exhibited the lowest
scavenging activity, while both the DCM and EA fractions depicted strong activities, which
were closely attributed with their TFC yields.
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DCM (dichloromethane), EA (ethyl acetate), and n-BuOH (n-butanol) of S. doederleinii by DPPH assay.

Table 1. Antioxidant activities of ethanol extract of S. doederleinii and its PE, DCM, EA, and n-BuOH
fractions, and positive controls of Vitamin C and BHT evaluated by DPPH and FRAP assays.

Sample DPPH FRAP

IC50 (µg/mL) mmol Fe2+/g

Ethanol extract 187.5 ± 1.3 a 1.1 ± 0.0 c

PE 176.5 ± 0.8 b 0.9 ± 0.1 c

DCM 110.6 ± 1.3 d 2.6 ± 0.1 b

EA 82.1 ± 1.1 e 1.7 ± 0.0 bc

n-BuOH 115.2 ± 1.4 c 1.6 ± 0.0 bc

Vitamin C 5.8 ± 1.9 f 7.8 ± 1.2 a

BHT 5.9 ± 1.6 f Nt

Data were expressed as means ± standard deviation (n = 3). The mean values denoted by letters (a–f) are
significantly different at level p < 0.05 by one-way ANOVA DMRT. Nt denote, not tested.

3.3. Antiproliferative Activity of S. doederleinii Extracts

The antioxidant assays and TFC values revealed that both DCM and EA were the
most active fractions of S. doederleinii when compared to the others. In this regard, both
extracts were evaluated for their antiproliferative activity on three cancer cell lines: HT-29,
HeLa, and A549 at different concentrations ranging from 12.5 to 200 µg/mL. The inhibition
rates are shown in Figure 3, while the IC50 values are shown in Table 2. The inhibition rate
of the solvent was almost zero, which confirmed that the solvent used did not influence
the cytotoxicity of the samples. Additionally, the toxicity investigation revealed that the
solvents did not influence cell viability. The EA fraction exhibited the best antiproliferative
activity against the HT-29 and HeLa cell lines by inhibiting the cell growth rate in a dose-
dependent manner with IC50 values of 55.6 ± 1.3 and 69.2 ± 1.3 µg/mL, respectively. The
DCM fraction exhibited the best activity against the A549 cell line with an IC50 value of
55.9 ± 12.6 µg/mL. Song et al. [41] evaluated the anticancer activities of the extracts of
S. doederleinii collected from different provinces in China against the A549 cancer cell line.
Comparing the activities of the extracts with those of ours, our DCM extract exhibited
better activity than most of the fractions. Our EA fraction exhibited better antiproliferative
activity on the HeLa cancer cell line compared with that reported by Wang et al. [42], which
had an IC50 value of 76.1 ± 1.9 µg/mL. These results explained the traditional use of S.
doederleinii to cure and manage cancers. To this end, flavonoids expressed in the TFC
results could be presumed to play a role in the antiproliferative activity of this species
(both DCM and EA fractions) by suppressing the formation of cancers that emerge from
oxidative stress. Accordingly, for a better understanding and exploration of this species
towards cancer, the DCM fraction was selected for isolation work to identify the responsible
bioactive phytochemicals.
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Figure 3. Antiproliferative activity in inhibition rate (%) at different concentrations of DCM
(dichloromethane) and EA (ethyl acetate) fractions, respectively, against cancer cell lines HT-29,
Hela, and A549 by the MTT assay. The cell growth inhibition rate of the ethanol extract, petroleum
ether, and n-butanol could be expressed at a higher concentration than 200 µg/mL. The solvent’s
inhibition rate was near zero value on all the cell lines. The data were expressed as mean± SD (n = 3).

Table 2. IC50 values of DCM and EA fractions on HT-29, HeLa, and A549.

Fraction
IC50 (µg/mL)

HT-29 HeLa A549

DCM 145.4 ± 3.0 92.5 ± 0.6 55.9 ± 12.6
EA 55.6 ± 1.3 69.2 ± 1.3 112.7 ± 6.7

Data expressed as means ± standard deviation (n = 3).

3.4. Isolation and Structure Elucidation

A phytochemical examination of the DCM fraction of the whole plant of S. doederleinii
using different column chromatography yielded two new compounds (1 and 3). Besides the
new compounds, 14 other known compounds (Figure 4) were isolated and their chemical
structures were determined by comparison of their NMR data (both 1H and 13C), as per
existing literature.

Compound 1 was isolated as a yellow amorphous powder. Its molecular formula
was deduced as C25H20O8, owing to a molecular ion peak observed at m/z 449.1227
[M + H]+ (calculated for 449.1231) in the HR-ESI-MS, as shown in Figure S2, which was
per the 1H NMR and 13C NMR spectroscopic data (Table 3). Compound 1 consisted of
a 1,2,5-trisubstituted benzene ring (ring D) at δH 8.13 (1H, dd, J = 8.7, 2.2 Hz, H-4′′),
7.93 (1H, d, J = 2.2 Hz, H-6′′), and δH 7.20 (1H, d, J = 8.7 Hz, H-3′′). An AA′XX′ coupling
system signal at δH 7.56 (2H, d, J = 8.9 Hz, H-2′, 6′) and δH 6.93 (2H, d, J = 8.9 Hz, H-3′, 5′)
indicated the para-substitution of ring B. Two aromatic singlets were allocated to H-3 and
H-6. The aromatic singlet at δH 6.68 was assigned to H-3 as it showed an HMBC correlation
(Figure S8) with C-10 (δC 103.8) and C-2 (δC 164.6), and δH 6.60 was assigned to H-6 since
H-8 was involved in the linkage between the flavonoid unit and the benzene ring (ring
D). This was confirmed by the HMBC correlations from H-6′′ (δH 7.93) to C-8 (δC 105.6),
as shown in structure 1 in Figure 5. All 25 carbon resonances were resolved in the 13C
NMR spectrum (Table 3 and Figure S4) and were further classified by a DEPT spectrum
(Figure S5). They were categorized as 3 methyl (oxygenated), 9 methines (unsaturated),
and 13 quaternary carbons (2 carbonyl).
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Figure 4. Chemical structures of isolated compounds (1–16) from DCM fraction of S. doederleinii. Figure 4. Chemical structures of isolated compounds (1–16) from DCM fraction of S. doederleinii.

The three methoxy groups were assigned to be attached to C-7, C-4′, and C-2′′, which
were determined by HMBC signals from δH 3.82 to δC 163.3 (C-7), δH 3.86 to δC 164.4 (C-4′),
and δH 3.77 to δC 163.1 (C-2′′). Besides the tri-substituted benzene ring (ring D), the
remaining signals disclosed that Compound 1 had a flavonoid skeleton. The singlet proton
at δH 6.60 (H-6) suggested that ring A could be substituted either at C-6 or C-8, and the
HMBC studies have shown that the 1,2,5-trisubstituted benzene ring (ring D) was linked to
C-8 by the correlation from δH 7.93 to δC 105.6 (C-8). It was concluded that compound 1
was an apigenin derivative and the chemical structure was determined as 3-(5-hydroxy-7-
methoxy-2-(4-methoxyphenyl)-4-oxo-4H-chromen-8-yl)-4-methoxybenzoic acid.

Compound 3 was isolated as a yellow amorphous powder. Through HR-ESI-MS
(positive ion mode) analysis, a molecular ion peak appeared at m/z 419.1121 [M + H]+

(calculated for [M+H]+ 419.1125) (Figure S10), indicating a molecular formula of C24H18O7
for 3, which was per the 1H NMR and 13C NMR spectroscopic data (Table 3, Figures S11
and S12). The 1H NMR data of 3 displayed the presence of a 1,2,5-trisubstituted benzene
moiety (ring D) at δH 8.01 (1H, dd, J = 8.4, 2.3 Hz, H-4′′), 7.99 (1H, d, J = 2.2 Hz, H-6′′),
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and 7.08 (1H, d, J = 8.5 Hz, H-3′′), and was supported by the corresponding 13C NMR
data (Table 3 and Figure S12). The singlet methyl group at δH 2.57 (3H, s, H-8′′), along
with the carbonyl carbon at δC 199.6, revealed an acetyl group that, based on the HMBC
correlation of H-4′′ and H-8′′ to C-7′′ (Figure 5), was attached to C-5′′ of ring D. Additionally,
an AA′XX′ coupling system signal at δH 7.64 (2H, d, J = 8.9 Hz, H-2′/6′) and 6.94 (2H,
d, J = 8.9 Hz, H-3′/5′) indicated the para-substitution of ring B, and the two aromatic
singlets at δH 6.68 and 6.40 were assigned to H-3 and H-6, respectively. All 24 carbons
were displayed in the 13C NMR spectrum (Figure S12), which included 15 carbons for the
apigenin skeleton, 6 for the phenyl (ring D), 2 for the acetyl group at δC 199.6 and 26.9, and
1 for the methoxyl at δC 56.0. The HMBC spectrum (Figure S16) displayed the presence of
a C-1′′-C-8 linkage in ring D and A by correlations from H-6′′ (δH 7.99) to C-8 (δC 105.4),
which confirmed that C-8 was the point of attachment of ring D to the apigenin skeleton.
A methoxyl group was attached at C-4′ (δC 164.3) in ring B of the apigenin skeleton as it
displayed HMBC correlations from δH 3.84 (OMe) to C-4′ (δC 164.3). At C-2′′ in phenyl
(ring D), a hydroxyl was attached as shown by HMBC correlations from H-4′′/6′′ (δH 8.01,
7.99) to C-2′′ (δC 163.3), as shown in Figure 5 as well as the downfield shift resonance of
C-2′′ (δC 163.3) by 31.0 ppm. Hence, the structure of compound 3 was characterized as
8-(5-acetyl-2-hydroxyphenyl)-5,7-dihydroxy-2-(4-methoxyphenyl)-4H-chromen-4-one.

Table 3. 1H NMR and 13C NMR data of compounds 1, 3–5.

1 3 4 5

H/C δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz) δC

2 164.6 165.7 163.5 163.4
3 6.68 1H, s 103.8 6.68 1H, s 103.9 6.67 1H, s 103.9 6.71 1H, s 103.9
4 184.5 184.3 179.4 179.4
5 163.1 162.5 164.6
6 6.60 1H, s 96.4 6.40 1H, s 100.1 6.38 1H, s 99.9 6.63 1H, s 96.4
7 163.3 166.7 164.4 164.4
8 105.6 105.4 104.6 105.7
9 155.5 156.5 156.8 155.5

10 103.8 104.3 104.9 106.4
1′ 124.3 124.6 124.7 124.3

2′/6′ 7.56 2H, d, J = 8.9 Hz 129.1 7.64 2H, d, J = 8.9 Hz 129.1 7.54 2H, d, J = 8.9 Hz 129.0 7.56 2H, d, J = 8.9 Hz 129.0
3′/5′ 6.93 2H, d, J = 8.9 Hz 115.5 6.94 2H, d, J = 8.9 Hz 115.5 6.93 2H, d, J = 8.9 Hz 115.5 6.94 2H, d, J = 8.9 Hz 115.5

4′ 164.4 164.3 164.4 165.0
1′′ 122.0 119.7 122.6 122.5
2′′ 163.1 163.3 163.3 163.3
3′′ 7.20 1H, d, J = 8.7 Hz 111.4 7.08 1H, d, J = 8.5 Hz 116.7 7.24 1H, d, J = 8.8 Hz 111.8 7.28 1H, d, J = 8.8 Hz 111.7

4′′ 8.13 1H, dd, J = 8.7,
2.2 Hz 132.7 8.01 1H, dd, J = 8.4,

2.3 Hz 130.9 8.16 1H, dd, J = 8.7,
2.4 Hz 131.9 8.17 1H, dd, J = 8.7,

2.3 Hz 131.1

5′′ 126.2 130.1 130.9 130.9
6′′ 7.93 1H, d, J = 2.2 Hz 135.5 7.99 1H, d, J = 2.2 Hz 135.7 7.99 1H, d, J = 2.3 Hz 134.8 7.96 1H, d, J = 2.3 Hz 134.6
7′′ 165.9 199.6 196.5 199.5
8′′ 2.57 3H, s 26.9 2.57 3H, s 26.9 2.57 3H, s 28.1

OMe-7 3.82 3H, s 56.0 3.84 3H, s 56.9
OMe-4′ 3.86 3H, s 56.8 3.84 3H, s 56.0 3.82 3H, s 56.5 3.87 3H, s 56.5
OMe-2′′ 3.77 3H, s 56.3 3.82 3H, s 56.0 3.82 3H, S 56.0

600 MHz 1H-NMR and 150 MHz 13C-NMR data recorded in Methanol-d4.
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Compound 4 was obtained as a yellow amorphous powder and HR-ESI-MS exhibited
a molecular peak at m/z 433.1276 [M + H]+ (calculated for 433.1282) with the molecular
formula C25H20O7, which corresponded to the 1H NMR and 13C NMR spectroscopic data
(Table 3). By comparing the 1H NMR and 13C NMR data of compound 3 to that of 4, it
was observed that there was an additional methoxyl that was attached at C-2′′ of ring
D, according to the HMBC correlations from δH 3.82 to C-2′′ (δC 163.3). The structure of
compound 4 was thus determined as 8-(5-acetyl-2-methoxyphenyl)-5,7-dihydroxy-2-(4-
methoxyphenyl)-4H-chromen-4-one [43]. This is the first time its spectroscopic data and its
isolation from natural resources have been reported.

Compound 5 was isolated as a yellow powder. It shared the same skeleton structure
with compounds 3 and 4 but with three methoxy groups. 1H NMR and 13C NMR data
gave the molecular formula as C26H22O7. The 1H NMR and 13C NMR spectroscopic data
(Table 3) of 5 closely resembled that of 4, except that the hydroxyl at C-7 of ring A was
substituted by a methoxy group. The HMBC studies of this compound indicated that the
three methoxy groups are attached at C-7, C-4′, and C-2′′, as indicated in Figure 5. Hence,
compound 5 was determined as 8-(5-acetyl-2-methoxyphenyl)-5-hydroxy-7-methoxy-2-(4-
methoxyphenyl)-4H-chromen-4-one [43]. The spectroscopic data of 5 is also being reported
for the first time in this study, as well as its isolation from natural resources.

The structures of 12 other known compounds, 2 and 6–16, were established by
comparison of their spectroscopic data with those reported in the literature as 3-(5,7-
dihydroxy-2-(4-methoxy-phenyl)-4-oxo-4H-chromen-8-yl)-4-methoxy-benzoic acid (2) [44],
Sequoiaflavone (6) [45], 7,7′′-dimethyl ether amentoflavone (7) [22], 2,3-dihydro-4′ ′ ′-methyl
ether amentoflavone (8) [46], 2,3-dihydro-7,4′-dimethyl ether amentoflavone (9) [47], 2′′,3′′-
Dihydroamentoflavone (10) [48], 4′,4′ ′ ′-dimethyl ether robustaflavone (11) [47], 2,3-dihydro-
4′-methyl ether robustaflavone (12) [49], 5,4′-dihydroxy-7-methoxyflavone (13) [50], theve-
tiaflavone (14) [51,52], 2′′,3′′-dihydrohinokiflavone (15) [53], and 7′′-methyl ether tetrahy-
drohinokiflavone (16) [54].
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Biflavonoids are the most common and characteristic compounds of the species S.
doederleinii, with a few alkaloids [26], lignan [21], and triflavonoids [19] having been
reported. In this study, we isolated five compounds with an apigenin skeleton and a
phenyl (ring D) attached at C-8 of the apigenin and an acetyl attached at C-5′′ of ring D.
In genus Selaginella, many biflavonoids with a C-C interflavonoid connection at C-8 of
apigenin have been reported [55]. By keenly observing compounds 1–5, they resemble an
amentoflavone (having C3′-C8′′ interflavonoid linkage) derivative without the chromone
part of the flavonoid I unit. Therefore, these five compounds could have been derived from
these kinds of biflavonoids. Compounds with this kind of structure were first reported by
Zou et al. [27] in this species. Four biflavonoids (8, 12, 15, and 16) are being reported for
the first time in this species. Additionally, compounds 2, 13, and 14 are reported for the
first time in this species too.

3.5. Antioxidant Activities of Isolated Compounds from S. doederleinii

The isolated compounds from S. doederleinii were evaluated for their antioxidant
activity by DPPH and FRAP assays. All the examined compounds exhibited radical
scavenging abilities at different concentrations with the lowest and highest concentrations
of 6.25 and 100 µM, respectively, as shown in Figure 6. Compound 14 expressed the best
antioxidant activity among the tested compounds with an IC50 value of 89.3 ± 4.0 µM,
while the positive control (Vitamin C) had an IC50 value of 20.3 ± 0.2 µM. The radical
scavenging ability of the isolated compounds from S. doederleinii is attributed to the hydroxy
groups in their structures, which donate a hydrogen atom to neutralize the free radicals,
hence suppressing their oxidation potentials. The tested compounds expressed close free
radical scavenging abilities even at the highest concentration of 100 µM, except compound
14 which had a higher value as compared to the rest. The FRAP assay results (Figure 7)
also revealed that compound 14 exhibited the highest ferric reducing ability with a value of
1.4 ± 0.03 mM Fe2+/g, followed by compound 4 with a value of 1.1 ± 0.02 mmol Fe2+/g,
which also exhibited the second highest DPPH radical scavenging rate at concentration of
100 µM. Vitamin C was used as the positive control on the FRAP assay and it exhibited an
ion-reducing capacity with a value of 7.8 ± 1.2 mM Fe2+/g. The antioxidant activity of
the isolated compounds from S. doederleinii has not been reported before, hence our work
reports this for the first time. Flavonoids derived from plants have been reported to be
strong antioxidants [56]. Bedir et al. [44] evaluated the antioxidant activity of flavonoids and
four biflavonoids (Amentoflavone, Bilobetin, Ginkgetin, and Sciadopitysin). The flavonoids
exhibited noble antioxidant activity. However, none of the four biflavonoids evaluated
exhibited strong antioxidant activity. Another study by Orčić et al. [57] revealed low
antioxidant activity of biflavonoids isolated from Hypericum perforatum species, whereas the
monomer flavonoids exhibited strong antioxidant activities. Previous studies in the same
species had reported low antioxidant activities of isolated biflavonoids. This is in support of
our findings, whereby flavonoid compound 14 exhibited the strongest antioxidant activity
compared to the rest of the tested compounds, which were mainly biflavonoids.
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3.6. Antiproliferation Activity of Compounds Isolated from S. doederleinii

All the isolated compounds were evaluated for their antiproliferation activity against
three human cancer cell lines: HT-29, HeLa, and A549 by the MTT method. All the
compounds showed antiproliferation activity on the three tested cancer cell lines to different
degrees. Interestingly, these compounds expressed some level of antiproliferation on cancer
cell line A549, which could give an insight into its major traditional use for lung cancer
treatment and management. Among the 16 compounds, three (8, 9, 16) expressed the best
activity by inhibiting the rate of cell growth in a dose-dependent manner on the three
cancer cell lines, and their IC50 values were shown in Table 4. Interestingly, the three were
biflavonoids, which have continued to be of interest in the search for cancer drugs [28,58].
Compounds 8 and 16 exhibited noble activities on cancer cell line A549 as compared to
their activities on the other cell lines. This affirmed the DCM fraction antiproliferative
activity on cancer cell line A549, which exhibited the best activity compared to the other
cell lines. Additionally, it supports the main use of this species, which is traditionally in the
treatment and management of lung cancer.
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Table 4. IC50 values of compounds 8, 9, and 16 on HT-29, HeLa, and A549.

Compound No.
IC50 (µM)

HT-29 HeLa A549

8 56.9 ± 3.4 43.5 ± 4.2 24.3 ± 1.2

9 44.7 ± 3.2 >100 >100

16 27.9 ± 1.0 35.5 ± 4.2 20.7 ± 3.4

3.7. Structure–Activity Relationship of S. doederleinii Phytochemicals

The structure–activity relationship study of our results was interesting, with all com-
pounds exhibiting obvious cytotoxicity on the three cancer cell lines. The two amentoflavone
derivatives (8 and 9) exhibited antiproliferation activity, with 8 having the best activity on
the HeLa and A549 cancer cell lines and 9 having the best activity on the HT-29 cell line, as
shown in Table 4. Compound 8 exhibited better activity than 9, this could be attributed
to the OH at C-5,7 of ring A and C-4′ of ring B of the first flavonoid unit as compared to
9, which had OCH3 at C-7,4′. This confirms the importance of OH at C-5,7 of ring A and
at C-3′,4′ of ring B [59–61]. When comparing the antiproliferation of the hinokiflavone
derivatives, compound 16 exhibited more interesting activity than 15 with the best activity
on the three human cancer cell lines among the tested compounds. The noble activity of 16
was enhanced by the methoxy group at C-7′′ of ring A of the second flavonoid unit. This
was in accordance with Du et al. [62], who established that methylation at ring A enhances
the antiproliferative activity of flavones.

4. Conclusions

In this study, the TFC, antioxidant (DPPH and FRAP assays), and antiproliferative
potentials of the ethanol extract and its fractions were evaluated. The DCM and EA frac-
tions depicted good potency on the three bioassays. The phytochemical investigation
was carried out to identify the phytochemicals responsible for its antioxidant and antipro-
liferative activities. This resulted in the isolation of 16 compounds, including two new
compounds (1 and 3). The isolated compounds were then evaluated for their antioxida-
tive and antiproliferative potentials. All the evaluated compounds exhibited some free
radical scavenging ability. Compound 14 expressed the best antioxidant activity on the
DPPH assay and the highest ferric reducing antioxidant ability on the FRAP assay. The
antiproliferative activity was tested by MTT assay on three human cancer cell lines: HT-29,
HeLa, and A549. Compound 16 (7′′-methyl ether Tetrahydrohinokiflavone) exhibited the
strongest activity by inhibiting the rate of cell growth in a dose-dependent manner on the
three cancer cell lines. Compounds 8 and 16 exhibited noble antiproliferative activities on
the A549 cancer cell line, hence they could be promising lung cancer drug candidates. The
study has therefore supported the traditional use of S. doederleinii in cancer treatment and
identified the bioactive chemical constituents responsible for its pharmacological properties.
Additionally, the study has enriched the phytochemical constitution of S. doederleinii as
well as its pharmacological profile. However, we strongly suggest more isolation work to
expand the phytochemical profile of this species with new compounds of different classes
as it has been reported in other species of the genus Selaginella.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox11061189/s1. Figure S1. Isolation flow diagram of com-
pounds 1–16, Figure S2. UPLC-QTOF-MS spectrum of compound 1, Figure S3. 1H NMR (600 MHz)
spectrum of compound 1 in Methanol-d4, Figure S4. 13C NMR (150 MHz) spectrum of compound 1 in
Methanol-d4, Figure S5. DEPT (150 MHz) spectrum of compound 1 in Methanol-d4, Figure S6. HSQC
(600 MHz) spectrum of compound 1 in Methanol-d4, Figure S7. 1H-1H COSY (600 MHz) spectrum of
compound 1 in Methanol-d4, Figure S8. HMBC (600 MHz) spectrum of compound 1 in Methanol-d4,
Figure S9. NOESY (600 MHz) spectrum of compound 1 in Methanol-d4, Figure S10. UPLC-QTOF-MS
spectrum of compound 3, Figure S11. 1H NMR (600 MHz) spectrum of compound 3 in Methanol-

https://www.mdpi.com/article/10.3390/antiox11061189/s1
https://www.mdpi.com/article/10.3390/antiox11061189/s1


Antioxidants 2022, 11, 1189 14 of 16

d4, Figure S12. 13C NMR (150 MHz) spectrum of compound 3 in Methanol-d4, Figure S13. DEPT
(150 MHz) spectrum of compound 3 in Methanol-d4, Figure S14. HSQC (600 MHz) spectrum of
compound 3 in Methanol-d4, Figure S15. 1H-1H COSY (600 MHz) spectrum of compound 3 in
Methanol-d4, Figure S16. HMBC (600 MHz) spectrum of compound 3 in Methanol-d4, Figure S17.
NOESY (600 MHz) spectrum of compound 3 in Methanol-d4.
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